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Phytochemical analysis of 4. balsamea oleoresin led to the isolation of three new 3,4-seco-lanostane triterpenoids 1-3, one new

cycloartane triterpenoid 4 along with fourteen known terpenoids. Structure determinations were based on extensive 1D/2D NMR,

IR and MS spectroscopic analyses, and comparison with literature data. The isolated compounds were evaluated in vitro for their

cytotoxicity against human cell lines (A549, DLD-1, WS1) and their antibacterial activity against E. coli and S. aureus. Abiesonic

acid (6) exhibited weak cytotoxic activity against A549 (ICso = 22 uM) while compounds 1 and 4 were weakly active against

S. aureus (MIC = 25 pM).

Introduction

The genus Abies (Pinaceae) comprises 46 species of evergreen
conifers [1]. Most of them are found in temperate and boreal
regions of the northern hemisphere. The first phytochemical
investigation of Abies species was undertaken 75 years ago by
Takahashi [2]. Since then, more than 277 secondary metabo-
lites have been isolated, and mainly identified as terpenoids,
flavonoids and lignans [3]. Balsam fir Abies balsamea (L.)

Mill., a popular Christmas tree in Canada, has been used tradi-

tionally by North American aboriginal people as an antiseptic,
tuberculosis remedy, and venereal aid [4]. In recent years, we
have become interested in studying the bioactive constituents of
A. balsamea. Our work allowed the identification of antibacte-
rial sesquiterpenoids, active against S. aureus, from balsam fir
essential oil [5]. We also isolated two cytotoxic tetraterpenoids
from the cortical oleoresin of the tree bark, featuring an

unprecedented Cy scaffold [6]. Herein, we describe the further
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phytochemical study of 4. balsamea oleoresin, which led to the
isolation and structure elucidation of three 3,4-seco-lanostane-
type triterpenoids 1-3, one cycloartane-type triterpenoid 4 and
fourteen known terpenoids. The antibacterial (E. coli and
S. aureus) and cytotoxic (A549, DLD-1 and WS1) activities of
the isolated compounds are also reported.

Results and Discussion

The oleoresin of 4. balsamea (1% lot) was fractionated by silica
gel column chromatography with hexanes/EtOAc (100:0 —
93:7) and MeOH as eluent. Both hexanes/EtOAc 93:7 and

CO,R
15 R=H
16 R=CHs

Figure 1: Structures of isolated compounds 1-18.

"OH
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MeOH fractions were combined and concentrated under
reduced pressure. Purification of this extract using a combina-
tion of silica gel or polyamide column chromatography and
reversed phase C;g HPLC resulted in the isolation of three new
(1-3) and six known terpenoids (Figure 1). In another experi-
ment, oleoresin (2" lot) was triturated with hexanes. The
precipitate was subjected to successive silica gel column chro-
matography followed by reversed phase C{g HPLC to give one
new (4) as well as three known terpenoids. Similarly, purifica-
tion of the filtrate afforded five known terpenoids. Based on
their spectroscopic data (IR, MS and NMR) and comparison

13 R=CHO
14 R= COchg

CHO
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with literature values, the structures of the known compounds
were elucidated as awashishinic acid (5) [7], abiesonic acid (6)
[6], firmanoic acid (7) [8], (222)-3,4-seco-9BH-lanosta-
4(28),7,22,24-tetraen-23,26-olid-3-oic acid (8) [9], (25R)-3,4-
seco-9BH-lanosta-4(28),7-diene-3,26-dioic acid (9) [10],
abiesolidic acid (10) [10,11], (23R,25R)-3,4-seco-17,14-friedo-
9BH-lanosta-4(28),6,8(14)-trien-26,23-olid-3-oic acid (11) [10],
(24E)-3,4-seco-9PH-lanosta-4(28),7,24-triene-3,26-dioic acid
(12) [12], abiesanordine C (13) [13], methyl 13-oxo-podocarp-
8(14)-en-15-o0ate (14) [14], 15-hydroxydehydroabietic acid (15)
[15], methyl 15-hydroxydehydroabietate (16) [16], (12E)-8-
hydroxy-15-nor-12-labden-14-al (17) [17] and 8-hydroxy-
14,15-dinor-11-labden-13-one (18) [13,18] (Figure 1). H and
13C NMR spectroscopic data of known compounds (5-18) are
given in Supporting Information File 1.

Compound 1 was isolated as a white amorphous powder. Its
molecular formula was established as C3;H4405 from the
[M + HJ" peak at m/z 497.3261 (calcd 497.3262) in the positive
HRESIMS, indicating ten degrees of unsaturation. The IR spec-
trum displayed strong absorption bands at 1692 and 1736 cm™!
indicative of carboxylic acid functionalities. The '3C NMR and
DEPT spectroscopic data (Table 1) exhibited 31 carbons
including one carbonyl carbon at §¢ 202.4, and two carboxylic
carbons at 3¢ 172.4 and 174.8. The 'H NMR data (Table 2)
exhibited six olefinic signals at dy 4.73 (s), 4.77 (s), 4.78 (s),
4.86 (s), 5.48 (dd, J = 6.2, 3.1 Hz) and 7.11 (br s), one methoxy
methyl at éy 3.67 (s), four tertiary methyl at 6y 0.90 (s),
0.92 (s), 1.75 (s) and 2.18 (s) and one secondary methyl at dy
0.85 (d, J = 6.4 Hz). Detail analysis of the above NMR informa-
tion, together with 'H-'H COSY, HSQC and HMBC analyses
indicated that 1 shares the same structure with abiesonic acid
(6), previously isolated from A4. balsamea [6], but with an addi-
tional methoxy group. An HMBC cross-peak between this
methyl signal and the carbon at ¢ 174.8 (C-3) allowed the
assignment of compound 1 as (—)-rel-abiesonic acid 3-methyl
ester.

Compound 2, obtained as a white amorphous powder, possessed
a molecular formula of C3yH4,04 with ten degrees of unsatura-
tion based on the [M + H]" peak at m/z 483.3087 (calcd
483.3105) in the positive HRESIMS. The IR absorption bands
showed the presence of carboxylic acid (1702 cm™!) and olefin
(1635 ecm™!) functionalities. The 13C NMR spectroscopic data
of 2 (Table 1) displayed 30 carbon signals, which by the assis-
tance of a DEPT experiment, were identified as six methyl,
seven sp> methylene and three sp> methine groups, three sp?
quaternary carbon atoms, one sp? methylene and three sp?
methine groups, and seven sp? quaternary carbon atoms. A
IH-IH COSY experiment provided correlations from Hj-1 to
H;,-2, H-6 to H-5 and H-7, H,-11 to H-9 and H,-12, H,-15 to

Beilstein J. Org. Chem. 2013, 9, 1333—-1339.

Table 1: 13C NMR spectroscopic data (100 MHz, CDCl3) of com-
pounds 1-4.

Position 1 2 3 4

1 30.5 28.3 28.8 275

2 29.2 29.8 29.2 28.5

3 174.8 181.6 180.8 771

4 149.2 145.6 149.7 39.5

5 44.0 50.6 45.3 41.1

6 30.9 127.0 29.7 211

7 1224 125.2 118.0 25.6

8 143.4 1254 146.3 48.0

9 49.5 394 38.6 19.7

10 36.9 37.0 36.3 26.5

11 225 19.6 18.5 26.2

12 31.2 32.0 33.8 32.8

13 63.5 47.4 43.8 45.4

14 160.9 146.2 51.7 49.0

15 27.8 23.9 34.0 354

16 36.1 36.3 28.5 28.3

17 50.2 491 53.1 52.2

18 17.7 21.9 21.7 18.1

19 247 21.8 241 29.8

20 33.8 35.1 33.3 329

21 16.4 15.9 19.5 19.3

22 48.3 48.9 51.9 50.0

23 202.4 202.5 202.4 207.6
24 134.9 133.0 134.4 46.1

25 138.7 140.4 139.3 133.9
26 172.4 173.4 172.8 170.8
27 14.0 14.0 13.9 130.5
28 111.9 115.6 112.0 25.8

29 26.1 24.8 26.0 21.2

30 106.9 15.8 275 19.3

OMe 51.7 - - -

H,-16 and H-20 to H3-21 and H»-22 (Figure 2). Analysis of
HMBC spectra indicated correlations from H3-19 to C-1, C-5,
C-9 and C-10; from H3-29 to C-4, C-5 and C-28; from H-7 to
C-8; from H3-18 to C-12, C-13, C-14 and C-17; from H3-30 to
C-13, C-16, C-17 and C-20; from H3-21 to C-17, C-20 and
C-22; from Hy-22 and H-24 to C-23; and from H3-27 to C-24,
C-25 and C-26. The relative configuration of 2 was determined
by analysis of a NOESY experiment, which provided correla-
tions (Figure 2) of H-5 to H,-2; H-28Z to H-9; H-22a (o 2.85)
to H3-18 and H3-21; H3-18 to H-22b (8 2.16) and H-24; H-24
to H-20 and H-22b. These correlations indicated the a-orienta-
tion of H-5 and H3-30 and the B-orientation of H-9, H3-18 and
H3-19. All these facts suggested that compound 2 was strongly
similar to cis-sibiric acid [19]. Since the chemical shift of H-24
in cis-sibiric acid (dy 6.15) was upfield of the signal for 1 (dy
7.11), 2 (6y 7.23), 6 (dy 7.13) and 7 (dy 7.07), this suggested

1335



Table 2: 'H NMR spectroscopic data (400 MHz, CDCl3) of compounds 1-4.

Position &y (Jin Hz)

Beilstein J. Org. Chem. 2013, 9, 1333—-1339.

1 2
1 1.74, m, 1.62, m 1.60, m
2 2.30, m 231, m
3 — —
5 2.08, m 2.63,d (5.4)
6 2.40,m,2.13, m 5.39, dd (9.9, 5.5)
7 5.48,dd (6.2, 3.1) 6.22,d (10.0)
8 - -
9 2.06, m 243, m
11 1.59, m, 1.40, m 1.62, m
12 1.77,m,1.32, m 1.65, m
15 248, m, 2.37, m 241, m,2.32, m
16 1.55, m 1.73, m, 1.54, m
17 - -
18 0.90, s 1.16, s
19 0.92,s 0.87,s
20 2.39, m 2.24, m
21 0.85, d (6.4) 0.80, d (6.5)
22 249, m, 225 m 2.85,m 2.16, brd (12.3)
24 711, brs 7.23,brs
27 2.18,s 2.22,d(1.0)
28 4.86,s,4.78,s 4.98, brs, 4.76,d (2.4)
29 1.75, s 1.79, s
30 4.77,s,4.73, s 0.69, s
OMe 3.67,s -

that the trans-stereoisomer was isolated instead of the cis-one
(See Table 2 and Supporting Information File 1). This was
further confirmed by NOESY correlation of H-24 to H-20 and
H3-30, but not to H3-27. Consequently, the structure of 2 was
determined as (—)-rel-(24F)-23-0x0-3,4-seco-9pBH-lanosta-
4(28),6,8(14),24-tetraen-3,26-dioic acid.

Compound 3, a white amorphous powder, possessed a molec-
ular formula of C39Hy4405 based on the [M + H]* peak at m/z
485.3250 (calcd 485.3262) in the positive HRESIMS,
suggesting nine degrees of unsaturation. The IR spectrum
implied the existence of carboxylic acid (1703 cm™!) and olefin
(1633 cm™!) functionalities. The 13C NMR spectroscopic data
of 3 resembled those of (24F)-3,4-seco-9pH-lanosta-4(28),7,24-
triene-3,26-dioic acid (12) [12] except for change at ¢ 33.3
(C-20), 19.5 (C-21), 51.9 (C-22), 202.4 (C-23), 134.4 (C-24),
139.3 (C-25), 172.8 (C-26) and 13.9 (C-27) (See Table 1 and
Supporting Information File 1). The HMBC correlations from
H-24 to C-23 indicated the presence of a ketone group at C-23
(Figure 2). This conclusion was confirmed from the downfield
Sc of C-22 (+16.4) in comparison with 12. The relative con-
figuration was established with the NOESY spectrum

3 4

1.73,m,;1.60,m 1.85 m,1.01, m

2.32,m 1.93, m, 1.64, m

- 3.48,t(2.4)

2.08, m 1.82, m

2.27,m, 1.99, m 148, m, 0.77, m

5.33, brs 1.30, m, 1.11, m

- 1.54, m

2.59, m -

1.60, m 2.00,m, 1.13, m
1.83,m,1.67,m 1.62, m

1.52, m 1.31, m

1.92,m,1.26,m 1.87,m,1.27, m

1.54, m 1.61, m

0.80, s 1.00, s

0.86, s 0.52,d (3.9), 0.35,d (3.9)
2.03, m 2.02, m

0.91,d (6.2) 0.88,d (6.8)
2.64,m2.32, m 2.56, dd (16.0, 2.1), 2.24, dd (16.1, 10.2)
7.15,s 3.42,d(17.0) 3.36,d (17.1)
2.21,s 6.45,brs 5.73, brs
4.88,s,4.82, s 0.95, s

1.80, s 0.88, s

1.04,s 0.90, s

(Figure 2). Briefly, the configuration at C-5, C-9, C-10, C-13
and C-17 was determined by cross-peaks from H-28Z to H-9;
H-5 to H3-19 and H3-29; H3-18 to H-9 and H-20; H3-30 to
H-17; and H3-21 to Hp-12. NOESY correlation between H-24
and H3-27 was not observed, suggesting that the geometry of
the C-24,25 double bond was E. This was confirmed by oy
comparison of H-24 with that of 1, 2, 6 and 7 (See Table 2 and
Supporting Information File 1). On the basis of these spectro-
scopic evidences, the structure of 3 was assigned as (—)-rel-
(24E)-23-0x0-3,4-seco-9BH-lanosta-4(28),7,24-triene-3,26-
dioic acid.

The HRESIMS of 4, isolated as a white amorphous powder,
showed a pseudomolecular [M + H]* ion peak at m/z 471.3463,
corresponding to the formula C3yHy4604 (calcd. 471.3469), indi-
cating eight degrees of insaturation. The IR absorption bands at
3416, 1708 and 1633 cm ™! suggested the presence of hydroxyl,
carbonyl and olefin functionalities. The 13C NMR and DEPT-
135 spectra of 4 showed signals for 30 carbons designated as
five methyl; twelve methylene, including one alkene at d¢
130.5; five methine, including one secondary alcohol at 8¢ 77.1;
and eight quaternary carbons, including those at 6¢ 170.8 and
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Figure 2: Selected COSY (=), HMBC (blue arrows) and NOESY (red arrows) correlations for compounds 2—4.

207.6 representing carboxylic and ketone carbonyls, respective-
ly (Table 1). The 'H NMR spectrum showed two doublets at S
0.35 (J=3.9 Hz) and 0.52 (J = 3.9 Hz) characteristic of a cyclo-
propane ring (Table 2), suggesting that 4 is a member of the
cycloartanes, which is an important triterpenic family in the
genus Abies [3]. In the "H-'H COSY spectrum, correlations
between H»-2 to Hy-1 and H-3; H,-6 to H-5 and H,-7; Hj-7 to
H-8; H-16 to Hy-15 and H-17; and H-20 to H3-21 and H,-22
were observed (Figure 2). HMBC correlations from H,-19 to
C-1, C-5, C-8, C-9, C-10 and C-11 connected together three
different fragments in the vicinity of the cyclopropyl group.
Other correlations between H3-18 to C-12, C-13, C-14 and
C-17; H3-21 to C-17, C-20 and C-22; H,-27 to C-24, C-25 and
C-26; H3-28 and H3-29 to C-3, C-4, C-5, C-28 and C-29; H3-30
to C-8, C-13, C-14 and C-15; and H,-22 and H,-24 to C-23
were observed and completely assigned the carbon skeleton of
the molecule (Figure 2). The relative configuration was deter-
mined with the help of a 2D NOESY experiment showing
correlations from H-19f to H-6B, H-8 and H3-29; H-5 to H3-28

and H-6a; H3-30 to H-110 and H-17; and H-22b to H-20 and
Hj,-16 (Figure 2). The a-orientation of the hydroxy group at C-3
was deduced from the small coupling constant of H-3
(J= 2.4 Hz), and from the NOESY correlations with both H3-28
and H3-29. Accordingly, the structure of compound 4 was
defined as (+)-rel-3a-hydroxy-23-oxocycloart-25(27)-en-26-oic
acid.

The absolute stereochemistry of the new compounds (1-4) has
not been determined experimentally. However, the previously
described compounds 7, 9, 10 and 11 have been shown to pos-
sess the usual configuration for triterpenes [8,10,11]. The struc-
tures of many other triterpenes isolated from the genus Abies
were also reported with this absolute configuration according to
their X-ray crystallographic data [20-22].

The structure of compound 8 was reported by Xia et al [9]. In

their paper, the configuration at A22 was determined as E but it

was not supported by any spectroscopic data. Since 'H and
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13C NMR data obtained for 8 were identical to those reported
by Xia within 0.01 and 0.1 ppm respectively (see Supporting
Information File 1), we supposed that both molecules were the
same. However, the geometry at A22 should be assigned to Z
because of the clear NOESY correlation between H-22 and
H-24. Interestingly, lanostane with £ geometry at A22 has never
been isolated so far. Moreover, triterpenes with this kind of side
chain bearing an E configuration for A2 have only been
reported by Guo et al [23,24]. During their work on Schisandra
spp., they isolated many nortriterpenes having both A22
configurations. A statistical analysis of the 'H chemical
shift for H-22 and H-24 was conducted: for E-configured A22,
dpare 5.9+ 0.2 and 7.8 + 0.1 while for Z-configured A%2, &y
are 5.3+ 0.1 and 7.2 £ 0.2, respectively. Since 6y measured for
compound 8 was 4.98 and 6.97, it should be assigned as (227)-
3,4-seco-9PH-lanosta-4(28),7,22,24-tetraen-23,26-olid-3-oic
acid.

The isolates were evaluated in vitro for their cytotoxic activi-
ties against two human cancer cell lines, namely lung carci-
noma (A549) and colon adenocarcinoma (DLD-1), as well as
against one healthy cell line (WS1) using the resazurin reduc-
tion test [25]. Etoposide was used as a positive control
(ICs0 < 1.0 uM). None of the compounds were found to be
active (ICsg > 25 uM) with the exception of abiesonic acid (6),
which showed a weak cytotoxic activity against A549
(ICso = 22 pM). The antibacterial activity of isolated com-
pounds was also evaluated in vitro against E. coli and S. aureus
using the microdilution assay [26] with gentamycin as a posi-
tive control (MIC < 0.1 pg/mL). No activity was observed for
all the tested compounds (MIC > 50 uM) except for triter-
penoids 1 and 4, which were weakly active against S. aureus
(MIC = 25 uM).

Supporting Information

Supporting Information File 1

Experimental procedures, product characterization and 'H
and 13C spectra for compounds 1-18.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-9-150-S1.pdf]
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