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Abstract 

Scientific acoustic-trawl surveys collect data that are used to track fish and zooplankton populations over time. Most rely on manual 
annotation during acoustic target classification, but automated methods have been proposed. Here, we report on a framework for 
testing deep learning-based acoustic classification models and integrating them into the survey estimation process. The approach 

was applied to North Sea lesser sandeel ( Ammodytes marinus ) surveys from 2009 to 2024. Three U-Net-based models were tested: 
a baseline model, a depth-aware model, and a model trained with similarity-based sampling for the foreground class. A threshold 

based on the training years was applied to the models’ SoftMax outputs. The official sandeel estimation process was used as a starting 

point, replacing input data with model predictions. The biomass estimates were generally similar between manual annotations and 

model-based estimates, but variation existed across years. The baseline model misclassified a surface layer as sandeel and was prone 
to bottom contamination, causing larger deviations from official estimates. Discrepancies between the similarity-based model and the 
official estimates resulted from an incorrectly applied SoftMax threshold, leading to missing school interiors and indicating threshold 

sensiti vity. Unlik e traditional F1 score evaluations commonly used in image-based classification, our comparison assessed predictions 
in a survey-relevant context. The evaluation indicated that full automation was not yet feasible, but the predictions could be used as 
starting points for manual scrutiny. Annotating a subset of the data to refine thresholds or employing more advanced active learning 

approaches could enhance efficiency. These methods could enable faster, more consistent survey annotation. 

Keywords: acoustic-trawl survey; acoustic target classification; multi-frequency echograms; semantic segmentation; big data; deep learning; fisheries man- 
agement; StoX 
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Introduction 

Scientific acoustic-trawl surveys (MacLennan and Simmonds 
2005 ) are used to monitor changes in abundance, distribution,
and population structure of fish and zooplankton (Gunderson 

1993 ). Annual survey estimates are used as input to fisheries 
assessment models and provide time series data on changes 
in fish and zooplankton populations. They are an important 
complement to fisheries data in fish stock assessment models.
An acoustic-trawl survey consists of collecting acoustic data,
usually along transects, biological sampling, annotating the 
acoustic data with an acoustic category, and integrating the 
backscatter by category over a transect. Nets or trawls are 
typically used for biological sampling, where information on 

species, length groups, and other biological parameters such 

as age are recorded and combined with the acoustic data to 

estimate abundance or biomass. 
Most acoustic trawl-surveys rely on manual annotation 

during the acoustic target classification (ATC) step. This is 
usually achieved through manually scrutinizing the data us- 
ing desktop applications like Echoview (Myriax, Australia),
LSSS (Korneliussen et al. 2016 ), or similar. During the pro- 
cess, the acoustic backscatter is assigned to a category rep- 
© The Author(s) 2025. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
esenting a species or a group of species. The approach
ttributes all or a proportion of the total backscatter over
 region to one or several acoustic categories. The process
nvolves defining the seabed, removing noise, adjusting the 
coustic density thresholds, drawing the region outlines, and 

ttributing the acoustic backscatter to an acoustic category.
n some surveys, the species and size distribution sampled 

rom the biological samples is also used when attributing 
he acoustic backscatter. When multiple frequency channels 
re present, the frequency response may be used to aid the
rocess. 
ATC has long been considered a central challenge in fish-

ries acoustics (MacLennan and Holliday 1996 ), and sev- 
ral approaches have been taken to automate the process 
Korneliussen 2018 ). Features from schools, elementary dis- 
ance sampling unit features, and features across strata or re-
ions can be used for classification (Reid 2000 , Reid et al.
000 ), together with machine learning (ML) classification al-
orithms (Haralabous and Georgakarakos 1996 ). The use of 
he relative frequency response between different echosounder 
hannels is commonly used (Kloser et al. 2002 , Korneliussen
nd Ona 2003 ), or by combining the relative frequency re-
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ponse and morphological parameters (Korneliussen et al.
009 , Komiyama et al. 2024 ). 
Numerous ML approaches have been proposed to auto-
ate the ATC. Rezvanifar et al. (2019) introduced a frame-
ork combining a region of interest extractor with a deep

earning-based image classifier. Similar methods detect regions
f interest before applying classification methods, while Mar-
ues et al. (2021b) proposed integrating these steps using end-
o-end deep learning frameworks such as Faster R-CNN (Ren
t al. 2015 ) and YOLOv2 (Redmon and Farhadi 2017 ). End-
o-end learning refers to training a model directly from input
ata to output predictions, bypassing traditional feature ex-
raction and stepwise data processing. Notable examples in-
lude the introduction of deep convolutional neural networks
CNNs) for digit recognition (Lecun et al. 1998 ) and the
reakthrough in image classification on the ImageNet dataset
Krizhevsky et al. 2012 ). Training these models typically re-
uires extensive labelled data, though Choi et al. (2021) in-
roduced a semi-supervised approach and Pala et al. ( 2024 )
sed a self supervised approach to reduce this dependency.
arques et al . (2021a) presented an instance segmentation

ramework for precise bounding box detection in herring
chools. 

Another important category of models is semantic segmen-
ation, which predicts acoustic categories for each sample in
n echogram. Brautaset et al. (2020) utilized a U-Net-based
pproach (Ronneberger et al. 2015 ), further analysed by Or-
oñez et al. (2022) with different resolutions and depth infor-
ation. A further improvement was achieved by Pala et al.

2023) by introducing a similarity-based sampling method.
ohra et al. (2023) compared Attention U-Net, U-Net, and
eepLabV3, while Choi et al. (2023) combined semantic seg-
entation with unsupervised learning. 
The ML models by Brautaset et al. (2020) , Ordoñez et al.

2022) , Choi et al. ( 2021 , 2023 ), and Pala et al. (2023) were
rained on labelled survey data on Norwegian lesser sandeel
 Ammodytes marinus ) (hereafter sandeel). The sandeel is a
mall, swim bladder-less fish that spends much of its life bur-
owed in sandy seabeds with low silt and clay content (Macer
966 , Wright et al. 2000 ). In spring, adults emerge from the
and at dawn to form pelagic schools and feed on zooplank-
on (Winslade 1974 , Freeman et al. 2004 , Johnsen et al. 2017 ).
he sandeel is vital prey for seabirds, seals, larger fish (Furness
002 ), and supports commercial fisheries. 
Most of the ML models applied to ATC are taken from the

mage classification domain and are trained end-to-end to pre-
ict the acoustic categories. However, these models are usu-
lly evaluated using image classification metrics, such as F1
cores, without considering the underlying backscatter distri-
ution. Although an F1 score offers a robust test for image-
ased classification capabilities, it lacks the link to the use
f the data and its usefulness to provide robust estimates of
sh abundance, which requires integrating and aggregating
he acoustic backscatter intensities associated with the fore-
round class. As an example, if an echogram ‘pixel’ with a low
ackscattering intensity is assigned to the wrong class, the im-
act on the result is much less than if the associated backscat-
ering intensity is high. So far, most models have used the F1
core as the test criteria, and it can be argued that they are
ot truly end-to-end since they are tested on an intermediate
tep. 

The objective of this paper is to establish a framework for
esting predictions for automated methods for ATC, where the
rediction results are integrated into the entire survey esti-
ation process used for acoustic trawl surveys. To evaluate

heir performance, the survey estimate and integrated acous-
ic backscatter transect values are compared with those ob-
ained using traditional standard manual ATC methods. The
pproach will be demonstrated on the North Sea lesser sandeel
 A. marinus ) acoustic-trawl survey time series. 

aterials and methods 

he sandeel survey 

ince 2005, the Institute of Marine Research in Norway has
onducted acoustic trawl surveys in northeastern North Sea
andeel areas (Johnsen et al. 2017 ). The 2007–2024 surveys
sed various vessels, including RV Johan Hjorth, RV GO Sars,
V Brennholm, FV Eros, FV Kings Bay, and RV Kristine Bon-
evie ( Table 1 ). 
The main objectives of the 2007 and 2008 surveys were
ethodology development and spatial density mapping of

andeel. From 2009 onward, the survey was used to produce
 time series for assessing sandeel stock status. The sandeel
rounds were divided into several strata, which were covered
sing zigzag (Strindberg and Buckland 2004 ) or parallel tran-
ects with a random starting point in each stratum ( Fig. 1 ).
s sandeel burrow into the sand at night, the transects were
nly covered during daylight hours. A Campelen 1800 dem-
rsal trawl (Nguyen et al. 2015 ) was used for trawl sampling.
he trawl opening height was ∼4 m, the door distance was
50 m, and the trawl was equipped with a 10 mm-meshed

od-end. The trawl targeted sandeel schools during the day-
ime at a trawling speed of 3 knots. A sandeel dredge with a
idth of 1 m and net mesh size of 5 mm (Johnsen and Harbitz
013 ) at a towing speed of 2 knots was used to catch sandeel
urrowed in the seabed. The vessels were equipped with Sim-
ad EK60/80 echosounders (Kongbserg Discovery, Norway)
perating at 18, 38, 120, and 200 kHz frequency channels,
xcept FV Brennholm, where the 120 kHz transducer was not
vailable ( Table 1 ). Standard calibration procedures (Demer
t al. 2015 ) ensured accurate data, with echosounders set to
 1.024 ms pulse duration, 3–4 Hz ping repetition frequen-
ies, and a vessel speed of ∼10 knots when covering the tran-
ects. Further details can be found in Johnsen et al. (2009) and
omiyama et al. (2024) . 
During the surveys, acoustic data were categorized as

sandeel’, ‘other’, ‘0-group sandeel’, or ‘possible sandeel’. The
lasses ‘sandeel’ and ‘other’ have been used annually, with
sandeel’ being the only one included in estimates used for
he advisory process. The ‘possible sandeel’ category was in-
roduced for schools with uncertain frequency responses, and
0-group sandeel’ category was added in 2016 due to an un-
sually high juvenile density. School sizes ranged from a few
eters to over 1 km, spanning much of the water column

Johnsen et al. 2017 ). During manual scrutiny using LSSS,
he contouring of sandeel schools was based on the 200-
Hz data due to its strong sandeel signal. Acoustic catego-
ization, which underpinned the classification process, was
ased on the frequency response of the volume backscatter-
ng coefficient ( s v ), defined as the mean backscattering in-
ensity per cubic meter (m 

3 ) (c.f., Johnsen et al. 2009 ). For
cho integration, the 38 kHz frequency channel was used. Af-
er annotation, the corresponding acoustic data were stored
n an internal database in the LSSS system and exported
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Table 1. Ov ervie w of the sandeel surv e y series. 

Year Vessel Operating frequencies (kHz) Echosounder 

2007 RV Johan Hjort 38, 18, 120, 200 EK60 
2008 RV Johan Hjort 38, 18, 120, 200 EK60 
2009 RV G.O. Sars 38, 18, 70, 120, 200, 333 EK60 
2010 RV Johan Hjort 38, 18, 120, 200 EK60 
2011 RV Johan Hjort 38, 18, 120, 200 EK60 
2012 FV Brennholm 38, 18, 200, 333 EK60 
2013 FV Eros 38, 18, 70, 120, 200 EK60 
2014 FV Eros 38, 18, 70, 120, 200, 333 EK60 
2015 FV Eros 38, 18, 70, 120, 200, 333 EK60 
2016 FV Eros 38, 18, 70, 120, 200, 333 EK60 
2017 FV Eros 38, 18, 70, 120, 200, 333 EK60 
2018 FV Eros 38, 18, 70, 120, 200, 333 EK60 
2019 FV Eros 38, 18, 70, 120, 200, 333 EK60 
2020 FV Eros 38, 18, 70, 120, 200, 333 EK80 
2021 FV Kings Bay 38, 18, 70, 120, 200, EK80 
2022 RV Johan Hjort 38, 18, 120, 200, 333 EK80 
2022 RV Kristine Bonnevie 38, 18, 120, 200 EK80 
2023 RV Kristine Bonnevie 38, 18, 120, 200 EK80 
2024 RV Johan Hjort 38, 18, 120, 200, 333 EK80 

The survey has been carried out using a combination of chartered fishing vessels (FV) and IMR research vessels (RV). 

Figure 1. Surv e y design f or the 2020 surv e y with strata (gre y poly gons) 
and transects, where the geographical distribution of the sandeel nautical 
area scattering coefficient (NASC) values are presented per 0.1 nautical 
mile along-track segments. The size of the circles indicate NASC, while 
z ero v alues are sho wn as dots (from J ohnsen and Kv amme 2024 ). 

Table 2. The different models used in this study for classification. 

Model Description Citation 

1 Original labels NA 

2 Baseline U-Net implementation Brautaset et al. (2020) 
3 The U-Net including auxiliary data Ordoñez et al. (2022) 
4 Balanced training method Pala et al. (2023) 
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in a depth and log-distance grid of 10 m and 0.1 nautical 
miles. 

For the EK60 data, the range resolution was determined by 
the pulse length. This allowed all the data to be stacked in 

a three-dimensional grid in range, time, and frequency chan- 
nels. If, for some reason, another pulse length was used, the 
data were interpolated onto the same range resolution as the 
standard 1.024 ms pulse duration data. For the EK80 imple- 
mentation, range resolution depended on the operating fre- 
quency. To align the data with the EK60 grid, it was resam- 
pled to the same dimensions using a weighted mean, where 
the weights reflected the degree of overlap with the original 
grid. 
m  
achine learning models for ATC 

he U-Net based algorithms available for predicting pixel- 
evel annotations were used in this study ( Table 2 ). While the
ame model architectures and acoustic data were employed 

s in the cited studies, the original models had been trained
n datasets pre-processed using a different pipeline than the 
ne applied here. However, the underlying acoustic data and 

odel algorithms remained the same. The prediction step used 

he same input data across all models. 
Raw acoustic data (.raw files) and annotation data from 

he LSSS system (.work files) were converted to the Zarr for-
at, a cloud-friendly format that supports random access and 

eamless integration with standard software packages. Using 
ython, this format can be directly accessed through Xarray
bjects, enabling easy interaction with both raw data and 

nnotations. The s v data preprocessor gridded the raw data 
nto an N-dimensional array, which was stored as a Zarr
ataset. Annotations from LSSS work files were reformat- 
ed to align with the same grid as the s v files, while grid-
ndependent annotations were stored in a Parquet file ( Fig.
 a). See Supplementary Material for details. 
The baseline model was initially designed as a CNN based

-Net model (Ronneberger et al. 2015 ) to perform pixel-
ise segmentation on echogram data for sandeel detection 

Brautaset et al. 2020 ). The baseline model used a weighted
oss function and a class-based sampling strategy to address 
he heavy class imbalance in the dataset. The output was the
ixelwise SoftMax maps for the sandeel class for each pixel
 Fig. 2 b), c.f. Brautaset et al. (2020) for details. The model was
rained on data from the 2011, 2013–2016 surveys, and the
odel was tested on the 2007–2010, 2017, and 2018 surveys.

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf069#supplementary-data
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(a)

(b)

(c)

Figure 2. The processing steps from raw data to survey estimates. (a) The preprocessing and regridding of the acoustic data (.raw files) and calibration 
data (.xml) through the ‘preprocessing-korona’ module, the conversion of annotation data from the LSSS system (.work files) through the 
‘annotationtools’ module, and the simple bottom detection algorithm through the ‘classifiers-bottom’ module. (b) The volume bac kscat tering coefficient 
( s v ) data are used as an input to the machine learning (ML) models, and the predictions contain the softmax output from the models. (c) The s v data and 
the bottom are combined with the predictions from the ML models. The s v data are masked by the above-bottom samples and the sandeel predictions, 
regridded on a 10 m by 0.1 nmi grid, imported to the StoX estimation program where the original input data is replaced, and the survey estimate is 
exported. See Supplementary Material for details. 
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The second model was built on the baseline model by
dding auxiliary information to the network (Ordoñez et al.
022 ). This model employed a broader data augmentation
ipeline during training to increase robustness under diverse
urvey conditions. It also aimed to evaluate the effectiveness
f different preprocessing strategies. The model architecture
ntroduced additional layers that improved accuracy and re-
ulted in higher F1 scores than the baseline model. The out-
ut was the pixelwise SoftMax maps for the sandeel class for
ach pixel ( Fig. 2 b), c.f. Ordoñez et al. (2022) for details. The
raining and testing data were the same as for the baseline
odel. 
The third model (Pala et al. 2023 ) focused on the class im-

alance when training models on acoustic data, where back-
round pixels far outnumbered sandeel pixels. This model
as built upon the baseline model by employing a similarity-
ased sampling strategy. This technique selectively increased
he representation of sandeel-like pixels during training, al-
owing the model to better learn sandeel-specific character-
stics without being overwhelmed by the background class.
raining on a more balanced representation of sandeel and
ackground pixels, the model achieved improvements in seg-
entation precision and was more effective in difficult detec-

ion regions. As with previous models, the output is a pixel-
ise SoftMax map ( Fig. 2 b), c.f. Pala et al. (2023) for details.
he training and testing data were the same as for the baseline

odel. w  
The models predicted the SoftMax output for each sample
n the echogram for the sandeel class. To convert the Soft-

ax labels to binary labels similar to the data from the man-
al ATC, a threshold was applied to the SoftMax predictions
 Fig. 2 c). However, the same threshold cannot be applied
cross all models, and we used the following strategy for set-
ing the thresholds: For each model, we calculated the thresh-
ld value that maximized the F1 score for each training sur-
ey year (2011, 2013–2016). While using the threshold that
aximizes the F1 score for each individual year would im-
rove performance, this approach is not a fair evaluation
etric because calculating the F1 score requires access to

round-truth labels. We used the median threshold for each
odel for the training years when thresholding the data for

ll years during prediction ( Fig. 3 ). The thresholds were ap-
lied to the SoftMax outputs to classify pixels as sandeel or
on-sandeel. 
The CNN models are not aware of the seabed. During the

raining, the seabed is treated as the background class, and
he models can discriminate between the seabed and the fore-
round class. By balancing the bottom samples of the back-
round class during the training, the model’s performance can
e further improved to avoid predicting seabed as the fore-
round class. However, samples below the seabed, e.g. the sec-
nd echoes from sandeel schools, are occasionally predicted
s sandeel. To avoid these being included in the estimates,
e ran a simple bottom detection algorithm and removed

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf069#supplementary-data
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Figure 3. The threshold values that maximized the F1 scores for each machine learning model and each surv e y y ear used f or training and testing. T he 
median threshold values for the training years that maximized the F1 score for each model are shown as horizontal dashed lines. We used these values 
for all testing years, including the years after 2018. 
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the predictions in a buffer 10 pixels below the seabed. This 
step was not intended to remove the seabed itself, but rather 
to eliminate second echoes from sandeel detected below the 
seabed. 

Integration and survey estimation 

For each ping, the s v data, the (binary) bottom predictions b
and the (binary) ML based sandeel predictions m were com- 
bined to provide the estimates of the nautical area scattering 
coefficient (NASC, mean backscattering intensity over a given 

depth range per nautical mile squared), 

s A,i = 4 π
(
1852 

2 
) z i +10 

∫ 

z i 
s v ( z ) · m ( z ) · b ( z ) dz, 

where z is the range from the transducer, z i is the range in 

10 m layers, and i is the layer number. Note that we used 

range instead of depth which is the standard procedure. The 
depth conversion requires regridding, and we chose to stay in 

range domain. The s A 

values were then averaged over 0.1 nmi 
distance bins and only data recorded along the survey tran- 
sects were included in the analyses. The time and geographi- 
cal position for the first and last ping was calculated for each 

bin, which provided a structured dataset that enabled inte- 
grating the machine learning-based classification models with 

the established fisheries abundance estimation workflows. See 
Supplementary Material for details. 

The standard survey estimates of sandeel are considered 

to reflect the absolute abundance and biomass of sandeel in 

the survey areas (Johnsen and Kvamme 2024 ). Survey esti- 
mation follows standard procedures using the StoX software 
(Johnsen et al. 2019 ), in which each transect is defined and 

manually assigned to a stratum. Acoustic data from tran- 
sits between transects and during trawling operations are ex- 
cluded. For each transect, a set of biological stations is as- 
signed. The mean vertically integrated s A 

values are calculated 
er transect, and the acoustic energy is converted to area num-
er density using a target strength relationship of TS 38 kHz =
0 log 10 (L ) − 93 ( dB re 1 m 

2 ) . Length distributions are de-
ived from the assigned trawl stations. The resulting densi- 
ies are averaged over geographical strata and multiplied by 
tratum area to estimate abundance by length group. Biomass
s calculated as the product of abundance and individual 
eights. Precision is estimated by bootstrapping with 1000 

terations, resampling transects and trawl hauls with replace- 
ent within each stratum. The bootstrap summary provides 

stimates of the mean, confidence intervals and coefficient of 
ariation. 

In this study, we used the survey estimation procedure de-
cribed above (Johnsen and Kvamme 2024 ) but replaced the
ASC values with those derived from the ML-based ATC 

eports (c.f. Fig. 2 c), while keeping the assigned strata and
iological samples unchanged. The primary sampling units 
PSUs) from the ML-based acoustic data were adjusted to 

atch the existing PSUs, correcting for any discrepancies in 

he start and end times of the 0.1 nmi distance bins. For each
ase and year, the distance-weighted average NASC value per 
SU and the corresponding biomass with a 90% confidence 
nterval were calculated. 

esults 

verall, the biomass estimates derived from manual label- 
ased annotations and ML predictions were similar, but re- 
ults varied between years ( Fig. 4 ). When the models were
eveloped, the data from 2019 and onward were not avail-
ble and were not used for training or testing any of the
odels. The baseline ML model (Brautaset et al. 2020 ) ex-
ibited the largest deviations from the official estimates, es- 
ecially for 2009 and 2024. The baseline model is vulnera-
le to erroneously allocating surface layers of zooplankton 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf069#supplementary-data
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Figure 4. Upper panel: Total biomass of sandeel (age 1 + ) with a 90% confidence interval (5%–95%) for all survey areas combined per year, estimated 
from the acoustic sandeel surv e y s (J ohnsen and Kv amme 2024 ). T he original is the official estimate, whereas the three others are the estimates from 

Brautaset et al. (2020) , Ordoñez et al. (2022) , and Pala et al. (2023) , respectively. Note that 2012 is missing since the data set lacked the 120 kHz 
echosounder data. The 2014 data failed due to missing data. L o w er panel: the absolute difference between the prediction point estimate and the original 
estimate. 
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o sandeel as well as bottom contamination. The model that
s depth aware (Ordoñez et al. 2022 ) performed better, and
here were no major deviances between the original manual
abel-based estimate and the biomass estimates based on this
odel. The model based on the similarity-based training (Pala

t al. 2023 ) was similar but was less robust for the later years,
.g. 2021 and 2022. Integration over range instead of depth
id not substantially affect the estimates, as values for the
raining years remained consistent with the original results
 Fig. 4 ). 

To examine the performance of the three models in more
etail, we analysed the 2019 survey estimates. All models per-
ormed reasonably well that year, and it was the first year that
as not seen by the model (or modellers) at all. The PSU used

n the estimation was the average across a transect, and there
as reasonable agreement between the model predictions and

abels ( Fig. 5 ). One exception was with the predictions from
rautaset et al. (2020) , which produced substantially higher
ASC values than those derived from the manual labelling.
e also compared the values on the finer 0.1 nmi resolution

 Fig. 6 ). This discrepancy between the Brautaset et al. (2020)
odel and the labels appeared to originate from multiple data
oints, rather than a single location, as would be expected if
nly a few bottom pixels had been mistakenly classified as
andeel. 

To understand what caused the discrepancies, we listed the
.1 nmi PSUs that had the largest discrepancy between the
ntegrated backscatter for sandeel over 0.1 nmi, masked by
he original annotations and model predictions, respectively.
n 2019, the PSU with the largest discrepancy between pre-
ictions and labels originated from the baseline model, due
o misclassification of a surface plankton layer as sandeel
 Fig. 7 c). The case with the largest discrepancy for the Pala
t al . model was the erroneous application of a low SoftMax
hreshold, where larger parts of the interior school were miss-
ng from the predictions ( Fig. 7 d). 

iscussion 

e developed a framework to evaluate ML model predictions
gainst survey estimates, exemplified by the sandeel survey in
he North Sea. We have used the predictions together with the
tandard method and software used for the survey (Johnsen
t al. 2019 ), and thus moved beyond the common F1 score
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Figure 5. (a–c) Comparisons per PSU for the 2019 survey between the labels and the model predictions from Brautaset et al. (2020) , Ordoñes et al. 
(2022) , and Pala et al. (2023) , respectively. Note that there is one outlier in the NASC values in the upper panel with a value of ∼2700 m 

2 nmi −2 . 
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that is commonly used for evaluating the performance of im- 
age based methods applied to ATC. This allowed us to evalu- 
ate predictions using a metric that reflects the data’s intended 

application. 
Survey estimates based on the ML models showed lower 

variability and greater similarity to the original labelled data 
during the training years, while performance declined in more 
recent, unseen years. It is not necessarily surprising that we ex- 
perienced a decline in performance for recent surveys. CNNs 
are sensitive to data shifts (model drift), which may result from 

factors such as weather conditions, changes in population 

structure (e.g. smaller schools, juvenile prevalence), species 
composition, or survey hardware. This emphasizes the impor- 
tance of continuously monitoring model performance and to 

retrain networks as new data becomes available. 
Cases with large discrepancies between predictions and la- 

bels in terms of acoustic backscatter were visualized and as- 
sessed. In general, the examples where the discrepancies were 
large are similar to the discrepancies reported earlier when 

inspecting where the F1 scores showed inferior performance 
(Brautaset et al. 2020 ). The model by Brautaset et al. (2020) 
tended to erroneously predict surface layers as sandeel. This 
caused large overestimations in terms of biomass for some 
years and is the cause of the large discrepancy in 2019 ( Fig.
5 ). The model by Ordoñez et al. (2022) used the depth as 
input and performed better, but occasionally underpredicted 
he sandeel schools. The model by Pala et al. (2023) also
artially misclassified surface layers as sandeel, but the largest
iscrepancy was caused by using a non-optimal threshold, em- 
hasizing the need to reconsider the thresholding process. In a
ew cases, bottom signals were misclassified as sandeel. Such 

rrors are difficult to detect using F1 scores alone, since only a
ew mislabelled samples will cause a large discrepancy in the
ntegrated backscatter . However , these are relatively easy to
dentify when plotting the integrated values at a ping-to-ping 
esolution. 

We used a hard threshold for translating the SoftMax out-
ut from the U-Net models to ML predictions, and the thresh-
lds were set by the median of the thresholds that optimized
he F1 score across the years up until and including 2018,
or all three models, respectively. The optimal threshold var- 
ed between years, and a fixed threshold will cause perfor-
ance to vary across years. This can be caused by changes

n the fish abundance and distribution, which could affect 
he data distribution and, in turn, model performance and 

he optimal threshold. However, since labels are needed for 
etting a threshold for optimizing the F1 score, we cannot
se this approach when predicting on survey data. One ap-
roach is to apply weights to the s v data according to pre-
iction confidence or to use a soft thresholding strategy. An-
ther solution would be to set the threshold based on a hu-
an in the loop during the survey. After manually adjust-
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Figure 6. (a–c) Comparisons per 0.1 nmi for the 2019 survey between the labels and the model predictions from Brautaset et al. (2020) , Ordoñes et al. 
(2022) , and Pala et al. (2023) , respectively. 
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ng the predictions from parts of the survey, the threshold
ould be updated and employed across all the PSUs. Instead
f setting the threshold to minimize the F1 score, we could
lso set the threshold to minimize the error in the abundance
stimate. 

While adjusting the thresholds and retraining the model on
ecent data could help mitigate some performance loss, there
s still a need to check and improve the performance during a
urvey. This can be achieved by using the predictions as start-
ng points for a manual scrutiny process or annotating a subset
f the data for adjusting the threshold. More sophisticated ac-
ive learning approaches should also be considered (e.g. Budd
t al. 2021 ) to select samples in the data to be annotated by
 human and included in a training set. One such approach is
o annotate the samples where the model’s predictions are the
east certain, based on a measure of the model’s confidence.
ll these approaches could enable faster and more consistent
rocessing of entire surveys, substantially reducing the time
equired for manual annotation. 

Our approach linked all processing steps from raw data to
iomass estimates (as illustrated in Fig. 2 ). In addition to test-
ng the effect of ATC algorithms, the approach can also be
sed to test the effect of changes in other processing steps, if
pplicable. For instance, if a new bottom detection algorithm
r noise detection algorithm is developed, the predictions can
e used to create Boolean masks, which can then be combined
ith the classification predictions. If the processing step alters

he backscatter values instead of the masks, such as correcting
he backscatter data for noise (De Robertis and Higginbottom
007 , their Eq. 8) or transducer motion (Dunford 2005 ), the
ltered backscatter data can be substituted while keeping the
ther parts unchanged. After replacing the combined mask or
he s v values, the effect on the survey estimate can be evalu-
ted throughout the time series, rather than relying on a few
est data sets, which is typically common practice when devel-
ping and testing algorithms. 
This study presented a framework for evaluating ML model

redictions in the context of survey-based abundance esti-
ates. Future research could investigate dynamic or adaptive

hresholding methods and incorporate additional data into
he models, such as trawl samples, environmental informa-
ion, and location data. Although this study concentrated on
he lesser sandeel, the proposed framework can be applied to
ther species and types of surveys as long as the survey esti-
ation step can be scripted. By modifying the input data and

lassification targets, similar workflows could facilitate auto-
ated analysis across various fisheries acoustics scenarios, in-

luding multispecies and mesopelagic surveys. 
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(a)

(c)

(e) (f)

(d)

(b)

Figure 7. The (a and b) bac kscat ter at 200 kHz for the 2019 survey for the 0.1 nmi with the largest discrepancy between the model predictions (c and d) 
and labels (e and f), for Brautaset et al. (2020) and Pala et al. (2023) , respectively. The first example demonstrates the failure of the model to correctly 
assign the surface layer to the background (BG) category (c), whereas the second example shows the effect of choosing a threshold that is not tuned for 
the case resulting in the sandeel (SE) acoustic category to be erroneously assigned to the BG acoustic category (d). The white lines are the prediction 
from the bottom detection algorithm, and there are cases where the bottom detection fails. 
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