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Abstract

Scientific acoustic-trawl surveys collect data that are used to track fish and zooplankton populations over time. Most rely on manual
annotation during acoustic target classification, but automated methods have been proposed. Here, we report on a framework for
testing deep learning-based acoustic classification models and integrating them into the survey estimation process. The approach
was applied to North Sea lesser sandeel (Ammodytes marinus) surveys from 2009 to 2024. Three U-Net-based models were tested:
a baseline model, a depth-aware model, and a model trained with similarity-based sampling for the foreground class. A threshold
based on the training years was applied to the models’ SoftMax outputs. The official sandeel estimation process was used as a starting
point, replacing input data with model predictions. The biomass estimates were generally similar between manual annotations and
model-based estimates, but variation existed across years. The baseline model misclassified a surface layer as sandeel and was prone
to bottom contamination, causing larger deviations from official estimates. Discrepancies between the similarity-based model and the
official estimates resulted from an incorrectly applied SoftMax threshold, leading to missing school interiors and indicating threshold
sensitivity. Unlike traditional F1 score evaluations commonly used in image-based classification, our comparison assessed predictions
in a survey-relevant context. The evaluation indicated that full automation was not yet feasible, but the predictions could be used as
starting points for manual scrutiny. Annotating a subset of the data to refine thresholds or employing more advanced active learning
approaches could enhance efficiency. These methods could enable faster, more consistent survey annotation.
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Introduction

Scientific acoustic-trawl surveys (MacLennan and Simmonds
20035) are used to monitor changes in abundance, distribution,
and population structure of fish and zooplankton (Gunderson
1993). Annual survey estimates are used as input to fisheries
assessment models and provide time series data on changes
in fish and zooplankton populations. They are an important
complement to fisheries data in fish stock assessment models.
An acoustic-trawl survey consists of collecting acoustic data,
usually along transects, biological sampling, annotating the
acoustic data with an acoustic category, and integrating the
backscatter by category over a transect. Nets or trawls are
typically used for biological sampling, where information on
species, length groups, and other biological parameters such
as age are recorded and combined with the acoustic data to
estimate abundance or biomass.

Most acoustic trawl-surveys rely on manual annotation
during the acoustic target classification (ATC) step. This is
usually achieved through manually scrutinizing the data us-
ing desktop applications like Echoview (Myriax, Australia),
LSSS (Korneliussen et al. 2016), or similar. During the pro-
cess, the acoustic backscatter is assigned to a category rep-

resenting a species or a group of species. The approach
attributes all or a proportion of the total backscatter over
a region to one or several acoustic categories. The process
involves defining the seabed, removing noise, adjusting the
acoustic density thresholds, drawing the region outlines, and
attributing the acoustic backscatter to an acoustic category.
In some surveys, the species and size distribution sampled
from the biological samples is also used when attributing
the acoustic backscatter. When multiple frequency channels
are present, the frequency response may be used to aid the
process.

ATC has long been considered a central challenge in fish-
eries acoustics (MacLennan and Holliday 1996), and sev-
eral approaches have been taken to automate the process
(Korneliussen 2018). Features from schools, elementary dis-
tance sampling unit features, and features across strata or re-
gions can be used for classification (Reid 2000, Reid et al.
2000), together with machine learning (ML) classification al-
gorithms (Haralabous and Georgakarakos 1996). The use of
the relative frequency response between different echosounder
channels is commonly used (Kloser et al. 2002, Korneliussen
and Ona 2003), or by combining the relative frequency re-
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sponse and morphological parameters (Korneliussen et al.
2009, Komiyama et al. 2024).

Numerous ML approaches have been proposed to auto-
mate the ATC. Rezvanifar et al. (2019) introduced a frame-
work combining a region of interest extractor with a deep
learning-based image classifier. Similar methods detect regions
of interest before applying classification methods, while Mar-
ques et al. (2021b) proposed integrating these steps using end-
to-end deep learning frameworks such as Faster R-CNN (Ren
et al. 2015) and YOLOv2 (Redmon and Farhadi 2017). End-
to-end learning refers to training a model directly from input
data to output predictions, bypassing traditional feature ex-
traction and stepwise data processing. Notable examples in-
clude the introduction of deep convolutional neural networks
(CNNs) for digit recognition (Lecun et al. 1998) and the
breakthrough in image classification on the ImageNet dataset
(Krizhevsky et al. 2012). Training these models typically re-
quires extensive labelled data, though Choi et al. (2021) in-
troduced a semi-supervised approach and Pala et al. (2024)
used a self supervised approach to reduce this dependency.
Marques et al. (2021a) presented an instance segmentation
framework for precise bounding box detection in herring
schools.

Another important category of models is semantic segmen-
tation, which predicts acoustic categories for each sample in
an echogram. Brautaset et al. (2020) utilized a U-Net-based
approach (Ronneberger et al. 2015), further analysed by Or-
dofiez et al. (2022) with different resolutions and depth infor-
mation. A further improvement was achieved by Pala et al.
(2023) by introducing a similarity-based sampling method.
Vohra et al. (2023) compared Attention U-Net, U-Net, and
DeepLabV3, while Choi et al. (2023) combined semantic seg-
mentation with unsupervised learning.

The ML models by Brautaset et al. (2020), Ordoiiez et al.
(2022), Choi et al. (2021, 2023), and Pala et al. (2023) were
trained on labelled survey data on Norwegian lesser sandeel
(Ammodytes marinus) (hereafter sandeel). The sandeel is a
small, swim bladder-less fish that spends much of its life bur-
rowed in sandy seabeds with low silt and clay content (Macer
1966, Wright et al. 2000). In spring, adults emerge from the
sand at dawn to form pelagic schools and feed on zooplank-
ton (Winslade 1974, Freeman et al. 2004, Johnsen et al. 2017).
The sandeel is vital prey for seabirds, seals, larger fish (Furness
2002), and supports commercial fisheries.

Most of the ML models applied to ATC are taken from the
image classification domain and are trained end-to-end to pre-
dict the acoustic categories. However, these models are usu-
ally evaluated using image classification metrics, such as F1
scores, without considering the underlying backscatter distri-
bution. Although an F1 score offers a robust test for image-
based classification capabilities, it lacks the link to the use
of the data and its usefulness to provide robust estimates of
fish abundance, which requires integrating and aggregating
the acoustic backscatter intensities associated with the fore-
ground class. As an example, if an echogram ‘pixel’ with a low
backscattering intensity is assigned to the wrong class, the im-
pact on the result is much less than if the associated backscat-
tering intensity is high. So far, most models have used the F1
score as the test criteria, and it can be argued that they are
not truly end-to-end since they are tested on an intermediate
step.

The objective of this paper is to establish a framework for
testing predictions for automated methods for ATC, where the
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prediction results are integrated into the entire survey esti-
mation process used for acoustic trawl surveys. To evaluate
their performance, the survey estimate and integrated acous-
tic backscatter transect values are compared with those ob-
tained using traditional standard manual ATC methods. The
approach will be demonstrated on the North Sea lesser sandeel
(A. marinus) acoustic-trawl survey time series.

Materials and methods

The sandeel survey

Since 20035, the Institute of Marine Research in Norway has
conducted acoustic trawl surveys in northeastern North Sea
sandeel areas (Johnsen et al. 2017). The 2007-2024 surveys
used various vessels, including RV Johan Hjorth, RV GO Sars,
FV Brennholm, FV Eros, FV Kings Bay, and RV Kristine Bon-
nevie (Table 1).

The main objectives of the 2007 and 2008 surveys were
methodology development and spatial density mapping of
sandeel. From 2009 onward, the survey was used to produce
a time series for assessing sandeel stock status. The sandeel
grounds were divided into several strata, which were covered
using zigzag (Strindberg and Buckland 2004) or parallel tran-
sects with a random starting point in each stratum (Fig. 1).
As sandeel burrow into the sand at night, the transects were
only covered during daylight hours. A Campelen 1800 dem-
ersal trawl (Nguyen et al. 2015) was used for trawl sampling.
The trawl opening height was ~4 m, the door distance was
~50 m, and the trawl was equipped with a 10 mm-meshed
cod-end. The trawl targeted sandeel schools during the day-
time at a trawling speed of 3 knots. A sandeel dredge with a
width of 1 m and net mesh size of 5 mm (Johnsen and Harbitz
2013) at a towing speed of 2 knots was used to catch sandeel
burrowed in the seabed. The vessels were equipped with Sim-
rad EK60/80 echosounders (Kongbserg Discovery, Norway)
operating at 18, 38, 120, and 200 kHz frequency channels,
except FV Brennholm, where the 120 kHz transducer was not
available (Table 1). Standard calibration procedures (Demer
et al. 2015) ensured accurate data, with echosounders set to
a 1.024 ms pulse duration, 3—4 Hz ping repetition frequen-
cies, and a vessel speed of ~10 knots when covering the tran-
sects. Further details can be found in Johnsen et al. (2009) and
Komiyama et al. (2024).

During the surveys, acoustic data were categorized as
‘sandeel’, ‘other’, ‘0-group sandeel’, or ‘possible sandeel’. The
classes ‘sandeel’ and ‘other’ have been used annually, with
‘sandeel” being the only one included in estimates used for
the advisory process. The ‘possible sandeel’ category was in-
troduced for schools with uncertain frequency responses, and
‘0-group sandeel’ category was added in 2016 due to an un-
usually high juvenile density. School sizes ranged from a few
meters to over 1 km, spanning much of the water column
(Johnsen et al. 2017). During manual scrutiny using LSSS,
the contouring of sandeel schools was based on the 200-
kHz data due to its strong sandeel signal. Acoustic catego-
rization, which underpinned the classification process, was
based on the frequency response of the volume backscatter-
ing coefficient (s,), defined as the mean backscattering in-
tensity per cubic meter (m?) (c.f., Johnsen et al. 2009). For
echo integration, the 38 kHz frequency channel was used. Af-
ter annotation, the corresponding acoustic data were stored
in an internal database in the LSSS system and exported
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Table 1. Overview of the sandeel survey series.

Year Vessel Operating frequencies (kHz) Echosounder
2007 RV Johan Hjort 38, 18,120,200 EK60
2008 RV Johan Hjort 38,18, 120,200 EK60
2009 RV G.O. Sars 38,18, 70, 120, 200, 333 EK60
2010 RV Johan Hjort 38,18, 120,200 EK60
2011 RV Johan Hjort 38,18, 120,200 EK60
2012 FV Brennholm 38,18,200, 333 EK60
2013 FV Eros 38,18, 70, 120, 200 EK60
2014 FV Eros 38,18, 70, 120, 200, 333 EK60
2015 FV Eros 38,18, 70, 120, 200, 333 EK60
2016 FV Eros 38,18, 70, 120, 200, 333 EK60
2017 FV Eros 38,18, 70, 120, 200, 333 EK60
2018 FV Eros 38,18, 70, 120, 200, 333 EK60
2019 FV Eros 38,18, 70, 120, 200, 333 EK60
2020 FV Eros 38,18, 70, 120, 200, 333 EK80
2021 FV Kings Bay 38,18, 70, 120, 200, EK80
2022 RV Johan Hjort 38,18, 120, 200, 333 EK80
2022 RV Kristine Bonnevie 38,18, 120,200 EK80
2023 RV Kiristine Bonnevie 38, 18,120,200 EKS80
2024 RV Johan Hjort 38,18, 120, 200, 333 EK80

The survey has been carried out using a combination of chartered fishing vessels (FV) and IMR research vessels (RV).
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Figure 1. Survey design for the 2020 survey with strata (grey polygons)
and transects, where the geographical distribution of the sandeel nautical
area scattering coefficient (NASC) values are presented per 0.1 nautical
mile along-track segments. The size of the circles indicate NASC, while
zero values are shown as dots (from Johnsen and Kvamme 2024).

in a depth and log-distance grid of 10 m and 0.1 nautical
miles.

For the EK60 data, the range resolution was determined by
the pulse length. This allowed all the data to be stacked in
a three-dimensional grid in range, time, and frequency chan-
nels. If, for some reason, another pulse length was used, the
data were interpolated onto the same range resolution as the
standard 1.024 ms pulse duration data. For the EK80 imple-
mentation, range resolution depended on the operating fre-
quency. To align the data with the EK60 grid, it was resam-
pled to the same dimensions using a weighted mean, where
the weights reflected the degree of overlap with the original
grid.

Table 2. The different models used in this study for classification.

Model Description Citation

Original labels NA

Baseline U-Net implementation Brautaset et al. (2020)
The U-Net including auxiliary data ~ Ordofiez et al. (2022)
Balanced training method Pala et al. (2023)

AW =

Machine learning models for ATC

The U-Net based algorithms available for predicting pixel-
level annotations were used in this study (Table 2). While the
same model architectures and acoustic data were employed
as in the cited studies, the original models had been trained
on datasets pre-processed using a different pipeline than the
one applied here. However, the underlying acoustic data and
model algorithms remained the same. The prediction step used
the same input data across all models.

Raw acoustic data (.raw files) and annotation data from
the LSSS system (.work files) were converted to the Zarr for-
mat, a cloud-friendly format that supports random access and
seamless integration with standard software packages. Using
Python, this format can be directly accessed through Xarray
objects, enabling easy interaction with both raw data and
annotations. The s, data preprocessor gridded the raw data
into an N-dimensional array, which was stored as a Zarr
dataset. Annotations from LSSS work files were reformat-
ted to align with the same grid as the s, files, while grid-
independent annotations were stored in a Parquet file (Fig.
2a). See Supplementary Material for details.

The baseline model was initially designed as a CNN based
U-Net model (Ronneberger et al. 2015) to perform pixel-
wise segmentation on echogram data for sandeel detection
(Brautaset et al. 2020). The baseline model used a weighted
loss function and a class-based sampling strategy to address
the heavy class imbalance in the dataset. The output was the
pixelwise SoftMax maps for the sandeel class for each pixel
(Fig. 2b), c.f. Brautaset et al. (2020) for details. The model was
trained on data from the 2011, 2013-2016 surveys, and the
model was tested on the 2007-2010, 2017, and 2018 surveys.
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Figure 2. The processing steps from raw data to survey estimates. (a) The preprocessing and regridding of the acoustic data (.raw files) and calibration
data (.xml) through the ‘preprocessing-korona’ module, the conversion of annotation data from the LSSS system (.work files) through the
‘annotationtools’ module, and the simple bottom detection algorithm through the ‘classifiers-bottom’ module. (b) The volume backscattering coefficient
(sy) data are used as an input to the machine learning (ML) models, and the predictions contain the softmax output from the models. (c) The s, data and
the bottom are combined with the predictions from the ML models. The s, data are masked by the above-bottom samples and the sandeel predictions,
regridded on a 10 m by 0.1 nmi grid, imported to the StoX estimation program where the original input data is replaced, and the survey estimate is

exported. See Supplementary Material for details.

The second model was built on the baseline model by
adding auxiliary information to the network (Ordofiez et al.
2022). This model employed a broader data augmentation
pipeline during training to increase robustness under diverse
survey conditions. It also aimed to evaluate the effectiveness
of different preprocessing strategies. The model architecture
introduced additional layers that improved accuracy and re-
sulted in higher F1 scores than the baseline model. The out-
put was the pixelwise SoftMax maps for the sandeel class for
each pixel (Fig. 2b), c.f. Ordonez et al. (2022) for details. The
training and testing data were the same as for the baseline
model.

The third model (Pala et al. 2023) focused on the class im-
balance when training models on acoustic data, where back-
ground pixels far outnumbered sandeel pixels. This model
was built upon the baseline model by employing a similarity-
based sampling strategy. This technique selectively increased
the representation of sandeel-like pixels during training, al-
lowing the model to better learn sandeel-specific character-
istics without being overwhelmed by the background class.
Training on a more balanced representation of sandeel and
background pixels, the model achieved improvements in seg-
mentation precision and was more effective in difficult detec-
tion regions. As with previous models, the output is a pixel-
wise SoftMax map (Fig. 2b), c.f. Pala et al. (2023) for details.
The training and testing data were the same as for the baseline
model.

The models predicted the SoftMax output for each sample
in the echogram for the sandeel class. To convert the Soft-
Max labels to binary labels similar to the data from the man-
ual ATC, a threshold was applied to the SoftMax predictions
(Fig. 2¢). However, the same threshold cannot be applied
across all models, and we used the following strategy for set-
ting the thresholds: For each model, we calculated the thresh-
old value that maximized the F1 score for each training sur-
vey year (2011, 2013-2016). While using the threshold that
maximizes the F1 score for each individual year would im-
prove performance, this approach is not a fair evaluation
metric because calculating the F1 score requires access to
ground-truth labels. We used the median threshold for each
model for the training years when thresholding the data for
all years during prediction (Fig. 3). The thresholds were ap-
plied to the SoftMax outputs to classify pixels as sandeel or
non-sandeel.

The CNN models are not aware of the seabed. During the
training, the seabed is treated as the background class, and
the models can discriminate between the seabed and the fore-
ground class. By balancing the bottom samples of the back-
ground class during the training, the model’s performance can
be further improved to avoid predicting seabed as the fore-
ground class. However, samples below the seabed, e.g. the sec-
ond echoes from sandeel schools, are occasionally predicted
as sandeel. To avoid these being included in the estimates,
we ran a simple bottom detection algorithm and removed
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Figure 3. The threshold values that maximized the F1 scores for each machine learning model and each survey year used for training and testing. The
median threshold values for the training years that maximized the F1 score for each model are shown as horizontal dashed lines. We used these values

for all testing years, including the years after 2018.

the predictions in a buffer 10 pixels below the seabed. This
step was not intended to remove the seabed itself, but rather
to eliminate second echoes from sandeel detected below the
seabed.

Integration and survey estimation

For each ping, the s, data, the (binary) bottom predictions b
and the (binary) ML based sandeel predictions 7 were com-
bined to provide the estimates of the nautical area scattering
coefficient (NASC, mean backscattering intensity over a given
depth range per nautical mile squared),

zi+10

sy = 4 (18522) T su(z)-m(2)-b(2)dz,
z

where z is the range from the transducer, z; is the range in
10 m layers, and i is the layer number. Note that we used
range instead of depth which is the standard procedure. The
depth conversion requires regridding, and we chose to stay in
range domain. The s4 values were then averaged over 0.1 nmi
distance bins and only data recorded along the survey tran-
sects were included in the analyses. The time and geographi-
cal position for the first and last ping was calculated for each
bin, which provided a structured dataset that enabled inte-
grating the machine learning-based classification models with
the established fisheries abundance estimation workflows. See
Supplementary Material for details.

The standard survey estimates of sandeel are considered
to reflect the absolute abundance and biomass of sandeel in
the survey areas (Johnsen and Kvamme 2024). Survey esti-
mation follows standard procedures using the StoX software
(Johnsen et al. 2019), in which each transect is defined and
manually assigned to a stratum. Acoustic data from tran-
sits between transects and during trawling operations are ex-
cluded. For each transect, a set of biological stations is as-
signed. The mean vertically integrated s, values are calculated

per transect, and the acoustic energy is converted to area num-
ber density using a target strength relationship of TSsgpy, =
20logo(L) — 93 (dB re 1 m?). Length distributions are de-
rived from the assigned trawl stations. The resulting densi-
ties are averaged over geographical strata and multiplied by
stratum area to estimate abundance by length group. Biomass
is calculated as the product of abundance and individual
weights. Precision is estimated by bootstrapping with 1000
iterations, resampling transects and trawl hauls with replace-
ment within each stratum. The bootstrap summary provides
estimates of the mean, confidence intervals and coefficient of
variation.

In this study, we used the survey estimation procedure de-
scribed above (Johnsen and Kvamme 2024) but replaced the
NASC values with those derived from the ML-based ATC
reports (c.f. Fig. 2¢), while keeping the assigned strata and
biological samples unchanged. The primary sampling units
(PSUs) from the ML-based acoustic data were adjusted to
match the existing PSUs, correcting for any discrepancies in
the start and end times of the 0.1 nmi distance bins. For each
case and year, the distance-weighted average NASC value per
PSU and the corresponding biomass with a 90% confidence
interval were calculated.

Results

Overall, the biomass estimates derived from manual label-
based annotations and ML predictions were similar, but re-
sults varied between years (Fig. 4). When the models were
developed, the data from 2019 and onward were not avail-
able and were not used for training or testing any of the
models. The baseline ML model (Brautaset et al. 2020) ex-
hibited the largest deviations from the official estimates, es-
pecially for 2009 and 2024. The baseline model is vulnera-
ble to erroneously allocating surface layers of zooplankton

G20z ey 2z uo Jasn Aleiqi usbiag Jo Ajisianiun Aq Z6E£ST L 8/6901eSl/S/Z8/a101u./SWwSa01/Wwo0 dno"oIwapeoe//:sdiy Wolj papeojuMo(]


https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf069#supplementary-data

2000~

1500 -

1000 -

Biomass (1000 ton)

3.0 -

Handegard et al.

CaseName

-~ Qriginal
Brautaset et al.

-+~ QOrdonez et al.

- Palaetal.

1o MESHAGIREGHEN I

0.3 4

Logarithm of mean biomass relative to original

Figure 4. Upper panel: Total biomass of sandeel (age 1+) with a 90% confidence interval (5%-95%) for all survey areas combined per year, estimated
from the acoustic sandeel surveys (Johnsen and Kvamme 2024). The original is the official estimate, whereas the three others are the estimates from
Brautaset et al. (2020), Ordonez et al. (2022), and Pala et al. (2023), respectively. Note that 2012 is missing since the data set lacked the 120 kHz
echosounder data. The 2014 data failed due to missing data. Lower panel: the absolute difference between the prediction point estimate and the original

estimate.

to sandeel as well as bottom contamination. The model that
is depth aware (Ordofiez et al. 2022) performed better, and
there were no major deviances between the original manual
label-based estimate and the biomass estimates based on this
model. The model based on the similarity-based training (Pala
et al. 2023) was similar but was less robust for the later years,
e.g. 2021 and 2022. Integration over range instead of depth
did not substantially affect the estimates, as values for the
training years remained consistent with the original results
(Fig. 4).

To examine the performance of the three models in more
detail, we analysed the 2019 survey estimates. All models per-
formed reasonably well that year, and it was the first year that
was not seen by the model (or modellers) at all. The PSU used
in the estimation was the average across a transect, and there
was reasonable agreement between the model predictions and
labels (Fig. 5). One exception was with the predictions from
Brautaset et al. (2020), which produced substantially higher
NASC values than those derived from the manual labelling.
We also compared the values on the finer 0.1 nmi resolution
(Fig. 6). This discrepancy between the Brautaset et al. (2020)
model and the labels appeared to originate from multiple data

points, rather than a single location, as would be expected if
only a few bottom pixels had been mistakenly classified as
sandeel.

To understand what caused the discrepancies, we listed the
0.1 nmi PSUs that had the largest discrepancy between the
integrated backscatter for sandeel over 0.1 nmi, masked by
the original annotations and model predictions, respectively.
In 2019, the PSU with the largest discrepancy between pre-
dictions and labels originated from the baseline model, due
to misclassification of a surface plankton layer as sandeel
(Fig. 7c). The case with the largest discrepancy for the Pala
et al. model was the erroneous application of a low SoftMax
threshold, where larger parts of the interior school were miss-
ing from the predictions (Fig. 7d).

Discussion

We developed a framework to evaluate ML model predictions
against survey estimates, exemplified by the sandeel survey in
the North Sea. We have used the predictions together with the
standard method and software used for the survey (Johnsen
et al. 2019), and thus moved beyond the common F1 score
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Figure 5. (a—c) Comparisons per PSU for the 2019 survey between the labels and the model predictions from Brautaset et al. (2020), Ordofies et al.

-2

(2022), and Pala et al. (2023), respectively. Note that there is one outlier in the NASC values in the upper panel with a value of ~2700 m2 nmi—2.

that is commonly used for evaluating the performance of im-
age based methods applied to ATC. This allowed us to evalu-
ate predictions using a metric that reflects the data’s intended
application.

Survey estimates based on the ML models showed lower
variability and greater similarity to the original labelled data
during the training years, while performance declined in more
recent, unseen years. It is not necessarily surprising that we ex-
perienced a decline in performance for recent surveys. CNNs
are sensitive to data shifts (model drift), which may result from
factors such as weather conditions, changes in population
structure (e.g. smaller schools, juvenile prevalence), species
composition, or survey hardware. This emphasizes the impor-
tance of continuously monitoring model performance and to
retrain networks as new data becomes available.

Cases with large discrepancies between predictions and la-
bels in terms of acoustic backscatter were visualized and as-
sessed. In general, the examples where the discrepancies were
large are similar to the discrepancies reported earlier when
inspecting where the F1 scores showed inferior performance
(Brautaset et al. 2020). The model by Brautaset et al. (2020)
tended to erroneously predict surface layers as sandeel. This
caused large overestimations in terms of biomass for some
years and is the cause of the large discrepancy in 2019 (Fig.
5). The model by Ordofiez et al. (2022) used the depth as
input and performed better, but occasionally underpredicted

the sandeel schools. The model by Pala et al. (2023) also
partially misclassified surface layers as sandeel, but the largest
discrepancy was caused by using a non-optimal threshold, em-
phasizing the need to reconsider the thresholding process. In a
few cases, bottom signals were misclassified as sandeel. Such
errors are difficult to detect using F1 scores alone, since only a
few mislabelled samples will cause a large discrepancy in the
integrated backscatter. However, these are relatively easy to
identify when plotting the integrated values at a ping-to-ping
resolution.

We used a hard threshold for translating the SoftMax out-
put from the U-Net models to ML predictions, and the thresh-
olds were set by the median of the thresholds that optimized
the F1 score across the years up until and including 2018,
for all three models, respectively. The optimal threshold var-
ied between years, and a fixed threshold will cause perfor-
mance to vary across years. This can be caused by changes
in the fish abundance and distribution, which could affect
the data distribution and, in turn, model performance and
the optimal threshold. However, since labels are needed for
setting a threshold for optimizing the F1 score, we cannot
use this approach when predicting on survey data. One ap-
proach is to apply weights to the s, data according to pre-
diction confidence or to use a soft thresholding strategy. An-
other solution would be to set the threshold based on a hu-
man in the loop during the survey. After manually adjust-
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Figure 6. (a—c) Comparisons per 0.1 nmi for the 2019 survey between the labels and the model predictions from Brautaset et al. (2020), Ordones et al.

(2022), and Pala et al. (2023), respectively.

ing the predictions from parts of the survey, the threshold
could be updated and employed across all the PSUs. Instead
of setting the threshold to minimize the F1 score, we could
also set the threshold to minimize the error in the abundance
estimate.

While adjusting the thresholds and retraining the model on
recent data could help mitigate some performance loss, there
is still a need to check and improve the performance during a
survey. This can be achieved by using the predictions as start-
ing points for a manual scrutiny process or annotating a subset
of the data for adjusting the threshold. More sophisticated ac-
tive learning approaches should also be considered (e.g. Budd
et al. 2021) to select samples in the data to be annotated by
a human and included in a training set. One such approach is
to annotate the samples where the model’s predictions are the
least certain, based on a measure of the model’s confidence.
All these approaches could enable faster and more consistent
processing of entire surveys, substantially reducing the time
required for manual annotation.

Our approach linked all processing steps from raw data to
biomass estimates (as illustrated in Fig. 2). In addition to test-
ing the effect of ATC algorithms, the approach can also be
used to test the effect of changes in other processing steps, if
applicable. For instance, if a new bottom detection algorithm

or noise detection algorithm is developed, the predictions can
be used to create Boolean masks, which can then be combined
with the classification predictions. If the processing step alters
the backscatter values instead of the masks, such as correcting
the backscatter data for noise (De Robertis and Higginbottom
2007, their Eq. 8) or transducer motion (Dunford 2005), the
filtered backscatter data can be substituted while keeping the
other parts unchanged. After replacing the combined mask or
the s, values, the effect on the survey estimate can be evalu-
ated throughout the time series, rather than relying on a few
test data sets, which is typically common practice when devel-
oping and testing algorithms.

This study presented a framework for evaluating ML model
predictions in the context of survey-based abundance esti-
mates. Future research could investigate dynamic or adaptive
thresholding methods and incorporate additional data into
the models, such as trawl samples, environmental informa-
tion, and location data. Although this study concentrated on
the lesser sandeel, the proposed framework can be applied to
other species and types of surveys as long as the survey esti-
mation step can be scripted. By modifying the input data and
classification targets, similar workflows could facilitate auto-
mated analysis across various fisheries acoustics scenarios, in-
cluding multispecies and mesopelagic surveys.
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Figure 7. The (a and b) backscatter at 200 kHz for the 2019 survey for the 0.1 nmi with the largest discrepancy between the model predictions (c and d)
and labels (e and f), for Brautaset et al. (2020) and Pala et al. (2023), respectively. The first example demonstrates the failure of the model to correctly
assign the surface layer to the background (BG) category (c), whereas the second example shows the effect of choosing a threshold that is not tuned for
the case resulting in the sandeel (SE) acoustic category to be erroneously assigned to the BG acoustic category (d). The white lines are the prediction
from the bottom detection algorithm, and there are cases where the bottom detection fails.

Author contributions

N.O.H.: Conceptualization, Data curation, Formal analysis,
Funding acquisition, Methodology, Project administration,
Resources, Software, Validation, Visualization, Writing — orig-
inal draft, Writing — review & editing. A.J.H.: Conceptualiza-
tion, Formal analysis, Methodology, Software, Visualization,
Writing — review & editing. A.P: Formal analysis, Methodol-
ogy, Software, Validation, Visualization, Writing — review &
editing. L.U.: Formal analysis, Methodology, Software, Writ-
ing — review & editing. E.]J.: Conceptualization, Investigation,
Methodology, Resources, Validation, Writing — review & edit-
ing.

Supplementary material

Supplementary data is available at ICES Journal of Marine
Science online.

Conflict of interest: The authors declare that they have no
known competing financial interests or personal relationships
that could have appeared to influence the work reported in
this paper.

Funding

This work was supported by the Research Council of Nor-
way under the Centre for Research-Based Innovation in Ma-

G20z ey 2z uo Jasn Aleiqi usbiag Jo Ajisianiun Aq Z6E£ST L 8/6901eSl/S/Z8/a101u./SWwSa01/Wwo0 dno"oIwapeoe//:sdiy Wolj papeojuMo(]


https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf069#supplementary-data

10

rine Acoustic Abundance Estimation and Backscatter Classi-
fication (CRIMAC) project (no. 309512).

Data availability

Data available on request: the data underlying this article are
available on an S3 server and will be shared on reasonable
request to the corresponding author. The code used for the
different steps are stored on git and are listed in the supple-
mentary information.

References

Brautaset O, Waldeland AU, Johnsen E et al.. Acoustic classification in
multifrequency echosounder data using deep convolutional neural
networks. ICES ] Mar Sci 2020;77:1391-400. https://doi.org/10.1
093/icesjms/fsz235

Budd S, Robinson EC, Kainz B. A survey on active learning and human-
in-the-loop deep learning for medical image analysis. Med Im-
age Anal 2021;71:102062. https://doi.org/10.1016/j.media.2021.1
02062

Choi C, Kampffmeyer M, Handegard NO ez al.. Deep semisupervised
semantic segmentation in multifrequency echosounder data. IEEE |
Oceanic Eng 2023;48:384-400.

Choi C, Kampffmeyer M, Handegard NO et al. Semi-supervised target
classification in multi-frequency echosounder data. ICES | Mar Sci
2021;78:2615-27. https://doi.org/10.1093/icesjms/fsab140

De Robertis A, Higginbottom I. A post-processing technique to estimate
the signal-to-noise ratio and remove echosounder background noise.
ICES ] Mar Sci 2007;64:1282-91. https://doi.org/10.1093/icesjms/
fsm112

Demer DA, Berger L, Bernasconi M et al.. Calibration of acoustic in-
struments. ICES Coop Res Rep 2015;326:136.

Dunford A]J. Correcting echo-integration data for transducer motion. J
Acoust Soc Am 2005;118:2121-3. https://doi.org/10.1121/1.2005
927

Freeman S, Mackinson S, Flatt R. Diel patterns in the habitat utilisa-
tion of sandeels revealed using integrated acoustic surveys. | Exp
Mar Biol Ecol 2004;305:141-54. https://doi.org/10.1016/j.jembe.
2003.12.016

Furness RW. Management implications of interactions between fisheries
and sandeel-dependent seabirds and seals in the North Sea. ICES |
Mar Sci 2002559:261-9. https://doi.org/10.1006/jmsc.2001.1155

Gunderson DR. Surveys of Fisheries Resources. New York, NY: John
Wiley & Sons, 1993, 278pp.

Haralabous J, Georgakarakos S. Artificial neural networks as a tool for
species identification of fish schools. ICES ] Mar Sci 1996;53:173—
80. https://doi.org/10.1006/jmsc.1996.0019

Johnsen E, Harbitz A. Small-scale spatial structuring of burrowed
sandeels and the catching properties of the dredge. ICES | Mar Sci
2013;70:379-86. https://doi.org/10.1093/icesjms/fss202

Johnsen E, Kvamme C. Forelopig rad for tobisfiske i norsk
okonomisk sone i 2024-Faglig grunnlag. 47. Havforskningsinstitut-
tet. 2024. https://imr.brage.unit.no/imr-xmlui/handle/11250/31266
10(27 November 2024, date last accessed).

Johnsen E, Pedersen R, Ona E. Size-dependent frequency response of
sandeel schools. ICES ] Mar Sci 2009;66:1100-5. https://doi.org/10
.1093/icesjms/fsp091

Johnsen E, Rieucau G, Ona E et al.. Collective structures anchor massive
schools of lesser sandeel to the seabed, increasing vulnerability to
fishery. Mar Ecol Prog Ser 2017;573:229-36. https://doi.org/10.3
354/meps12156

Johnsen E, Totland A, Skalevik A et al.. StoX: an open source software
for marine survey analyses. Methods Ecol Evol 2019;10:1523-8. ht
tps://doi.org/10.1111/2041-210X.13250

Kloser RJ, Ryan T, Sakov P e al.. Species identification in deep
water using multiple acoustic frequencies. Can | Fish Aquat Sci
2002;59:1065-77. https://doi.org/10.1139/f02-076

Handegard et al.

Komiyama S, Holmin AJ, Pedersen G et al.. Silent uncrewed surface
vehicles reveal the diurnal vertical distribution of lesser sandeel.
ICES | Mar Sci 2024;82:fsae159. https://doi.org/10.1093/icesjms/
fsael59

R. Korneliussen (ed). Acoustic target classification. ICES Coop Res Rep
2018;344:104.

Korneliussen R]J, Heggelund Y, Eliassen IK et al. Acoustic species iden-
tification of schooling fish. ICES | Mar Sci 2009;66:1111-8. https:
//doi.org/10.1093/icesjms/fsp119

Korneliussen RJ, Heggelund Y, Macaulay GJ et al.. Acoustic identifi-
cation of marine species using a feature library. Methods Oceanogr
2016;17:187-2035. https://doi.org/10.1016/j.mi0.2016.09.002

Korneliussen R], Ona E. Synthetic echograms generated from the rel-
ative frequency response. ICES | Mar Sci 2003;60:636—40. https:
/ldoi.org/10.1016/51054-3139(03)00035-3

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with
deep convolutional neural networks. In: F Pereira, CJC Burges, L
Bottou, KQ Weinberger (eds), Advances in Neural Information Pro-
cessing Systems, Vol. 25. San diego, CA: Neural Information Pro-
cessing Systems Foundation, Inc. (NeurIPS), 2012, 1097-105.

Lecun Y, Bottou L, Bengio Y et al.. Gradient-based learning applied to
document recognition. Proc IEEE 1998;86:2278-324. https://doi.
org/10.1109/5.726791

Macer CT. Sand eels (Ammodytidae) in the southwestern North
Sea; their biology and fishery. Fishery Investigations Series 2, Vol.
24. Ministry of Agriculture, Fisheries and Food, London. 1966;
S5pp.

MacLennan D, Simmonds EJ. Fisheries Acoustics. Fish and Aquatic Re-
sources Series 10. London: Chapman & Hall, 2005.

MacLennan DN, Holliday DV. Fisheries and plankton acoustics: past,
present, and future. ICES | Mar Sci 1996;53:513-6. https://doi.org/
10.1006/jmsc.1996.0074

Marques TP, Cote M, Rezvanifar A et al.. Instance segmentation-based
identification of pelagic species in acoustic backscatter data. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 4378-87. IEEE, Virtual meeting, 2021a.

Marques TP, Rezvanifar A, Cote M et al.. Detecting marine species in
echograms via traditional, hybrid, and deep learning frameworks.
In: 2020 25th International Conference on Pattern Recognition
(ICPR), pp. 5928-35. Milan, Italy: IEEE, 2021b.

Nguyen TX, Winger PD, Orr D et al.. Computer simulation and flume
tank testing of scale engineering models: how well do these tech-
niques predict full-scale at-sea performance of bottom trawls? Fish
Res 2015;161:217-25. https://doi.org/10.1016/j.fishres.2014.08.0
07

Ordofiez A, Utseth I, Brautaset O et al.. Evaluation of echosounder data
preparation strategies for modern machine learning models. Fish Res
2022;254:106411. https://doi.org/10.1016/}.fishres.2022.106411

Pala A, Oleynik A, Utseth I et al.. Addressing class imbalance in
deep learning for acoustic target classification. ICES | Mar Sci
2023;80:2530—44. https://doi.org/10.1093/icesjms/fsad165

Pala A, Oleynik A, Malde K, et al. Self-supervised feature learning for
acoustic data analysis. Ecological Informatics,2024;84:102878-. ht
tps://doi.org/10.1016/j.ecoinf.2024.102878

Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7263-71. IEEE, Honolulu, USA, 2017.

Reid D, Scalabrin C, Petitgas P et al.. Standard protocols for the anal-
ysis of school based data from echo sounder surveys. Fish Res
2000;47:125-36. https://doi.org/10.1016/S0165-7836(00)00164-8

Reid DG. Report on Echo Trace Classification. ICES Cooperative Re-
search Report No. 238. International Council for the Exploration
of the Sea, Copenhagen, Denmark, 2000.

Ren S, He K, Girshick R et al.. Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural
Information Processing Systems, p. 9. Curran Associates, Inc., Mon-
tréal, Canada, 2015. https://proceedings.neurips.cc/paper_files/pap
er/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf(3
April 2025, date last accessed).

G20z ey 2z uo Jasn Aleiqi usbiag Jo Ajisianiun Aq Z6E£ST L 8/6901eSl/S/Z8/a101u./SWwSa01/Wwo0 dno"oIwapeoe//:sdiy Wolj papeojuMo(]


https://doi.org/10.1093/icesjms/fsz235
https://doi.org/10.1016/j.media.2021.102062
https://doi.org/10.1093/icesjms/fsab140
https://doi.org/10.1093/icesjms/fsm112
https://doi.org/10.1121/1.2005927
https://doi.org/10.1016/j.jembe.2003.12.016
https://doi.org/10.1006/jmsc.2001.1155
https://doi.org/10.1006/jmsc.1996.0019
https://doi.org/10.1093/icesjms/fss202
https://imr.brage.unit.no/imr-xmlui/handle/11250/3126610
https://doi.org/10.1093/icesjms/fsp091
https://doi.org/10.3354/meps12156
https://doi.org/10.1111/2041-210X.13250
https://doi.org/10.1139/f02-076
https://doi.org/10.1093/icesjms/fsae159
https://doi.org/10.1093/icesjms/fsp119
https://doi.org/10.1016/j.mio.2016.09.002
https://doi.org/10.1016/S1054-3139(03)00035-3
https://doi.org/10.1109/5.726791
https://doi.org/10.1006/jmsc.1996.0074
https://doi.org/10.1016/j.fishres.2014.08.007
https://doi.org/10.1016/j.fishres.2022.106411
https://doi.org/10.1093/icesjms/fsad165
https://doi.org/10.1016/j.ecoinf.2024.102878
https://doi.org/10.1016/S0165-7836(00)00164-8
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

Integrating and assessing machine learning acoustic target classification models for fish survey estimations "

Rezvanifar A, Marques TP, Cote M et al.. 2019. A deep learning-based
framework for the detection of schools of herring in echograms.
arXiv:1910.08215[cs, eess, stat]. http://arxiv.org/abs/1910.08215(6
August 2021, date last accessed ).

Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for
biomedical image segmentation. In: N Navab, J Hornegger, WM
Wells, AF Frangi (eds), Medical Image Computing and Computer-
Assisted Intervention—MICCAI 2015, Cham: Springer Interna-
tional Publishing, 2015, 234-41.

Strindberg S, Buckland ST. Zigzag survey designs in line transect sam-
pling. | Agric Biol Environ Stat 2004;9:443. https://doi.org/10.119
8/108571104X15601

Vohra R, Senjaliya F, Cote M et al.. Detecting underwater discrete
scatterers in echograms with deep learning-based semantic segmen-
tation. In: 2023 IEEE/CVF Conference on Computer Vision and
Fattern Recognition Workshops (CVPRW), pp. 375-84. Vancouver,
Canada, 2023.

Winslade P. Behavioural studies on the lesser sandeel Ammodytes
marinus (Raitt) II. The effect of light intensity on activity. |
Fish Biol 1974;6:577-86. https://doi.org/10.1111/j.1095-8649.19
74.tb05101.x

Wright PJ, Jensen H, Tuck I. The influence of sediment type on the
distribution of the lesser sandeel, Ammodytes marinus. | Sea Res
2000;44:243-56. https://doi.org/10.1016/S1385-1101(00)00050-2

Handling Editor: Pavanee Annasawmy

© The Author(s) 2025. Published by Oxford University Press on behalf of International Council for the Exploration of the Sea. This is an Open Access article distributed under the terms of the

Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work

is properly cited.

G20z ey 2z uo Jasn Aleiqi usbiag Jo Ajisianiun Aq Z6E£ST L 8/6901eSl/S/Z8/a101u./SWwSa01/Wwo0 dno"oIwapeoe//:sdiy Wolj papeojuMo(]


http://arxiv.org/abs/1910.08215
https://doi.org/10.1198/108571104X15601
https://doi.org/10.1111/j.1095-8649.1974.tb05101.x
https://doi.org/10.1016/S1385-1101(00)00050-2
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and methods
	Results
	Discussion
	Author contributions
	Supplementary material
	Funding
	Data availability
	References

