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Inhibition of DNA repair is one proposed mechanism for the co-mutagenicity/co-carcinogenicity of arsenic. This review summa-
rizes the current literature on the effects of arsenic compounds on nucleotide excision repair (NER). Several possible mechanisms 
for the observed NER inhibition have been proposed. Modulation of the expression of NER proteins has been considered to be 
one possibility of impairing the NER process. However, data on the effects of arsenic on the expression of NER proteins remain 
inconsistent. It is more likely that arsenic inhibits the induction of accessory or other key proteins involved in cellular control of 
DNA repair pathways, such as p53. For example, arsenic affects p53 phosphorylation and p53 DNA binding activity, which could 
regulate NER through transcriptional activation of downstream NER genes. Although it is important to study possible direct inac-
tivation of NER proteins by arsenic binding, indirect inactivation of proteins having thiol residues critical to their function or zinc 
finger proteins cannot be negated. For example, nitric oxide (NO) induced in arsenic-treated cells serves as a specific inhibitor of 
NER, possibly through NO-induced S-nitrosylation of proteins related to DNA repair. Poly(ADP-ribose) polymerase-1, a zinc 
finger protein implicated in both NER and base excision repair (BER), deserves special attention because of its involvement in 
NO production and its broad range of protein substrates including many repair enzymes. 
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1  Introduction 

1.1  Arsenic and its co-carcinogenicity 

Inorganic arsenic (arsenite and arsenate) is a ubiquitous en-
vironmental contaminant that has long been classified as a 
human carcinogen but its carcinogenic effects have not been 
conclusively demonstrated in laboratory animals [1–3]. Most 
of the animal experiments showed negative results and 
some reported a decrease in tumor induction by arsenic 
alone [1–4]. Unlike classical carcinogens, arsenic fails to 
induce point mutations in bacterial or mammalian cells 
[3–7]. By contrast, considerable evidence has pointed to 
arsenic promoting mutagenesis/carcinogenesis, both in in 
vivo bioassays and in in vitro cell culture systems. At non- 
toxic concentrations, co-mutagenic effects of arsenic with 

X-rays, ultraviolet (UV) radiation, or alkylating agents have 
been repeatedly observed [3–7]. Therefore, it is reasonable 
to consider that arsenic acts as a co-carcinogen, although 
some arsenic compounds have been shown to act as com-
plete carcinogens in a few animal models [1]. This co-mu-      
tagenicity/co-carcinogenicity of arsenic might explain the 
lack of tumor development in most laboratory animals 
challenged with inorganic arsenic alone and the relative 
ease with which tumors were initiated when arsenic com-
pounds were administered before, during, or after exposure 
to a potent carcinogen (an initiator). The co-carcinogenic 
mechanism might also shed light on human studies. Expo-
sure to multiple carcinogens represents the environmental 
conditions for humans better than controlled exposure to a 
single carcinogen under laboratory settings. Co-exposure to 
cigarette smoking and arsenic has been shown to be linked 
to elevated rates of lung cancer in several epidemiological 
studies [8]. 



 Shen S, et al.   Chin Sci Bull   January (2013) Vol.58 No.2 215 

1.2  Relevance of DNA repair inhibition to arsenic co- 
carcinogenicity 

The integrity of genomic DNA is continuously challenged 
by endogenous and exogenous DNA damaging agents. Vari-
ous DNA repair pathways have evolved in prokaryotic and 
eukaryotic organisms to protect their DNA, including direct 
reversal, excision repair, post-replication and recombination 
repair [9–11]. It is generally considered that inorganic arsenic 
neither affects DNA directly nor forms adducts with DNA. 
However, there is mounting evidence that inorganic arsenic 
and its metabolites may inhibit DNA repair pathways, espe-
cially base excision repair (BER) and nucleotide excision 
repair (NER) [3–7,12–15], leading to increased cancer risk. 
Other potential mechanisms for arsenic carcinogenesis/co- 
carcinogenesis are also under investigation including epi-
genetic changes by histone modifications, DNA methylation 
and micro RNA expression elicited by arsenic [7,16,17]. 

2  Nucleotide excision repair (NER) 

NER is the most important and versatile DNA repair path-
way for removing bulky DNA adducts and helix-distorting 
lesions induced by environmental carcinogens such as UV- 
induced cyclobutane pyrimidine dimers (CPDs) and 6–4 
photoproducts (6-4PP) or adducts produced by chemical 
carcinogens such as polycyclic aromatic hydrocarbons. NER 
is a complex process involving the concerted action of about 
20 proteins or complexes in human cells [9–11]. There are 
two sub-pathways in NER (Figure 1), global genome repair 
(GGR) and transcription-coupled repair (TCR). GGR pri-
marily responds to damage in non-transcribed DNA and the 
damage is initially recognized by the XPC-HR23B complex. 
For some lesions, predominantly CPDs, the DNA damage- 
binding complex (DDB1 and DDB2) is required to further 
distort the helix and allow for recognition by XPC- HR23B. 
TCR responds to damage in DNA undergoing transcription, 
triggered by the stalling of RNA polymerase II at the sites 
of DNA damage. The stalled polymerase is recognized by 
CSB and CSA proteins. Following the recognition step, both 
subpathways closely resemble each other and employ the 
same set of proteins to complete the repair process. This 
involves the recruitment of the transcription factor IIH (TFIIH) 
complex; localized unwinding of the DNA by the helicases 
XPB and XPD, which are subunits of the TFIIH complex; 
stabilization of the exposed DNA by XPA and replication 
protein A; excision of the damaged DNA by XPG and XPF; 
synthesis of replacement DNA; and ligation by DNA ligase 
I or III. TCR generally occurs more rapidly than GGR 
[10,11]. 

3  Inhibition of NER by arsenic 

The first evidence of NER inhibition by arsenic was  

documented by Okui and Fujiwara [19]. They showed that 
micromolar concentrations of arsenite and arsenate in-
creased the sensitivity of normal human fibroblasts to UV 
light. But they did not observe the effect in repair-deficient 
xeroderma pigmentosum complementation group A (XPA) 
cells. Furthermore, arsenic reduced unscheduled DNA syn-
thesis (UDS) and the excision of CPDs irradiation. The re-
ported studies of NER inhibition by arsenic [19–37] are 
summarized in Supporting Information Table S1. 

Many different methods were used for determining 
NER capacity, including the comet assay, transfection 
based host cell reactivation assay, immunoassay, unsched-
uled DNA synthesis assay, and 32P-postlabeling assay. 
Although it is beyond the scope of this review to evaluate 
them in detail, it is relevant to point out that some detec-
tion strategies (such as alkaline elution) are more sensitive 
than others (such as alkaline sucrose sedimentation). Also, 
the standard comet assay may not be a good choice when 
assessing the effects of arsenic on NER. Firstly, DNA re-
pair processes have complex effects on the comet assay: 
on the one hand, DNA repair eliminates DNA lesions; on 
the other hand, excision repair in itself causes strand 
breaks. The former results in a decreased DNA migration 
and the latter may cause additional DNA migration in the 
comet assay. Secondly, coexposure to benzo[a]pyrene 
(BaP), a carcinogenic polycyclic hydrocarbon, or UV and 
arsenic is a very complex system because both BaP (or UV) 
and arsenic generate alkali labile sites and DNA strand 
breaks [38–40], which make the interpretation of the com-
et assay results difficult. Incorporation of T4 endonuclease, 
which incises DNA at CPDs, to the standard comet assay 
has been shown to improve its specificity for pyrimidine 
dimers [25,28,36].  

32P-postlabeling is another method that is prone to pro-
ducing false positives and artifacts. It may underestimate 
adduct levels because of incomplete DNA digestion, ineffi-
ciency of adduct labeling, and/or loss of adducts during en-
richment and separation. Labeling efficiency is often un-
known and uncontrolled; and results from different labora-
tories are sometimes not comparable [41,42].  

Even with varied methods employed for the detection of 
NER capacity and different cell types, the inhibitory effect 
of inorganic arsenic and its pentavalent and trivalent meth-
ylated metabolites on NER has been clearly shown in the 
majority of studies (17 out of 19). Pentavalent arsenicals are 
less potent than trivalent arsenicals in inhibiting the NER 
processes. This is probably because the former are less re-
active and enter cells less readily than the latter. Once inside 
the cell, pentavalent arsenicals are immediately reduced to 
trivalent arsenicals so the biological effects incurred are 
attributed to the trivalent arsenicals and their metabolites. In 
agreement with a previous report [31], our study [32,33] 
showed that the extent of inhibition of NER by trivalent 
arsenicals in human cells followed a descending order: 
MMAIII>DMAIII>AsIII (Figure 2). 
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Figure 1  (Color online) Mammalian nucleotide excision repair (NER) pathways (modified from [18]).  

4  Possible mechanisms of NER inhibition by 
arsenic 

4.1  Arsenic and NER proteins 

(1) NER protein expression.  Excision repair cross-com-     
plementing protein 1 (ERCC1), which interacts with XPF 
and performs the 5′-incision step during NER, was one of 
the first NER proteins found to be modulated by arsenic and 
is also the most studied. Its gene expression was enhanced 
2-fold in liver tissue after treatment of mice with inorganic 
arsenicals for 3 h, along with induction of some other repair 
genes including DNA ligases I and III [43] although the 

mRNA and protein levels of both DNA ligases I and III 
were found to be significantly reduced in mammalian cells 
in response to arsenite [44]. Importantly, individuals chroni-
cally exposed to higher levels of arsenic in drinking water 
(>10 g/L) were found to have decreased DNA repair gene 
expression of ERCC1, XPF and XPB (but not of XPG and 
XPA) in their lymphocytes [45]. A follow-up study [46] 
further demonstrated that expression of ERCC1 was de-
creased at both the mRNA and protein levels. A dose-  
dependent decrease in the mRNA expression of ERCC1 was 
also found in human cardiomyocytes exposed to arsenite for 
72 h [47]. However, elevated ERCC1 gene expression has  



 Shen S, et al.   Chin Sci Bull   January (2013) Vol.58 No.2 217 

 

Figure 2  iAsIII, MMAIII, and DMAIII inhibit the repair of BPDE-DNA adducts. CRL2522 cells were incubated with BPDE (1 mol/L) for 30 min and then 
allowed to repair for 24 h in the presence of iAsIII, MMAIII, DMAIII at the indicated concentrations. The cells were lysed and DNA extracted for analysis of 
the BPDE-DNA adducts. ** and *** denote statistically significant differences from the controls with P < 0.05 and P < 0.01, respectively, using one-way 
Student’s t-test. Error bars represent the standard deviation from three independent experiments (adapted from [32]). 

been reported in blood cells from individuals chronically 
exposed to arsenic in drinking water in Inner Mongolia [48].  

One early large-scale microarray analysis [49] revealed 
that expression of four NER proteins (XPC, Damage spe-
cific DNA binding protein 2 (DDB2 or p48), DNA poly-
merase , DNA polymerase ) and p53, along with numer-
ous other repair proteins, was significantly down-regulated 
by arsenite at submicromolar concentrations in normal hu-
man epidermal keratinocytes (NHEK). In another study 
using human lung cells [50], the gene expression of DNA 
ligase I, XPD, XPC, and RFA was found to decrease by at 
least 2-fold after treatment with 5 mol/L arsenite for 4 h. 
Interestingly, in SV40-immortalized human keratinocytes 
(RHEK-1), multiple DNA repair proteins were overex-
pressed when treated with arsenic alone but suppression of 
DNA repair protein expression was observed when the cells 
were treated with an arsenic-containing metal mixture [51]. 
DMAV, the only methylated metabolite of inorganic arsenic 
that has been studied in this respect did not change the ex-
pression of DNA repair genes, including XPB, of bladder 
transitional epithelium in F344 rats [52]. Most recently, 
Nollen et al. [53] found that a 24-h treatment with arsenite 
or MMAIII strongly decreased XPC at both the mRNA and  
protein levels in normal human skin fibroblasts immortal-
ized by telomerase transfection (VH10hTert). The reduced 
level of XPC expression led to a diminished localization of 
XPC to UV-damaged spots in the nucleus. The gene ex-
pression of XPE (p48, DDB2) was also reduced. MMAIII 
was shown to have a stronger impact on their expression 
than arsenite, which may explain the more potent NER in-
hibition by MMAIII compared to arsenite observed previ-
ously [31–33]. However, p53, as the transcription factor of 
both XPC and XPE, was observed to be up-regulated at the 
total cellular protein level by arsenic, which could not account 
for the decreased expression of XPC and XPE. Examination 

of the nuclear p53 level and nuclear p53 transactivating 
ability may be helpful to understand this discrepancy. 

To study the effect of arsenic on the NER protein expres-
sion in a more relevant context where co-exposure to arse-
nic and a primary DNA damaging agent that induces the 
NER process (NER inducer) occurs, we incubated human 
cells with benzo[a]pyrene dihydrodiol epoxide (BPDE) to 
induce DNA adducts reparable by NER and then allowed 
them to repair with or without the presence of arsenicals. 
The expression of a panel of NER proteins was examined 
by Western blotting: XPA, XPC, p48 (DDB2), p62-TFIIH, 
and p53. We [32] did not observe a significant modulation 
by arsenic of any of the NER repair proteins except the 
NER-related protein, p53. Consistent with our observations, 
Liu [36] did not see an altered expression of critical NER 
proteins, including ERCC1, XPF, and XPB after co-treat-      
ment with UV and arsenic. However, co-treatment with 
arsenite was found to prevent the induction of p53 and XPC 
by cisplatin but modestly induce ERCC1 in murine meta-
static ovarian cancer xenograft [54]. 

In summary, data on the effects of arsenic on the expres-
sion of NER proteins remain confusing. It is possible that 
repair protein expression may be lowered following chronic 
exposure to arsenic [45,55]; however, this mode of action 
cannot explain the NER repair inhibition by arsenic ob-
served in short-term studies mentioned above. 

(2) NER protein function.  Early studies showed that 
both DNA excision repair pathways (BER and NER) were 
inhibited by arsenite, suggesting that a later step shared by 
both pathways, the DNA ligation step, might be a major 
target of arsenic inhibition [4,56]. Subsequent studies con-
firmed that arsenic retarded DNA ligation and found that 
arsenite inhibited the cellular activity of DNA ligase III 
more specifically and DNA ligase I to a lesser extent [57]. 
However, direct inhibition of ligase I and III enzymatic  
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activity by arsenic seemed to be less biologically relevant 
since 1000-fold higher concentrations of arsenite were re-
quired to inhibit the purified enzymes [57]. The finding [29] 
that the damage incision step of the NER process for UV 
damage was inhibited by arsenite at a concentration as low 
as 2.5 mol/L also brought damage recognition/incision into 
attention. XPA, a zinc finger protein, as a biochemically 
plausible binding target of trivalent arsenicals, has since 
been under intensive study [31,58,59]. However, arsenite, 
MMAIII and DMAIII steadily induced zinc release from the 
zinc finger domain of the human XPA (XPAzf) only at 
concentrations greater than 10 mol/L [31] and the binding 
of XPA to an UV-irradiated oligonucleotide was not dimin-
ished by arsenite even when its concentration reached     
1 mmol/L [58].  

The above summary suggests that NER inhibition by ar-
senic is not caused by direct inhibition of repair enzymes. 
Indirect effects from arsenic compounds such as generation 
of reactive oxygen species (ROS) may play an important 
role in enzymatic inhibition. Zinc finger repair proteins re-
main the potential targets of arsenic inhibition. Among them 
is poly(ADP-ribose) polymerase-1 (PARP-1) and its in-
volvement in NER is being investigated [60,61] . The activ-
ity of PARP-1 was shown to be inhibited by arsenite, 
MMAIII and DMAIII at extremely low (nanomolar) concen-
trations in HeLa S3 cells after H2O2 treatment [62,63]. Be-
sides XPA and PARP, TFIIH, RPA, BRCA1, and ligase III 
are all zinc finger DNA repair proteins in NER which 
should be very sensitive to arsenic treatment partly through 
redox control. 

4.2  Arsenic and p53 

p53 is also a zinc finger protein and is a very important 
transcription factor in cell cycle control, apoptosis and con-
trol of DNA repair. There is accumulating evidence for a 
role of p53 in NER [64]. However, the precise molecular 
mechanism for the involvement of p53 in NER is not com-
pletely understood. p53 may regulate NER through tran-
scriptional activation of downstream NER genes [65,66], 
through modulating chromatin accessibility of damaged 
DNA [67], through protein-protein interactions to alter the 
activity of NER gene products [68], or through recruitment of 
DDB2, XPC, or TFIIH to DNA damaged sites [69–71]. 

Arsenic has been reported to decrease p53 expression, 
induce p53 phosphorylation and accumulation, or have no 
effect on p53 [72]. Therefore, the role of p53 in arsenic- 
elicited cellular effects is still elusive. The functional status 
of p53 appears to complicate this issue. Most recently, Yan et 
al. [73] demonstrated that As2O3 induced wild-type p53 but 
degraded mutant p53 protein.  

In a context where co-exposure to arsenic and a primary 
NER inducer occurs, Tang et al. [74] treated mouse epider-
mal JB6 Cl41 cells with arsenite for 24 h prior to UV irradi-
ation and found that arsenite inhibited p53 activation,  

leading to a decreased p21 expression. This inhibition was 
concordant with the inhibition of UV-induced p53 phos-
phorylation at serines 15 and 392 and of p53 DNA binding 
activity. We [32] found similar inhibition of p53 phosphor-
ylation and p53 DNA binding activity by an arsenite metab-
olite, MMAIII in human skin fibroblast CRL2522 cells with 
an assay system involving BPDE in place of UV. Following 
treatment of arsenic up to 24 h post-BPDE incubation, we 
found a striking temporal relationship between the suppres-
sion of BPDE-induced p53 expression and DNA repair in-
hibition. Further investigation revealed that p53 was target-
ed for NER inhibition by MMAIII. We also observed a de-
crease in p53-regulated p21 levels. Because of the role of 
p21 in blocking cell cycle progression after DNA damage, 
the depletion of p21 may imply that overriding the cell cy-
cle arrest at G1, which normally allows sufficient time for 
DNA repair to take place prior to DNA replication, contrib-
utes to the co-mutagenic effect of arsenic. Several studies 
[75–78] have shown that arsenic could interfere with cell 
cycle control. However, in synchronized human cells, both 
we [33] and Liu [36] did not observe any inactivation of cell 
cycle checkpoints after treatment with BPDE or UV, sug-
gesting that the function of arsenic as co-mutagen/co-car-     
cinogen most likely does not occur via cell cycle checkpoint 
suppression. 

4.3  Arsenic and nitric oxide 

Jan and coworkers [25] were the first to propose that nitric 
oxide (NO) was involved in NER inhibition by arsenite. 
They found that arsenite increased NO production in Chi-
nese hamster ovary cells and nitric oxide generators inhib-
ited pyrimidine dimer excision. The inhibition of pyrimidine 
dimer excision by arsenite was suppressible by nitric oxide 
synthase (NOS) inhibitors. Phenylarsine oxide, an arsenic 
compound that readily binds to thiols, did not inhibit the 
excision and did not produce NO, implying that binding of 
arsenic to thiol groups of DNA repair proteins (such as lig-
ase III) may not be a direct mechanism for arsenite-medi-      
ated DNA repair inhibition. They further demonstrated that 
like nitric oxide generators, arsenite inhibited the DNA- 
adduct excision in NER induced by UVC, 4-nitroquinoline 
1-oxide, BPDE, cisplatin, or mitomycin C, but not that in 
BER induced by methyl methane sulfonate, H2O2, sodium 
nitrosoprusside, or 3-morpholinosydnonimine [79]. Their 
finding was confirmed in human keratinocytes by Ding et al. 
[24] who used different methods for both NO and pyrimi-
dine dimer determinations. It is relevant to point out that 
although reactive nitrogen oxide species (RNOS) derived 
from NO can result in strand breaks and mutations, NO  
itself is probably insufficiently reactive to attack DNA  
directly [80], which makes this proposal a plausible mecha-
nism for NER inhibition by arsenic, possibly through 
NO-induced nitrosylation of DNA repair proteins (Figure 
3). 
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Figure 3  The chemistry of NO interaction with other biomolecules (modified from [80]).  

 

Figure 4  (Color online) The proposed mechanisms of NER inhibition by 
arsenic. 

5  Perspectives  

NER inhibition by arsenic has been well documented and it 
has important implications in the co-mutagenicity/co-carcino-     

genicity of arsenic. However, mechanisms for this inhibition 
remain elusive and the mechanisms proposed in this review 
are shown in Figure 4. Arsenic compounds have capricious 
effects on modulating the expression of NER related pro-
teins, including p53. It remains unclear as to whether direct 
inactivation of DNA repair proteins by arsenic binding is a 
mode of action. However, arsenic-mediated generation of 
ROS and NO (or reactive nitrogen species derived from NO 
after reacting with ROS when the local NO concentration is 
high) in functional impairment of NER repair-related pro-
teins and p53 upstream kinases, especially zinc finger pro-
teins and proteins having thiol residues critical to their func-
tion, can play an important role in NER inhibition by arse-
nic. PARP-1, as a zinc finger protein, is implicated in both 
DNA repair and apoptosis. Its inhibition by arsenite has 
been shown to promote cell survival after UV radiation with 
unrepaired DNA lesions [37], a reasonable model for ex-
plaining arsenic co-carcinogenicity. PARP-1 is also in-
volved in NO production by transactivating inducible NOS, 
a process that can be feedback regulated by the inhibition of 
PARP-1 by NO via S-nitrosylation [81]. The PARP super-
family has been shown to interact with many proteins, in-
cluding DNA methyltransferase 1, p53, p21, XPA, BRCA1, 
ATM, DNA ligase I/III, and DNA polymerase  [82].  
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