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Inhibition of DNA repair is one proposed mechanism for the co-mutagenicity/co-carcinogenicity of arsenic. This review summa-
rizes the current literature on the effects of arsenic compounds on nucleotide excision repair (NER). Several possible mechanisms
for the observed NER inhibition have been proposed. Modulation of the expression of NER proteins has been considered to be
one possibility of impairing the NER process. However, data on the effects of arsenic on the expression of NER proteins remain
inconsistent. It is more likely that arsenic inhibits the induction of accessory or other key proteins involved in cellular control of
DNA repair pathways, such as p53. For example, arsenic affects p53 phosphorylation and p53 DNA binding activity, which could
regulate NER through transcriptional activation of downstream NER genes. Although it is important to study possible direct inac-
tivation of NER proteins by arsenic binding, indirect inactivation of proteins having thiol residues critical to their function or zinc
finger proteins cannot be negated. For example, nitric oxide (NO) induced in arsenic-treated cells serves as a specific inhibitor of
NER, possibly through NO-induced S-nitrosylation of proteins related to DNA repair. Poly(ADP-ribose) polymerase-1, a zinc
finger protein implicated in both NER and base excision repair (BER), deserves special attention because of its involvement in

NO production and its broad range of protein substrates including many repair enzymes.
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1 Introduction
1.1 Arsenic and its co-carcinogenicity

Inorganic arsenic (arsenite and arsenate) is a ubiquitous en-
vironmental contaminant that has long been classified as a
human carcinogen but its carcinogenic effects have not been
conclusively demonstrated in laboratory animals [1-3]. Most
of the animal experiments showed negative results and
some reported a decrease in tumor induction by arsenic
alone [1-4]. Unlike classical carcinogens, arsenic fails to
induce point mutations in bacterial or mammalian cells
[3-7]. By contrast, considerable evidence has pointed to
arsenic promoting mutagenesis/carcinogenesis, both in in
vivo bioassays and in in vitro cell culture systems. At non-
toxic concentrations, co-mutagenic effects of arsenic with
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X-rays, ultraviolet (UV) radiation, or alkylating agents have
been repeatedly observed [3—7]. Therefore, it is reasonable
to consider that arsenic acts as a co-carcinogen, although
some arsenic compounds have been shown to act as com-
plete carcinogens in a few animal models [1]. This co-mu-
tagenicity/co-carcinogenicity of arsenic might explain the
lack of tumor development in most laboratory animals
challenged with inorganic arsenic alone and the relative
ease with which tumors were initiated when arsenic com-
pounds were administered before, during, or after exposure
to a potent carcinogen (an initiator). The co-carcinogenic
mechanism might also shed light on human studies. Expo-
sure to multiple carcinogens represents the environmental
conditions for humans better than controlled exposure to a
single carcinogen under laboratory settings. Co-exposure to
cigarette smoking and arsenic has been shown to be linked
to elevated rates of lung cancer in several epidemiological
studies [8].
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1.2 Relevance of DNA repair inhibition to arsenic co-
carcinogenicity

The integrity of genomic DNA is continuously challenged
by endogenous and exogenous DNA damaging agents. Vari-
ous DNA repair pathways have evolved in prokaryotic and
eukaryotic organisms to protect their DNA, including direct
reversal, excision repair, post-replication and recombination
repair [9-11]. It is generally considered that inorganic arsenic
neither affects DNA directly nor forms adducts with DNA.
However, there is mounting evidence that inorganic arsenic
and its metabolites may inhibit DNA repair pathways, espe-
cially base excision repair (BER) and nucleotide excision
repair (NER) [3-7,12-15], leading to increased cancer risk.
Other potential mechanisms for arsenic carcinogenesis/co-
carcinogenesis are also under investigation including epi-
genetic changes by histone modifications, DNA methylation
and micro RNA expression elicited by arsenic [7,16,17].

2 Nucleotide excision repair (NER)

NER is the most important and versatile DNA repair path-
way for removing bulky DNA adducts and helix-distorting
lesions induced by environmental carcinogens such as UV-
induced cyclobutane pyrimidine dimers (CPDs) and 64
photoproducts (6-4PP) or adducts produced by chemical
carcinogens such as polycyclic aromatic hydrocarbons. NER
is a complex process involving the concerted action of about
20 proteins or complexes in human cells [9-11]. There are
two sub-pathways in NER (Figure 1), global genome repair
(GGR) and transcription-coupled repair (TCR). GGR pri-
marily responds to damage in non-transcribed DNA and the
damage is initially recognized by the XPC-HR23B complex.
For some lesions, predominantly CPDs, the DNA damage-
binding complex (DDB1 and DDB?2) is required to further
distort the helix and allow for recognition by XPC- HR23B.
TCR responds to damage in DNA undergoing transcription,
triggered by the stalling of RNA polymerase II at the sites
of DNA damage. The stalled polymerase is recognized by
CSB and CSA proteins. Following the recognition step, both
subpathways closely resemble each other and employ the
same set of proteins to complete the repair process. This
involves the recruitment of the transcription factor ITH (TFIIH)
complex; localized unwinding of the DNA by the helicases
XPB and XPD, which are subunits of the TFIIH complex;
stabilization of the exposed DNA by XPA and replication
protein A; excision of the damaged DNA by XPG and XPF;
synthesis of replacement DNA; and ligation by DNA ligase
I or III. TCR generally occurs more rapidly than GGR
[10,11].

3 Inhibition of NER by arsenic

The first evidence of NER inhibition by arsenic was
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documented by Okui and Fujiwara [19]. They showed that
micromolar concentrations of arsenite and arsenate in-
creased the sensitivity of normal human fibroblasts to UV
light. But they did not observe the effect in repair-deficient
xeroderma pigmentosum complementation group A (XPA)
cells. Furthermore, arsenic reduced unscheduled DNA syn-
thesis (UDS) and the excision of CPDs irradiation. The re-
ported studies of NER inhibition by arsenic [19-37] are
summarized in Supporting Information Table S1.

Many different methods were used for determining
NER capacity, including the comet assay, transfection
based host cell reactivation assay, immunoassay, unsched-
uled DNA synthesis assay, and 32p_postlabeling assay.
Although it is beyond the scope of this review to evaluate
them in detail, it is relevant to point out that some detec-
tion strategies (such as alkaline elution) are more sensitive
than others (such as alkaline sucrose sedimentation). Also,
the standard comet assay may not be a good choice when
assessing the effects of arsenic on NER. Firstly, DNA re-
pair processes have complex effects on the comet assay:
on the one hand, DNA repair eliminates DNA lesions; on
the other hand, excision repair in itself causes strand
breaks. The former results in a decreased DNA migration
and the latter may cause additional DNA migration in the
comet assay. Secondly, coexposure to benzo[a]pyrene
(BaP), a carcinogenic polycyclic hydrocarbon, or UV and
arsenic is a very complex system because both BaP (or UV)
and arsenic generate alkali labile sites and DNA strand
breaks [38-40], which make the interpretation of the com-
et assay results difficult. Incorporation of T4 endonuclease,
which incises DNA at CPDs, to the standard comet assay
has been shown to improve its specificity for pyrimidine
dimers [25,28,36].

32p_postlabeling is another method that is prone to pro-
ducing false positives and artifacts. It may underestimate
adduct levels because of incomplete DNA digestion, ineffi-
ciency of adduct labeling, and/or loss of adducts during en-
richment and separation. Labeling efficiency is often un-
known and uncontrolled; and results from different labora-
tories are sometimes not comparable [41,42].

Even with varied methods employed for the detection of
NER capacity and different cell types, the inhibitory effect
of inorganic arsenic and its pentavalent and trivalent meth-
ylated metabolites on NER has been clearly shown in the
majority of studies (17 out of 19). Pentavalent arsenicals are
less potent than trivalent arsenicals in inhibiting the NER
processes. This is probably because the former are less re-
active and enter cells less readily than the latter. Once inside
the cell, pentavalent arsenicals are immediately reduced to
trivalent arsenicals so the biological effects incurred are
attributed to the trivalent arsenicals and their metabolites. In
agreement with a previous report [31], our study [32,33]
showed that the extent of inhibition of NER by trivalent
arsenicals in human cells followed a descending order:
MMA">DMA">As™ (Figure 2).
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Figure 1 (Color online) Mammalian nucleotide excision repair (NER) pathways (modified from [18]).

4 Possible mechanisms of NER inhibition by
arsenic

4.1 Arsenic and NER proteins

(1) NER protein expression. Excision repair cross-com-
plementing protein 1 (ERCC1), which interacts with XPF
and performs the 5'-incision step during NER, was one of
the first NER proteins found to be modulated by arsenic and
is also the most studied. Its gene expression was enhanced
2-fold in liver tissue after treatment of mice with inorganic
arsenicals for 3 h, along with induction of some other repair
genes including DNA ligases I and III [43] although the

mRNA and protein levels of both DNA ligases I and III
were found to be significantly reduced in mammalian cells
in response to arsenite [44]. Importantly, individuals chroni-
cally exposed to higher levels of arsenic in drinking water
(>10 pg/L) were found to have decreased DNA repair gene
expression of ERCC1, XPF and XPB (but not of XPG and
XPA) in their lymphocytes [45]. A follow-up study [46]
further demonstrated that expression of ERCC1 was de-
creased at both the mRNA and protein levels. A dose-
dependent decrease in the mRNA expression of ERCC1 was
also found in human cardiomyocytes exposed to arsenite for
72 h [47]. However, elevated ERCC1 gene expression has
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Figure 2 iAs™, MMA™, and DMA" inhibit the repair of BPDE-DNA adducts. CRL2522 cells were incubated with BPDE (1 umol/L) for 30 min and then
allowed to repair for 24 h in the presence of iAs", MMA™, DMA™ at the indicated concentrations. The cells were lysed and DNA extracted for analysis of
the BPDE-DNA adducts. ** and *** denote statistically significant differences from the controls with P<0.05 and P <0.01, respectively, using one-way
Student’s #-test. Error bars represent the standard deviation from three independent experiments (adapted from [32]).

been reported in blood cells from individuals chronically
exposed to arsenic in drinking water in Inner Mongolia [48].

One early large-scale microarray analysis [49] revealed
that expression of four NER proteins (XPC, Damage spe-
cific DNA binding protein 2 (DDB2 or p48), DNA poly-
merase 8, DNA polymerase €) and p53, along with numer-
ous other repair proteins, was significantly down-regulated
by arsenite at submicromolar concentrations in normal hu-
man epidermal keratinocytes (NHEK). In another study
using human lung cells [50], the gene expression of DNA
ligase I, XPD, XPC, and RFA was found to decrease by at
least 2-fold after treatment with 5 umol/L arsenite for 4 h.
Interestingly, in SV40-immortalized human keratinocytes
(RHEK-1), multiple DNA repair proteins were overex-
pressed when treated with arsenic alone but suppression of
DNA repair protein expression was observed when the cells
were treated with an arsenic-containing metal mixture [51].
DMA", the only methylated metabolite of inorganic arsenic
that has been studied in this respect did not change the ex-
pression of DNA repair genes, including XPB, of bladder
transitional epithelium in F344 rats [52]. Most recently,
Nollen et al. [53] found that a 24-h treatment with arsenite
or MMA" strongly decreased XPC at both the mRNA and
protein levels in normal human skin fibroblasts immortal-
ized by telomerase transfection (VH10hTert). The reduced
level of XPC expression led to a diminished localization of
XPC to UV-damaged spots in the nucleus. The gene ex-
pression of XPE (p48, DDB2) was also reduced. MMA™
was shown to have a stronger impact on their expression
than arsenite, which may explain the more potent NER in-
hibition by MMA™ compared to arsenite observed previ-
ously [31-33]. However, p53, as the transcription factor of
both XPC and XPE, was observed to be up-regulated at the
total cellular protein level by arsenic, which could not account
for the decreased expression of XPC and XPE. Examination

of the nuclear p53 level and nuclear p53 transactivating
ability may be helpful to understand this discrepancy.

To study the effect of arsenic on the NER protein expres-
sion in a more relevant context where co-exposure to arse-
nic and a primary DNA damaging agent that induces the
NER process (NER inducer) occurs, we incubated human
cells with benzo[a]pyrene dihydrodiol epoxide (BPDE) to
induce DNA adducts reparable by NER and then allowed
them to repair with or without the presence of arsenicals.
The expression of a panel of NER proteins was examined
by Western blotting: XPA, XPC, p48 (DDB2), p62-TFIIH,
and p53. We [32] did not observe a significant modulation
by arsenic of any of the NER repair proteins except the
NER-related protein, p53. Consistent with our observations,
Liu [36] did not see an altered expression of critical NER
proteins, including ERCC1, XPF, and XPB after co-treat-
ment with UV and arsenic. However, co-treatment with
arsenite was found to prevent the induction of p53 and XPC
by cisplatin but modestly induce ERCC1 in murine meta-
static ovarian cancer xenograft [54].

In summary, data on the effects of arsenic on the expres-
sion of NER proteins remain confusing. It is possible that
repair protein expression may be lowered following chronic
exposure to arsenic [45,55]; however, this mode of action
cannot explain the NER repair inhibition by arsenic ob-
served in short-term studies mentioned above.

(2) NER protein function. Early studies showed that
both DNA excision repair pathways (BER and NER) were
inhibited by arsenite, suggesting that a later step shared by
both pathways, the DNA ligation step, might be a major
target of arsenic inhibition [4,56]. Subsequent studies con-
firmed that arsenic retarded DNA ligation and found that
arsenite inhibited the cellular activity of DNA ligase III
more specifically and DNA ligase I to a lesser extent [57].
However, direct inhibition of ligase I and III enzymatic
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activity by arsenic seemed to be less biologically relevant
since 1000-fold higher concentrations of arsenite were re-
quired to inhibit the purified enzymes [57]. The finding [29]
that the damage incision step of the NER process for UV
damage was inhibited by arsenite at a concentration as low
as 2.5 pmol/L also brought damage recognition/incision into
attention. XPA, a zinc finger protein, as a biochemically
plausible binding target of trivalent arsenicals, has since
been under intensive study [31,58,59]. However, arsenite,
MMA™ and DMA™ steadily induced zinc release from the
zinc finger domain of the human XPA (XPAzf) only at
concentrations greater than 10 pmol/L [31] and the binding
of XPA to an UV-irradiated oligonucleotide was not dimin-
ished by arsenite even when its concentration reached
1 mmol/L [58].

The above summary suggests that NER inhibition by ar-
senic is not caused by direct inhibition of repair enzymes.
Indirect effects from arsenic compounds such as generation
of reactive oxygen species (ROS) may play an important
role in enzymatic inhibition. Zinc finger repair proteins re-
main the potential targets of arsenic inhibition. Among them
is poly(ADP-ribose) polymerase-1 (PARP-1) and its in-
volvement in NER is being investigated [60,61] . The activ-
ity of PARP-1 was shown to be inhibited by arsenite,
MMA™ and DMA™ at extremely low (nanomolar) concen-
trations in HeLa S3 cells after H,O, treatment [62,63]. Be-
sides XPA and PARP, TFIIH, RPA, BRCALI, and ligase III
are all zinc finger DNA repair proteins in NER which
should be very sensitive to arsenic treatment partly through
redox control.

4.2 Arsenic and p53

pS3 is also a zinc finger protein and is a very important
transcription factor in cell cycle control, apoptosis and con-
trol of DNA repair. There is accumulating evidence for a
role of p53 in NER [64]. However, the precise molecular
mechanism for the involvement of p53 in NER is not com-
pletely understood. p53 may regulate NER through tran-
scriptional activation of downstream NER genes [65,66],
through modulating chromatin accessibility of damaged
DNA [67], through protein-protein interactions to alter the
activity of NER gene products [68], or through recruitment of
DDB2, XPC, or TFIIH to DNA damaged sites [69—71].

Arsenic has been reported to decrease p53 expression,
induce p53 phosphorylation and accumulation, or have no
effect on p53 [72]. Therefore, the role of p53 in arsenic-
elicited cellular effects is still elusive. The functional status
of p53 appears to complicate this issue. Most recently, Yan et
al. [73] demonstrated that As,O; induced wild-type p53 but
degraded mutant p53 protein.

In a context where co-exposure to arsenic and a primary
NER inducer occurs, Tang et al. [74] treated mouse epider-
mal JB6 Cl41 cells with arsenite for 24 h prior to UV irradi-
ation and found that arsenite inhibited p53 activation,
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leading to a decreased p21 expression. This inhibition was
concordant with the inhibition of UV-induced p53 phos-
phorylation at serines 15 and 392 and of p53 DNA binding
activity. We [32] found similar inhibition of p53 phosphor-
ylation and p53 DNA binding activity by an arsenite metab-
olite, MMA" in human skin fibroblast CRL2522 cells with
an assay system involving BPDE in place of UV. Following
treatment of arsenic up to 24 h post-BPDE incubation, we
found a striking temporal relationship between the suppres-
sion of BPDE-induced p53 expression and DNA repair in-
hibition. Further investigation revealed that pS3 was target-
ed for NER inhibition by MMA™. We also observed a de-
crease in p53-regulated p21 levels. Because of the role of
p21 in blocking cell cycle progression after DNA damage,
the depletion of p21 may imply that overriding the cell cy-
cle arrest at G1, which normally allows sufficient time for
DNA repair to take place prior to DNA replication, contrib-
utes to the co-mutagenic effect of arsenic. Several studies
[75-78] have shown that arsenic could interfere with cell
cycle control. However, in synchronized human cells, both
we [33] and Liu [36] did not observe any inactivation of cell
cycle checkpoints after treatment with BPDE or UV, sug-
gesting that the function of arsenic as co-mutagen/co-car-
cinogen most likely does not occur via cell cycle checkpoint
suppression.

4.3 Arsenic and nitric oxide

Jan and coworkers [25] were the first to propose that nitric
oxide (NO) was involved in NER inhibition by arsenite.
They found that arsenite increased NO production in Chi-
nese hamster ovary cells and nitric oxide generators inhib-
ited pyrimidine dimer excision. The inhibition of pyrimidine
dimer excision by arsenite was suppressible by nitric oxide
synthase (NOS) inhibitors. Phenylarsine oxide, an arsenic
compound that readily binds to thiols, did not inhibit the
excision and did not produce NO, implying that binding of
arsenic to thiol groups of DNA repair proteins (such as lig-
ase III) may not be a direct mechanism for arsenite-medi-
ated DNA repair inhibition. They further demonstrated that
like nitric oxide generators, arsenite inhibited the DNA-
adduct excision in NER induced by UVC, 4-nitroquinoline
1-oxide, BPDE, cisplatin, or mitomycin C, but not that in
BER induced by methyl methane sulfonate, H,O,, sodium
nitrosoprusside, or 3-morpholinosydnonimine [79]. Their
finding was confirmed in human keratinocytes by Ding et al.
[24] who used different methods for both NO and pyrimi-
dine dimer determinations. It is relevant to point out that
although reactive nitrogen oxide species (RNOS) derived
from NO can result in strand breaks and mutations, NO
itself is probably insufficiently reactive to attack DNA
directly [80], which makes this proposal a plausible mecha-
nism for NER inhibition by arsenic, possibly through
NO-induced nitrosylation of DNA repair proteins (Figure
3).



NO,

January (2013) Vol.58 No.2 219

Indirect effects
high [NO]

DMNA deamination
DNA

NO

RSH
\ N,O,

“Nitrosylation™
nitrosothiol

0; R-tyr
i : “Nitration”
OONO et HOONO nitrotyrosine

Shen S, et al.  Chin Sci Bull
Direct effect
low [NO] :
|
I
Nitroso-Fe/ |
heme proteins |
I
|
1
Nitroso-Fe/ I
e Fe proteins |
proteins I
1 O,
NO interaction Zn proteins |
wil Zn finger |
proteins, p53, I
PARP-1 Tyrosyl
radicals N?
1
1
Nitrotyrosine |
I
1
: Low MW
Termination of ! DNA compounds
lipid oxidation 1 or
| DNA oxidation mtDNA Livid
I DNA nitration 1PICsS
| strand breaks Long-lived
| NO donors
| Lipid oxidation
! lipid nitration
|

Figure 3 The chemistry of NO interaction with other biomolecules (modified from [80]).

NER inducer
As

v DNA damage
FAUATAV AVAVAVAS

[
NER proteins

Figure 4 (Color online) The proposed mechanisms of NER inhibition by
arsenic.

5 Perspectives

NER inhibition by arsenic has been well documented and it
has important implications in the co-mutagenicity/co-carcino-

genicity of arsenic. However, mechanisms for this inhibition
remain elusive and the mechanisms proposed in this review
are shown in Figure 4. Arsenic compounds have capricious
effects on modulating the expression of NER related pro-
teins, including p53. It remains unclear as to whether direct
inactivation of DNA repair proteins by arsenic binding is a
mode of action. However, arsenic-mediated generation of
ROS and NO (or reactive nitrogen species derived from NO
after reacting with ROS when the local NO concentration is
high) in functional impairment of NER repair-related pro-
teins and p53 upstream kinases, especially zinc finger pro-
teins and proteins having thiol residues critical to their func-
tion, can play an important role in NER inhibition by arse-
nic. PARP-1, as a zinc finger protein, is implicated in both
DNA repair and apoptosis. Its inhibition by arsenite has
been shown to promote cell survival after UV radiation with
unrepaired DNA lesions [37], a reasonable model for ex-
plaining arsenic co-carcinogenicity. PARP-1 is also in-
volved in NO production by transactivating inducible NOS,
a process that can be feedback regulated by the inhibition of
PARP-1 by NO via S-nitrosylation [81]. The PARP super-
family has been shown to interact with many proteins, in-
cluding DNA methyltransferase 1, p53, p21, XPA, BRCAI,
ATM, DNA ligase I/I1I, and DNA polymerase € [82].
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