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Abstract 

The aim of this study was to evaluate the pharmacokinetic variations of mycophenolic acid (MPA), 

the active metabolite of mycophenolate mofetil (MMF), in both pediatric and adult patients 

following hematopoietic stem cell transplantation (HSCT). Twenty pediatric patients with a median 

age of 3 years (range, 0.2-12 years) and thirteen adult patients with a median age of 54 years 

(range, 18-63 years) were enrolled. Blood samples were collected on days 0, 7, 14, 21 and 30 

after allogeneic HSCT. Total and free (unbound) MPA, as well as MPAG were quantified using a 

validated LC-MS/MS assay. The plasma protein binding of MPA and MPAG did not change 

significantly in pediatric patients over the one month sampling period post HSCT. However, it 

increased in adult patients from day 7 to day 30 post HSCT, from 97.3±0.8% to 98.3±0.6% for 

MPA (P <0.05), and 74.6±9.4% to 82.9±8.1% for MPAG (P <0.05). The plasma protein binding of 

MPA was significantly higher in males compared to females in both pediatric (98.3±1.1 vs 

97.4±1.1%) and adult (98.1±0.7 vs 97.4±1.2%) patients (P <0.05). The MPAG/MPA ratios on an 

mg/kg dose basis in adult patients were significantly higher than those in pediatric patients 

(4.3±3.4 vs 2.4±2.6; P <0.05). Time-dependent plasma protein binding and age-related 

differences in MPA metabolism, at least in part, impact the reported large inter- and intra-individual 

variability in MPA pharmacokinetics. These patient and pharmacologic factors, if incorporating 

into MMF regimen design and modification, may contribute to the rational dose selection of MMF 

in HSCT patients.  
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Introduction 

Mycophenolate mofetil (MMF) is an immunosuppressive drug approved by the FDA in 1995 to 

prevent acute rejection in renal allograft recipients.  Besides in solid organ transplantation, MMF 

is increasingly used in the prevention and treatment of acute and chronic graft-versus-host 

disease (GVHD) post allogeneic hematopoietic stem cell transplantation (HSCT). 1 MMF itself is 

biologically inactive and must be metabolized by carboxylesterases to mycophenolic acid (MPA), 

which is a potent, reversible, uncompetitive inhibitor of the rate-limiting enzyme inosine 

monophosphate dehydrogenase (IMPDH) in the de novo purine biosynthesis. Inhibition of IMPDH 

blocks T- and B-lymphocyte proliferations, and reduces antibody production and the generation 

of cytotoxic T lymphocytes, consequently contributing to the prevention of allograft rejection and 

treatment of ongoing rejection.2, 3 

MPA metabolism occurs primarily in the liver but also to some extent in the intestine and kidney.4 

A major fraction is converted to the inactive 7-O-glucuronide (MPAG) and a minor fraction is 

converted to the active acyl glucuronide (AcMPAG). UGT1A9, 1A8, 1A1, 1A7 and 1A10 produce 

MPAG in significant amounts, with UGT 1A9 being the most active isoform. UGT 2B7 is the only 

isoform producing AcMPAG in a significant amount.5, 6 UGT1A8 expressed in the kidney and 

throughout the GI tract, and UGT1A9 expressed in the liver, intestine and kidney, are believed to 

be the major isoforms involved in MPA glucuronidation.7, 8 MPAG is mainly excreted in urine via 

active tubular secretion and glomerular filtration. It could be partly excreted into the bile by Mrp2 

(multidrug resistance-associated protein), de-conjugated back to MPA by the gut microflora β-

glucuronidases, and then reabsorbed into the portal circulation, characterized as enterohepatic 

circulation (EHC). In humans, the mean contribution of EHC to the overall AUC of MPA is 37% 

(ranging from 10 to 61%).9 

MPA extensively binds to human serum albumin and has a free fraction of <3% in patients with 

normal renal and liver function. Only unbound MPA is capable of inhibiting IMPDH in vitro and in 

vivo. Changes in albumin levels may potentially change activity or toxicity. MPAG also displays 
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high serum albumin binding (82%) in stable patients. Therefore, competition for albumin binding 

between MPA and MPAG may exist. AcMPAG forms an irreversible covalent bound with albumin, 

which makes the measurement of the free fraction technically challenging.10 

Many centers use standard MMF dose (1,000 mg, q12h) for adult HSCT patients and 15 mg/kg 

q8h for pediatric HSCT patients. However, the pharmacokinetics (PK) of MPA and the 

relationships between dose, plasma concentration and exposure are poorly understood in HSCT 

patients, especially in pediatric HSCT patients. 11 Standard doses (2 g/day) in adult HSCT patients 

achieve significantly lower MPA exposure compared with renal transplant patients.12 Increased 

doses to 3 g/day with cyclosporine still fail to achieve therapeutic plasma exposure in many adult 

HSCT patients.13 The physiologic differences between the kidney and HSCT recipients including 

renal function, chemotherapy effects, prophylactic antibiotic use and higher severity of illness, 

may affect MPA disposition. In pediatric HSCT patients, 15 mg/kg q12h intravenously with 

cyclosporine have a significantly lower total and unbound MPA exposure than pediatric renal 

transplant recipients receiving 600 mg/m2 q12h. Although q8h dosing improves exposure, it does 

not consistently obtain MPA plasma exposure similar to adults.14 Another study demonstrates that 

MMF administration of 900 mg/m2 q6h in combination with tacrolimus achieves MPA plasma 

exposures similar to those of adults.15 Therefore, despite the increased use of MMF, the optimal 

dose is unknown in both pediatric and adult HSCT patients. 

A number of variables affect MPA pharmacokinetics, including renal and hepatic function, albumin 

concentration, magnitude of EHC, concomitant immunosuppressive therapy, and genetic 

polymorphisms in drug metabolizing enzymes and transporters. Because of the complex 

pharmacokinetics of MPA, high inter- and intra-patient pharmacokinetic variability of MPA is 

observed in organ transplant patients, childhood-onset systemic lupus erythematosus patients 

and HSCT patients. MPA exposure could vary more than 10-fold between patients, leading to a 

significant therapeutic challenge.12, 16-21 This study was conducted to gain insights into the 

pharmacokinetic variability of MPA, from plasma protein binding and metabolic perspectives, in 
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both pediatric and adult HSCT patients. Identifying the patient and pharmacologic characteristics 

that significantly affect MPA pharmacokinetics would allow for more rational decisions on MMF 

dosing in both pediatric and adult HSCT patients. 

Methods 

Study subjects 

This study was conducted as an open-label and inpatient/outpatient clinical study in HSCT 

patients. The main objective was to evaluate the inter- and intra-patient variability of MPA in 

pediatric and adult patients post HSCT. Twenty pediatric patients with a median age of 3 years 

(range: 0.2 to 12 years) and thirteen adult patients with a median age of 54 years (range: 18-63 

years), undergoing HSCT from both related and unrelated donors, were enrolled at Indiana 

University Hospital and Riley Hospital for Children (Table 1).  All adult patients and nearly half of 

pediatric patients (9/20) were diagnosed with malignancies. The study was approved by the 

Institutional Review Boards of participating centers (IRB # 1111007321). Informed consent was 

obtained from each patient (or parent/guardian for pediatric patients) and assent was obtained 

from children who are at least 7 years of age before enrollment.  

Study protocol 

MMF (CellCept®, Roche) was initiated by a 2-hour intravenous infusion at 15 mg/kg every 8 hours 

for pediatric patients, and at an oral fixed dose of 1,000 mg twice daily for adult patients prior to 

transplantation. In this study, 17 pediatric patients were co-administered with cyclosporine, and 

others with tacrolimus as a concomitant immunosuppressive therapy. Nine adult patients were 

co-administered with cyclosporine, and others with tacrolimus. The sparse PK sampling design 

was employed. One blood sample was collected from each patient on day 0 of transplant, and 

days 7, 14, 21 and 30 post transplant. The sampling time fell into one of the flowing three time 

ranges: 2-4 h, 4-6 h or 6-8 h. After centrifugation, plasma samples were collected and kept at – 

80 °C until analysis. Pre- and post-operative biochemical parameters indicative of liver and renal 

function (albumin, serum creatinine, total bilirubin, blood urea nitrogen [BUN], aspartate 
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aminotransferase [AST], alanine aminotransferase [ALT], alkaline phosphatase [ALP]) were 

measured in all patients. 

Assessment of GVHD 

In this study, clinical staging for each organ/system involved in acute GVHD and overall grading 

were based on a modified Keystone grading schema. Chronic GVHD was defined by the technical 

manual of procedures edited by the Blood and Marrow Transplant (BMT) Clinical Trials Network 

(CTN). 22 Symptoms of chronic GVHD if present was reported using the GVHD symptom record.  

Total and free MPA and MPAG analysis 

MPA and MPAG concentrations were measured by a validated liquid chromatography-tandem 

mass spectrometry (UPLC-MS/MS) method. Briefly, the chromatographic separation was 

achieved on a C18 column with a gradient elution, and the detection was performed by a triple 

quadrupole mass spectrometer in the positive electrospray ionization (ESI) and multiple reaction 

monitoring (MRM) mode. Linearity of the assay was demonstrated over the range of 0.02-10 µg/ml 

for MPA and MPAG in human plasma. The lower limit of quantification (LLOQ) for this method 

was 0.02 µg/ml for both MPA and MPAG. The assay was accurate and precise with bias and %CV 

less than < 15%.  

For total MPA and MPAG analysis, 5 µl of internal standard working solution (mixture of 1 µg/ml 

MPA-d3 and 5 µg/ml MPAG-d3) was added to 50 µl of each calibration standard, QC sample or 

subject sample. The plasma proteins were precipitated with acetonitrile (ACN) and the 

supernatant was transferred into pre-labeled tubes and evaporated to dryness after vigorous 

mixing and centrifugation. Samples were reconstituted with 100 µl of 30 % ACN with 0.1% formic 

acid, centrifuged at 18,000 × g for 15 min, and the supernatant was injected into the UPLC-MS/MS 

system. The proportions of MPA and MPAG bound to plasma proteins in clinical samples were 

evaluated after 30 min of incubation at 37 °C. One hundred and fifty (150) µl of plasma sample 

was filtered with a Centrifree® ultrafiltration device (Millipore, Bedford, MA) assembled with a 

regenerated cellulose membrane (molecular weight cut-off, 30 kDa) under centrifugation (2,000 
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× g, Eppendorf centrifuge 5810 R equipped with a swing-bucket rotor A-4-62) for 15 min. The 

plasma ultrafiltrates were diluted with 30 % ACN with 0.1% formic acid and then directly injected 

into the UPLC-MS/MS system. Samples with concentrations above the upper limit of linearity 

were diluted and reanalyzed.  

Statistical methods 

Non-normally distributed variables were expressed as median and range, and normally distributed 

variables as mean and SD. All statistical analysis was performed using GraphPad Prism 5.0 

(GraphPad Software, San Diego, CA). The normality of the distribution was checked with the 

Kolmogorov-Smirnoff test. For 2-group comparisons, continuous variables were analyzed by 

Student’s t-test or Mann-Whitney U test, if applicable. For multi-group comparisons, continuous 

variables were analyzed by ANOVA or Kruskal-Wallis test and post hoc comparisons, if applicable. 

A p-value of 0.05 was considered statistically significant. Probability of acute and chronic GVHD 

was estimated with the Kaplan-Meier method, performed with GraphPad Prism 5.0. 

 

Results 

Patients 

A total of 20 pediatric patients and 13 adult patients received allogeneic HSCT were included in 

the current analysis. The age range was 0.2-12 years (median, 3 years) and 18-63 years (median, 

54 years) for pediatric and adult patients, respectively. The sex distribution was 12/8 and 7/6 

males/females for pediatric and adult patients, respectively. A total of 84 blood samples were 

collected from pediatric patients, and 45 were from adult patients. At the time of pharmacokinetic 

sampling, 17 pediatric patients were co-administered with cyclosporine and 3 with tacrolimus as 

a concomitant immunosuppressive therapy. For adult patients, 9 were co-administered with 

cyclosporine, and 4 with tacrolimus. Demographics and transplant characteristics of the study 

population are summarized in Table 1. 

Plasma protein binding 
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During the 1-month sampling period post HSCT, a large variation in serum albumin levels was 

observed and the free fraction (% unbound) of MPA and MPAG did not change significantly in 

pediatric patients (Figures 1 and 2). For adult patients, a temporary drop in serum albumin levels 

was observed  in the early period post HSCT and the serum albumin levels reached to normal 

range (3.5–5.0 g/dL) after Day 21 post HSCT (Figure 1). A significant increase of protein binding 

was observed in adult patients from day 7 to day 30 post HSCT, from 97.3±0.8% to 98.3±0.6% 

for MPA (P <0.05), and 74.6±9.4% to 82.9±8.1% for MPAG (P <0.05), resulting in a significantly 

decreased percentage of unbound MPA and MPAG (Figure 2).  

Sex-related differences in serum albumin levels and plasma protein binding of MPA and MPAG 

were observed. Significantly higher serum albumin levels were observed in pediatric males than 

those in pediatric females (3.6±0.5 vs 3.1±0.5; Figure 3). However, similar serum albumin levels 

were observed between adult males and adult females (3.5±0.4 vs 3.5±0.4; Figure 3). In pediatric 

patients, males displayed significantly higher plasma protein binding of MPA and MPAG 

compared to females (98.3±1.1 vs 97.4±1.1% for MPA and 78.7±8.7 vs 73.3±9.4% for MPAG), 

resulting in lower percentage unbound in males than females (1.7±1.1 vs 2.6±1.1% for MPA and 

21.3±8.7 vs 26.7±9.4% for MPAG; Figure 4). In adult patients, the plasma protein binding of MPA 

and MPAG was also significantly higher in males compared to females (98.1±0.7 vs 97.4±1.2% 

for MPA and 81.5±8.3 vs 73.8±10.1% for MPAG), resulting in lower percentage unbound in males 

than females (1.9±0.7 vs 2.6±1.2% for MPA and 18.5±8.3 vs 26.2±10.1% for MPAG; Figure 4).  

MPAG/MPA ratios 

Very high plasma concentrations of MPAG (1.3-168 µg/ml) in comparison to MPA (0.04-23.5 

µg/ml) were observed in all the patients studied. The MPAG/MPA ratios were similar between 

males and females in pediatric (30.1±30.9 vs 39.9±38.0) and adult (58.6±35.0 vs 40.4±29.3%) 

patients (Figure 5).  The MPAG/MPA ratios on an mg/kg dose basis were significantly higher in 

adult patients than those in pediatric patients (4.3±3.4 vs 2.4±2.6; P <0.05; Figure 6). 

Acute and chronic GVHD 
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Acute GVHD was observed in 4 pediatric patients (grade II) and 7 adult patients (Grade I, n=1; 

Grade II, n=3; Grade III, n=3). During the study period, the incidence of grade I to IV acute GVHD 

was 20% (4/20) and 54% (7/13), in pediatric and adult patients, respectively (Figure 7). One 

pediatric patient (1 cord) and five adult patient (5 PBSC) developed chronic GVHD. 

Discussion 

Extensive plasma protein binding is an important pharmacokinetic property of MPA. The inhibition 

of IMPDH depends on the free MPA.  Renal function, albumin level and MPAG concentration 

competing for the binding may all affect the protein binding of MPA, leading to considerable 

alterations of free MPA concentration in vivo. 23, 24 In renal transplant recipients, MPA protein 

binding negatively correlates with urea and creatinine concentration and positively correlates with 

albumin concentration. MPA free fraction was highly affected by free and total MPAG AUC0-6. 25 

Li et al. found total MPA clearance increased with decreased serum albumin concentration in 

HSCT patients, most likely due to increased unbound MPA fraction. 26 Impaired renal function can 

lead to an accumulation of MPAG, which may displace MPA from its protein binding sites or 

increase EHC of MPAG, consequently resulting in an increase in total MPA concentration, 

observed in liver transplant recipients with mild to moderate renal dysfunction. 27 In vitro data have 

shown that MPA plasma protein binding is not affected by other common immunosuppressant 

medications (cyclosporine, tacrolimus and prednisone). 23 

In the early period post HSCT in adult patients, conditioning therapy including chemotherapy with 

or without radiation might lead to a temporary drop in serum albumin level, resulting in a temporary 

decrease in protein binding (increase in % unbound). After 1 month post HSCT, the decreased 

MPA free fraction in adult patients might be due to the increased albumin concentration that 

increases binding capacity for MPA and decreased competition of MPAG from albumin binding 

sites. Kuypers et al. also reported serum albumin levels initially decreased and recovered by week 

6 in renal transplant recipients. 28 Assuming that the liver is the major organ involved in MPA 

elimination, the hepatic extraction ratio of MPA (the fraction of MPA that is metabolized during a 
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single pass through the liver) is approximately 0.3 to 0.7, indicating that MPA can be either 

restrictive or nonrestrictive 9. Therefore, its hepatic clearance will be affected by free fraction, 

intrinsic enzymatic activity of the liver, and the blood flow to the liver. The decrease in % unbound 

MPA one month post HSCT in adult patients may lead to a decrease in glucuronidation rate, 

resulting in an decrease in MPA clearance and an increase in total MPA exposure in the patients. 

Higher serum albumin levels might result in higher plasma protein binding of MPA in pediatric 

males than in pediatric females. In adult patients, the plasma protein binding of MPA was also 

significantly higher in males compared to females, although similar serum albumin levels were 

observed between males and females. Therefore, the plasma protein binding of MPA was not 

only affected by the serum albumin level, but also by some other factors. The percentage of free 

MPA correlates with red blood cell and leucocyte counts in renal transplant recipients.29 

Increasing hemoglobin causes a decrease in MPA clearance in renal transplant patients found by 

van HEST et al., indicating that MPA binds not only to albumin but also to hemoglobin or red blood 

cells. 24 Therefore, sex-related differences on the hematologic parameters may also affect the 

unbound fraction. This speculation certainly warrants further evaluations to characterize the 

potential impact of these factors. 

Glucuronidation is the major elimination pathway for MPA. Studies evaluating the effect of sex on 

MPA pharmacokinetics give conflicting results. Morissette et al. reported sex related differences 

in MPAG/MPA ratio. It was significantly higher in males than in females of kidney transplant 

patients co-administered with tacrolimus. 30 The effect of sex on MPA clearance has been 

described by developing a population PK model in renal transplant patients following oral 

administration of MMF. Based on the final population PK model, it appears that males have an 

11% higher MPA clearance than females. 31 Tornatore et al. has reported rapid apparent MPA 

clearance in males than in females in African Americans (13.8±6.27 vs 8.70±3.33 L/h) and 

Caucasians (10.2±3.73 vs 9.71±3.94 L/h) post renal transplantation. 32 A possible effect has been 

suggested that the lower metabolism of MPA in females may be due to the competition of estrogen 
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metabolism with UGTs. The sex related difference in clearance, with males exhibiting a more 

rapid clearance, could contribute to the large inter-individual pharmacokinetic variability.  Other 

studies found no effect of sex on MPA clearance. The dose-adjusted AUC in females was slightly 

higher than in females, but this difference did not reach statistical difference in renal transplant 

patients. 33 In a population pharmacokinetic meta-analysis containing 13,346 MPA concentration-

time data points from 468 renal transplant patients, no significant relationship was found between 

sex and MPA exposure. 24 In this study, the MPAG/MPA ratios were similar between males and 

females in pediatric and adult patients.   

Pediatric patients display different pharmacokinetics from those of adult patients. Different MMF 

deposition rates are expected in pediatric patients compared to adult patients, based on the 

ontogeny of human hepatic UGTs. Higher MPAG/MPA ratios on an mg/kg dose basis were 

observed in adult patients than those in pediatric patients in this study. Gajarski et al. also found 

that MPAG/MPA ratios were higher for adults compared with children in heart transplant recipients. 

34 This could be due to the higher amount of glucuronide-conjugating enzymes in the liver of adult 

patients than that of pediatric patients. Further studies are still needed to better understand the 

underlying developmental changes of hepatic UGTs activity. 

Metabolic drug-drug interaction may exist when co-administered with other immunosuppressants 

including cyclosporine and tacrolimus. Cyclosporine, an Mrp2 inhibitor, can cause a decrease in 

the biliary secretion of MPAG, resulting in an increase in MPAG exposure and a decrease in MPA 

exposure. 35 Tacrolimus, though mainly metabolized by the cytochrome P 450 (CYP) 3A subfamily, 

is reportedly a good inhibitor of MPA conjugation both in vitro and in vivo. Co-administration with 

tacrolimus can decrease the intrinsic UGT enzymatic clearance of MPA and consequently 

augment the bioavailability of MMF. 36, 37 On the same MMF dose basis, total and free MPA 

concentrations are lower when co-administered with cyclosporine, but higher with tacrolimus in 

organ transplant patients. 17, 38 
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Following an oral administration of MMF, the average plasma half-life in liver and renal transplant 

patients is about 6 and 11 h, respectively, and the concentration-time profile of MPA often shows 

two peaks, the first peak occurring within 2 h post-dose and the second one at 6-12 h due to EHC. 

In clinical HSCT studies, plasma MPA half-lives ranging from 1 to 4 h are observed. Compared to 

solid organ recipients, MPA exposure is lower and the EHC is markedly reduced or absent in 

HSCT patients receiving an equivalent dose of MMF. 13, 39-41 In our study, no secondary peak was 

observed on MPA concentration-time profile when co-administered with cyclosporine or 

tacrolimus. The reasons, however, were still unclear. Physiological changes including gut GVHD 

and damaged epithelium of the intestine due to high-dose chemotherapy and/or the reduction in 

bacterial flora in the gastrointestinal tract from broad-spectrum antibiotic use could reduce the 

contribution of EHC, resulting in a lower MPA exposure. Additional studies are needed to 

determine the pathophysiological mechanisms responsible for the altered MPA pharmacokinetics 

in HSCT patients.  

The current study certainly has several potential limitations. The relatively small number of clinical 

evaluable HSCT patients may affect our statistical power. Since measurement of MPA exposure 

using a full set of samples requires considerable volume of blood, which is not feasible for 

pediatric patients, the relatively sparse sampling approach used in this study limits our ability to 

characterize the reabsorption of MPA due to the EHC. Another potential limitation is that no 

pharmacokinetic parameters were derived for cyclosporine and tacrolimus. The inhibition of Mrp2 

and UGT by cyclosporine and tacrolimus, respectively, may vary among patients. Despite these 

limitations, our findings provided useful findings for pharmacokinetic variability in both pediatric 

and adult HSCT patients.  

Conclusions 

Mycophenolic acid is a commonly used immunosuppressant with complex pharmacokinetics and 

substantial inter- and intra-patient variability. This study provides preliminary data to explain inter- 

and intra-patient pharmacokinetic variability of MPA in both adult and pediatric HSCT patients. 
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We have observed time-dependent changes of protein binding and age-related differences on 

metabolism of MPA post HSCT. Time-dependent changes in plasma protein binding could 

contribute to the intra-individual variation in adult patients post HSCT. Age-dependent metabolic 

ability, as well as sex-related plasma protein binding could contribute to the inter-individual 

variation. In order to achieve a reliable immunosuppression and less toxic side effects in HSCT 

patients, we believe that effective drug monitoring for MPA needs to be established for the most 

optimal use of MPA. Incorporating these patient and pharmacologic factors into MMF regimens 

may contribute to the individualization of MMF dosing in pediatric and adult HSCT patients.  
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Figures and tables 

Table 1. Patient demographic and clinical characteristics. Data are given as median (range) 

Characteristics Pediatric patients (n=20) Adult patients (n=13) 

Age at transplant (yrs) 3 (0.2-12) 54 (18-63) 

Body weight (kg) 13.7 (5.4-33.3) 91.9(38.4-113.3) 

Sex (Male/Female) 12/8 7/6 

Race   

    White 16 13 

    Asian 2 0 

    Black 2 0 

Ethnicity   

    Hispanic 4 0 

    Non-Hispanic 14 13 

MMF Dose   

    in mg/kg (2-hr infusion, TID) 15  

    in mg(BID)  1000 

Transplant source   

    Bone marrow 1 0 

    Cord or double cord  19 2 

    Peripheral blood stem cells (PBSC) 0 11 

Donor type   

    Related sibling 1 7 

    Unrelated donor 19 6 

Malignant/Non-malignant 9/11 13/0 

Alive/Deceased 18/2 8/5 

Blood chemistry   

    Albumin (g/dL) 3.6 (2.4-4.4) 3.5 (2.3-4.5) 

    Creatinine (mg/dL) 0.3 (0.2-1.7) 0.9 (0.4-2.7) 

    Total bilirubin (mg/dL) 0.6 (0.2-7.7) 0.6 (0.2-18.5) 

    BUN (mg/dL) 17.5 (3-42) 17(3-78) 

    AST (Units/L) 24 (9-119) 21 (8-173) 

    ALT (Units/L) 20.3 (6-220) 18 (9-343) 

    ALP (Units/L) 130.3 (63-324) 84 (34-153) 
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Figure 1. Changes in serum albumin levels over 1-month sampling period in pediatric and adult 

patients after HSCT. Horizontal solid lines indicate mean values. Reference range of serum 

albumin concentrations for adult patients: 3.5–5.0 g/dL. 

* Kruskal-Wallis test at p<0.05.  
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Figure 2. Changes in percent unbound MPA and MPAG over 1-month sampling period in pediatric 

and adult patients after HSCT. Horizontal solid lines indicate mean values of pharmacokinetic 

parameters. 

* Kruskal-Wallis test at p<0.05. 
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Figure 3. Sex differences in serum albumin levels in pediatric and adult patients after HSCT. * 

Unpaired t-test at p<0.05. 
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Figure 4. Sex differences in percent unbound MPA and MPAG in pediatric and adult patients 

after HSCT. * Unpaired t-test at p<0.05. 
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Figure 5. Sex Differences in MPAG to MPA concentration ratios in pediatric and adult patients 

after HSCT. Unpaired t-test at p<0.05. 
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Figure 6. Differences in MPAG to MPA concentration ratios in pediatric and adult patients after 

HSCT. MPAG to MPA concentration ratios normalized by dose/body weight. * Unpaired t-test at 

p <0.05. 

*
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Figure 7. The probability developing grade I to IV acute GVHD or chronic GVHD in pediatric and 

adult patients. 


