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Abstract

This thesis documents a new approach to investigate the gamma radiation activity
of the fission products of three different fuels (U-235, U-238, and U-239) exposed to
three different incident neutron energy spectra (thermal, fast spectrum, and high
energies). An application of the exponential moments function is used with a
transmutation matrix in the calculation of complex radioactive decay chains to achieve
greater precision than can be attained through current methods. The result of this
research is a code which can calculate the decay products from complex radioactive
decay chains with a high degree of precision while quantifying the uncertainty in gamma

activity due to uncertainties in the isotope properties.
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PRECISE CALCULATION OF COMPLEX RADIOACTIVE DECAY CHAINS

l. Introduction

The activity of radioactive isotopes is based on two factors: the quantity of the
isotope present and the half life of the isotope. This thesis attempts to document a
methodology for improving the calculated activity through increased precision of the
calculation of each isotope at any given time and direct calculation of the radioactivity.
Also, the propagation of uncertainty in the activity due to the uncertainties in the isotope
data is quantified through a Monte Carlo method.

The half lives of isotopes span many orders of magnitude, from short-lived
isotopes that decay nearly instantaneously to stable isotopes with very long half lives.
Because of the large range of half lives, calculating the quantity of each isotope present in
a given decay chain after a period of time may be difficult due to the stiffness the
differential equations describing radioactive decay. To avoid this stiffness, solutions are
most commonly found by making approximations. In this typical implementation,
isotopes are evaluated differently based on the magnitude of the half life in relation to
other isotopes in the chain and the position of the isotope in the chain (the first isotope in
the chain versus an isotope near the end of the chain).

For some applications, models find gamma activity by using an approximation

that the gamma activity decays as t~12. This approximation is used for any arbitrary



gamma energy range as well as total activity. The new model seeks to improve upon this
approximation by calculating the activity directly for each time step for any given energy
bin.

This chapter outlines the motivation for developing a new method for use in
radioactive decay calculations, the goal of the research, the scope of the problem |
attempted to solve, and the assumptions made in developing this new implementation of

the exponential moments function.

I.A: Motivation

A more robust method of calculating radioactive decays is desired to increase the
precision of the results. A method which treats all isotopes the same, regardless of
position in the chain or relative magnitude, will treat decay chains uniformly and
therefore more predictably and with greater precision.

It is important to know the quantities of each isotope remaining after a given time
more precisely than available with current methods. This will allow for more precise
calculation of the activity of the radioactive isotopes and lead to a better understanding of
high energy gammas emitted following the neutron induced fission of uranium and
plutonium isotopes.

The Way-Wigner approximation is that the dose rate, D, following thermal

fission of U-235 falls off as

D(t) = D)t 12 (1.1)



where D(1) is the dose rate at any unit time[4:2]. We examine the accuracy of this

approximation as applied to various fuels, spectra of neutrons that induce fission, and

gamma radiation energy groups.

I.B: Statement of the Problem

Precisely model the time-dependent gamma spectrum produced by the neutron
induced fission of three different isotopes with three different energy neutrons while
quantifying the gamma activity uncertainty due to uncertainties of the isotope half lives.

Develop computer programs that are useful tools for performing such studies.

I.C: Goal of the Research

The goal of this research is to more precisely characterize the gamma activity
following a fission event by using the exponential moments function in a radioactive
decay code to calculate the quantity of isotopes remaining at some given time with
precision. This research also attempts to quantify the propagation of uncertainty in the
gamma activity caused by uncertainties in both the half lives of isotopes and gamma

decay intensities.

I1.D: Scope

The scope of this research is limited to creating a decay code for all isotopes with
fewer than 99 protons (californium and below). Isotopes with higher Z numbers can be
used, but the amount of information available for elements above californium drops off

significantly.



Fissionable nuclei considered here are limited to uranium-235, uranium-238, and
plutonium-239. For each of these isotopes three different incident neutron spectra are
evaluated: thermal neutrons, fast fission spectrum neutrons, and high-energy neutrons.
Because U-238 does not fission by absorbing a thermal neutron, a total of eight different
test cases are evaluated.

The specified time step for the code can be any number between 1.0 nanosecond

and 25,000 years.

I.E: Assumptions

The fission product lists were taken from text files created by T.R. England and
B.F. Rider and made available on the Lawerence Berkely Laboratory website [5]. These
files contain the atomic number and symbol of the isotope, as well as an indication if the
isotope is in its ground state or a metastable state. For each metastable state listed, |
assumed that this corresponded to the most excited metastable state found in the NuDat
2.0 data files. If an isotope listed as a fission product does not appear in the NuDat 2.0
data, | assumed that it instantly underwent successive beta decays until reaching an

isotope for which there is data.



1. Analysis and Approach

A functional schematic of the approach used to solve the complex decay chain
problem is shown in Figure 1. The white boxes represent the formatted text files
containing user input data and code output files. The shaded boxes show the

macroscopic processes performed by the code.

Input Code Tasks Qutput
Isotope Data * Decay Calcs
T-Matrix
N(O) v
N(t) »  N(t) Data
Gamma Data >
Alt) > A(t) Data

Figure 1 Functional Code Schematic

The rest of this chapter is dedicated to a discussion of radioactive decay theory

and examining the macroscopic code tasks in greater detail.

II.A: Special Radioactive Decay Problem

The special radioactive decay problem describes the decay of an initial quantity of

a single radioactive isotope that is not being replenished and decays through a single



chain (without branching). Schematically, this can be represented using generic isotopes

1, 2, 3, and so on to an arbitrary depth ending in the k™" isotope.

121 ,p D2,z Pas

Bk K

The branching fractions (i.e.b,, ) are all equal to unity for the special decay problem.

The decay of the initial isotope 1 is described by the differential equation

Ny (t) + 4Ny (t) =0

(2.1)

where 4, and N, (t) are the decay constant and quantity of isotope 1 at time t. The

differential equation for the quantity of isotope 2 is similarly given by

Ny (t) + ANy (t) =by 1 ANy (1)

(2.2)

This method can be generalized for the decay chain of arbitrary length k as

Ny () + A Ny (t) = by 1A 1Ny 1 (1)

(2.3)

The special radioactive decay problem for the sample isotope decay can be

represented as a lower-triangular matrix as in equation (2.4):

One solution to equation (2.4) is of the form
N(t) = e N(0).
By defining the transmutation matrix, or T-matrix, as

T(t)=e ™,

N, (t) P 0 0 - 0 0
N, (t) bk A o - 0 0
N3(t) N 0 by Ay 0 0
N | | 0 0 0 0 A4y O
Ny (t) 0 0 0 0 -byyats A

N, (t)
N, (t)
N3(t)

Ny_1 (1)
Ny (t)

—N(@t)+AN(t) =0.(2.4)

(2.5)

(2.6)



the solution to equation (2.4) can alternatively be expressed as
N(t) = 7(t)N(0) . (2.7)
The advantage of this formulation is that elements of the T-matrix are calculated
individually and the solution is calculated using matrix operations. This takes advantage
of the low memory requirements for individual element calculations with the speed of
optimized matrix multiplications. The solution method used to calculate the values of

each element of the T-matrix affects the efficiency, accuracy, and precision of the results.
The calculation of the activity is straightforward once N(t) is known. The

activity for the special decay problem produced by any isotope is defined as the product
of the decay constant and the quantity. A subset of the total activity of interest in this
thesis is the gamma activity. Using the concept of the transmutation matrix introduced
above, the gamma activity can be calculated by
Alt) =GT(t)N(0) = GN(t). (2.8)

Individual elements of the gamma matrix are populated by calculating the product
of the decay constant and the intensity of the radiation. The radiation intensity indicates
the probability of a specific gamma ray being emitted for a given decay process. Because
the radiation intensity is given for each gamma radiation, it possible to sort the gamma

activity by energy bins specified in the code by the user.

II1.B: Solution Methods of the Special Problem

| investigated four different approaches to solving the radioactive decay

differential equations: the Bateman solution formula, numerical integration of the



ordinary differential equation, matrix exponentiation, and Mathew’s solution in

exponential moments functions [7].

1. Bateman Solution Formula

The most common way of solving the differential equations that describe
radioactive decay is known as the Bateman solution. The Bateman solution is easily
derived using Laplace transforms as shown in numerous nuclear engineering texts (1:76-

78). The Bateman solution formulates the solution to equation (2.1) as

N, (t) = Ny (0)e ™t (2.9)
The solution to the second differential equation begins by recognizing that the right hand
side of equation (2.2) includes Ny (t) which is known explicitly from equation (2.9).

Making this substitution and algebraically manipulating the result leads to the solution for

the quantity of the second isotope

N, () by Ny (O) & € 2.10
- + . :
? 24l {(ﬂz—ﬂi) (31—/12)] (2.10)

Generically applying this formula to the last (k™) isotope in a decay chain yields the

Bateman solution formula:

k-1 k e—ﬂjt
N (©) = Ny ()] [ [bisaii [D2— - (1.11)
=1 1= _1:11(/11—/11')
i ]

The principle advantage of the Bateman solution is the straightforwardness of the
approach. The formulation makes it easy to implement into a computer code with nested

DO loops to handle the summation and product operations.



The denominator of the Bateman solution however involves a subtraction between
the decay constants of the isotopes in the decay chain. When the decay constants are
very close together, catastrophic cancellation occurs resulting in a shrinking denominator
which causes the loss of digits of precision. Implemented into a computer code directly,

this loss of precision leads to significant errors in the final result.

2. Numerical Integration of Coupled ODEs

Another approach to obtaining the answer to the decay problem is to use a
numerical integration method to solve the coupled, linear, first order differential
equations directly. For small, well defined problems, the primary advantage of this

solution is that the loss of precision inherent in the Bateman equation when 4; ~ 4; is

avoided by solving the differential equations directly.
The advantage of this approach is offset by the large computational resources
which are necessary to simultaneously solve individual decay chains and the stiffness

which results when 7; and 4; differ by many orders of magnitude. Scaling this beyond

the scope of limited test problems to calculate all of the decays of interest to this thesis
would be prohibitive given the 3,443 unique isotopes and more than 68,000 unique decay
chains. The NDSolve built-in routine in Mathematica [9] was used to numerically solve
the differential decay equations for a series of test problems representative of the actual
decay isotope data using up to 200 digits of working precision and with decay chains up
to four isotopes deep. Even under this limited test condition the numerical integration
solution displayed numerical instability and took hundreds of times longer to calculate

than other methods.



3. Matrix Exponential (Transmutation Matrix) Method

The matrix exponential method is used to solve a system of linear first order
differential equations with constant coefficients. This method represents the system of

equations below

Ny () =—A4N; (), N (0) = N/
Ny (t) = by s 41Ny () = AN, (1), N,(0)=0 (2.12)
N (8) =by 1 AN (1) = AN (), N (0)=0
in the matrix form
N'(t)=CN(t), N(0)=N° (2.13)

where C is the square coefficient matrix of order k. The solution to equation (2.13) is of

the form
N (t) = e'“ N (0) (2.14)
and can be solved through use of a matrix of the change basis as described in Matrix

Theory and Linear Algebra [6:376-405]. ORIGEN uses this type of formulation to make

its calculations in the method shown in equation (2.15), where tC= A.

2 43
e“N =(I +A+A;|+AL|+---)N
21 3! (2.15)

=N+ AN +%(AN)+§(§(A}N))+---

The advantage of using the second equation is that the computer never has to multiply
anything larger than a matrix on a vector, reducing the computational cost of this method.

The series can be expanded to as many terms as needed to achieve the desired precision.

10



The formulation of the problem as a transmutation matrix is a useful construct. In
practice, however, performing matrix operations on a square matrix of order equal to the
total number of isotopes is computationally too expensive to perform on a desktop

computer without making the approximations used in ORIGEN.

4. Transmutation Matrix by Exponential Moments Function

The solution method presented in this section was provided by Mathews [7]. It
uses that exponential moments functions that were developed by Mathews and his
students [8]. They were designed in the context of developing discrete ordinates
transport methods but can be applied to the problem of radioactive decay to avoid the
catastrophic loss of precision of the Bateman solution. The moments function in its most

general case is defined as

1 Y ey
My (A, g ) = [ty [dt... [ dt (1—t)"e el )z glhr=Adic (2.16)
0 0 0

For the radioactive decay problem, the unforcedn =0or Mg solution is used.

1 % g
Mo (g, 2, A) = [ dty [ dty... [ dtye Aleta)te, eWheadt (2.17)
0 0 0
The exponential moments function solution is suited to this application because it can

take advantage of a recurrence relation to calculate the solution for a chain of any length.

After multiplying both sides of equation (2.2) byeﬂﬂtl , the quantity of isotope 2 at

any given time can be determined as above by integrating over the time of interest.

[Na(6)+22Np () Je% = by /Ny (e ™ = (N’ (118)
1

11



t t

N
N

by 14N (t)e 2 dty (1.19)

O —

(Nz(tl)ej?tl )dtl = N, (tp)e"22 = N, (0) =

O —

a a

dt, dt,
t

Ny (t;) = by, lpe ™22 _[ dtyNy ()2 (1.20)
0

But, N4 (t;) is known from equation (2.9). Substituting this back into equation (1.20)

yields
t, t
N2 (tz) = bz’l/’iﬂ-e_ﬂQtZ I dthl(O)e_/iltleﬂQtl = bzllﬂ,le_ﬂ?tz J. dt]_N]_(O)e_(ﬂj'_ﬂ/2 )tl (121)
0 0

The equation for any isotope j along the chain follows the same form as equation

(1.21).
t

j
o Aty
NG () =bj jadjae T [dtj N (tjg)e™ ™ 2.22)
0

Substituting solutions for N;_;(t;;) into equation (2.22) and rearranging terms reveals a

nested structure to the solution
_}L.t.tj —(Li—A)t: fa Ai ot
Nj(tj) = bj,j—lbj—l,j—Zﬂ’j—l}“j—Ze " jdtj—l e IR j dtj—ZNj—Z(tj—Z)e =2 (223)
0 0

that can be extended to the generic case of k isotopes

k-1 t teq t
Ny (t) = {H b1 ]e—ﬂkt J' dtk_le—(ﬂk—l—ﬂk)tk—l j dtk_ze—(ﬂk—z —A1)t%2 J' dt;N A(O)e—(ll—ﬂfz)tl
i=1 0 0 0

(2.24)

12



Multiplying and dividing through by t and performing a change of variables where

Ygr. .Y
uj=t;/t and -[t;_l: I du;_, then rearranging terms produces equation (2.25)
0 0

k-1 1 Uk_1
Ny (t) = N1(0)£Hbi+1,iﬂit]e_ﬂktIduk—le_(ﬂk‘lt_lkt)uk‘l [ duy_pell st A (At At ea
i=1 0 0

T dule((ﬂQt_ﬂkt)—(ﬂlt—ﬂkt))ul
0

(2.25)
Now applying the exponential moments function to equation (2.25) in the solution of the
differential equations describing radioactive decay, the quantity of the k™ isotope can be

represented by
k-1
(D= N1<o>[nbi+1,iz1-t]e-@‘Mo[(ﬂk_lt—w),w_zt—zkt>,...,<zlt—z«t>]. 226)
i=1

After some algebraic manipulations of equations (1.11) and (2.26), the Bateman and
exponential moments function solutions can be expressed as a ratio of the quantity of

isotope k to the initial quantity of isotope 1.
_ —Ait
Nk(t) k-1 k e i
1 i=1 j=1 .Hl(ﬂit_ﬁ'jt)
i)

i (ﬁbi,mﬂit}_lkt'v'o (At = 4) Bzt = Ao (A= AL)

i=1

(2.27)

Equation (2.27) shows that the exponential moments function and the modified Bateman

equation have a common product in parentheses. Dividing through by the common
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product, | define a new function, F (t) , dependent upon the vector of decay constants

and time:

L
F(it) = Zk—
911 (3t -1 , (2.28)

i]
=& %Mo [ (Aecst = At) (Aot = Act) o (Aat = A4t) ]

Algebraic manipulation of the Bateman solution (Appendix A) shows that it, and hence

F(At), is invariant with respect to argument order. This is important because it means

that the decay constants can be sorted by size before performing the calculation. By

sorting the decay constants from largest to smallest, the moments-function form of

F(At) can be rewritten as

F (/ﬁ) = e_lsma"eStt M 0 l:/iexcludingt - ﬂsmallestt} : (2-29)

smallest
This ensures that every argument passed to the exponential moments function is greater
than or equal to zero. If the arguments passed to the moments-function are all non-
negative, then 0< M, <1, eliminating overflow errors.

The final form of the equation used to determine the quantity of isotopes in the

decay chain at time t is therefore

Nl (0) i=1 smallest

X ( ) = {H bi,i+1/11'tJe Asma"eSttM 0 |:Z1excludingt - lsmallestt} : (2-30)
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II1.C: Generalization to the Full Problem

To this point, the branching fractions have been assumed to be unity for the
special radioactive decay problem. In reality, many radioactive isotopes have multiple
decay mechanisms resulting in branching ratios between 0 and 1. Figure 2 gives an
example of a more complex decay scheme. Here isotopes 1 and 2 have multiple decay
mechanisms, isotope 5 is produced from more than one parent isotope, and isotopes 4 and

6 are stable.

/5 + 6
3

Figure 2 Complex Radioactive Decay Chain

The system of differential equations describing this more complex decay scheme is

shown in equation (2.31).

N [ A 0 0 0 0 0\ Ny
No(t) | | Daah A 0 0 0 0 N2 (t)
Na) | | <bedy O A 0 0 0 [N®| -
Njit; oo b4, O 1 0 0 Ni(t) ~HOANO=0
N () 0 byl bsahy O A5 0 N5 (t)
Ng(t) 0 0 0 0 —bg 575 1 Ne (1)

(2.31)

It follows from this that the transmutation matrix must then be equal to
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Ny () 0 0 0 0 0

N;(0)
No() - N 0 0 0
N1(0) N3(0)
N:@® Ns® 0 0
TM)=e ™M= N;(0) N3(0) 2.32)
N No@®) 1 0 0

N.(0) N, (0)
Ns(t) Ns(t) Ns(t) 0 N5 (t) 0

N.1(0) N,(0) N3(0) N5 (0)
Ng(t) Ng(t) Ng(t) 0 Ne (t) 1
N.1(0) N,(0) N3(0) N5 (0)

where the individual elements are calculated using equation (2.30).

The generalization of the problem using 6 isotopes in the example above is
directly scalable to the full scope of the thesis with 3,443 isotopes. The T-matrix for the
full problem is sparse (composed of a vast majority of elements with a value of 0) and is
not a lower triangular matrix.

Once the T-matrix is created, the quantity of each isotope at time t is determined
using equation (2.7) and taking advantage of the MATMUL built-in function in the

Fortran compiler. Following the determination of N (t), the calculation of the gamma

activity at time t is straightforward using the gamma activity matrix introduced for the

special decay problem above. However, elements of & are now calculated as:

Jij =/1j2£bk,jz Il,k(Ei)J- (2.33)
k |

g;j is the gamma activity due to radioactive decay in energy bin i from isotope j. 4; is the

decay constant for isotope j. by ; is the branching ratio for the decay from isotope j to
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any isotope k that results in a gamma ray emission. |, (E;) is the intensity of the

radiation line I in energy bin iresulting from the decay of isotope j into isotope k.
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1.  Implementation

The gamma ray activity code is made up of five main sub tasks: the depth-first
search used to identify all of the daughter isotopes in a chain, the decay algorithm
implementing the exponential moments function, the generation of the T-matrix, the
calculation of the quantities of each isotope, and finally the calculation of the gamma ray
activity rate. The rest of this chapter discusses the data necessary to run the code and

then examines the functioning of each one of the 5 sub tasks in detail.

II1.A: Input Data

The data required to run the code are: radioactive decay data including the decay
mode and half life with uncertainties for every isotope, gamma decay data including

gamma energies, decay modes, and intensities with uncertainties, and a list of initial
quantities of isotopes, N(0). The decay code is designed to work with any set of input

data as long as it is in the proper format. The individual processes were verified using
test problem sets containing completely generic data, as will be discussed in more detail
in Chapter IV. This means that performance of the code is solely dependent upon the

quality of the data that is used to characterize the problem.

1. lIsotope Decay Information

Isotopic decay data was taken from NuDat 2.0, an interactive web based program
developed by the National Nuclear Data Center (NNDC). NuDat 2.0 produces a text

output of all isotope decays with data obtained from the Evaluated Nuclear Structure
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Data File (ENSDF). The NNDC maintains the ENSDF file and currently lists 3,165
different isotopes and more than 80,000 gamma rays. The difference in the number of
isotopes maintained by the NNDC and the number of isotopes used in the decay code
(3,443) is due to the accounting of metastable isotope states. The NNDC counts all
metastable states as one isotope, whereas the decay code assigns a different isotope
number to each metastable state for tracking purposes.

An example of the NuDat 2.0 output is below in Table 1. The only changes made
to the table from the original data are that columns containing information on the spin
and uncertainties in the mass excess energy and natural abundance have been omitted for
readability. The uncertainties are contained in the text version of the half life and given
in the Nuclear Data Sheets style [5]. In the case of tritium, the half life is 12.32 +0.02

years.

Table 1 Sample NuDat2 Output for Hydrogen, Deuterium, and Tritium

A Element | Z| N| Mass Exc T % (txt) T % (s) Abundance Decay Branching
(MeV) (%) Mode Ratio (%)

1 |H 11 0] 7.289 STABLE Infinity 99.99

2 |H 1] 1] 13.136 STABLE Infinity 0.01

3 |H 1] 2] 14.95 12.32Y2 3.89E+08 | 0 B- 100

Several problems were encountered in using the NuDat 2.0 output data for a

decay code. The purpose of the database is to provide as much information to a user as

possible, while for the purposes of writing a decay code, the quantity of data is not the

most important factor. What instead is needed is the information that produces complete

decay chains. For example, Ni-48 undergoes electron capture to Co-48; however no

isotope information is available on Co-48. The best way | found for dealing with this

problem was to create a dummy isotope with zero protons and zero neutrons. All decays
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for which no daughter isotope information exist default decay into this imaginary isotope.
This ensures that the correct amount of the parent isotope decays away with each time
step. However, this treatment of unknown daughter isotopes effectively allows leaking
from the system in that the mass of recognized isotopes at t =0 may not be equal to the

mass of the recognized isotopes at t =t;. To track this problem an error log is created for

each program run that lists the isotopes with missing decay daughter information.

Another problem with the data is the half life uncertainties. The uncertainties are
given as a o, or standard deviation, for a Gaussian distribution [10]. However, the
uncertainties listed for isotopes can not be a o because half lives can not be less than
zero. When the relative uncertainty is small compared to the half life, this approximation
may be adequate because many multiples of the uncertainty must be subtracted from the
listed half live to create a negative half life and this possibility is exceedingly unlikely.
However, 66 different isotopes have half lives and uncertainties within 3o of 0. Table 2
lists the three fission product isotopes within three standard deviations of 0. This
problem is handled using rejection sampling and is discussed in greater detail in Chapter
V.

Table 2 Fission Product Isotopes with Large Relative Uncertainties

A | Symbol | Half Life (s) | Uncertainty (s)
66 | Cr 0.010 0.006

70 | Co 0.50 0.18

76 | Ni 0.24 0.24

2. Gamma Radiation Data

Gamma radiation information is also available through NuDat 2.0. The first four

data fields are the same as in the isotope data file. Additional fields include information

20



on the decay, radiation type, radiation energy, intensity, and dose, each listed with the

appropriate uncertainties. A sample of the gamma input data follows.

Table 3 Sample Input Gamma Data

A Sym | Z | N | Decay T Y2 (txt) T Y (S) Rad RadE | 0 | Rad o
Mode Type | (keV) Intensity
(%)
8 He 2 |6 |B- 119.1 MS 12 0.119 G 980 84 10
7 Be 4 |3 | EC 53.22D6 5E+06 G 4776 | 20 | 10.44 4
8 B 5|3 | B+ 770 MS 3 0.77 G 511 12 12

The gamma data specifies what type of decay produces the gamma radiation

(internal transition, B~, A", etc.). The code treats initial quantities of metastable states

correctly in that internal transition decays and the associated gamma emission are
counted. Subsequent decay mechanisms in the code do not populate metastable states
because all decays are assumed to produce a nucleus in the ground state. This approach
was selected because of the lack of data completely describing the decay process through
metastable states. While this introduces errors into the code results, most metastable state
half lives are very short compared to the half lives of the ground state nucleii, so the error

is not intolerable.

3. N(0)Data

Fission product yield data for uranium-235, uranium-238, and plutonium 239
were taken from work by T.R. England and B.F. Rider [5]. They define the thermal
neutron spectra as neutron energies which are in thermal equilibrium with the
surroundings present in a light water reactor. Fast neutron fission products are the yields

caused by fission spectrum neutrons. High energy neutrons come from the

fH + fH - fHe+ n (D-T) reaction and have energy of 14.07 MeV [3:29].
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I chose to use fission product yields as population sets for the initial values of
N(0) because of the large number of different isotopes produced in these reactions. The

fission of U-235 by thermal neutrons produces 776 different isotopes. This provides

complex data sets with well documented results.

II1.B: Decay Chain Identification

The depth-first search is initiated by sending the decay chain algorithm a starting
isotope. If the isotope is stable then the algorithm exits. However, in the case of a
radioactive isotope, the algorithm identifies the number of mechanisms by which the
isotope decays. Each one of the decay mechanisms results in a separate recursive call to
the decay chain algorithm, tracking the new generation information as well as adding the
decay constant and the branching ratio for that decay to global storage vectors. The
algorithm recursively calls itself until a stable isotope is reached at the end of the chain.

Upon completing the chain by finding a stable isotope, the vectors containing the
branching ratios and decay constants are passed to the decay calculation routine. Once
the decay calculations are performed, the algorithm backs up one level and either
completes the process for the next branching mechanism or passes a new branching ratio
and decay constant vectors to the decay calculation algorithm (now each reduced in size
by one).

The performance of the depth first search is illustrated by returning to the sample
decay scheme introduced in Figure 2. Figure 3 lists each decay chain for the sample

complex decay scheme in the order in which they are identified. The figure also shows
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the branching fraction vector and decay constant vector passed to the decay calculation

subroutine.

DFS Chains b A

b gy B2 oy [52,1 5’4,2] [’11 A ﬂﬂ]
1B yn B2 s b5 g (B bs, bss | (4 A4 A 4]
1P gy P52 s [B2y Bsy | (4 A %]
1—22 55 (B2 Ey

|—Pu 43 B g5 b5 g [53,1 b4 555} [/1'1 A A /16]
a1 g3 53 g (B, bs3] (4 4 4]
15153 (s ] 4 4]

Figure 3 Depth First Search Chain Identification

I11. C: Exponential Moments Function Implementation

Before making a call to the exponential moments function routine, the At vector

which consists of all positive and decreasing values, must be created by multiplying each

decay constant in the chain by the time of interest. For the sake of clarity, | now define a
new vector X where

X= j1excludingt — Asmallestt - (3.1)

smallest

The X vector is created by sorting /it by size, and subtracting the smallest value from
every other value in the vector. Once this is accomplished, the exponential moments
function routine is called and the solution method is based on the number of arguments in

X.
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1. One Argument
The simplest call to the exponential moments function solution is for a vector of
length one and is given by

1-e™™

1

Mo (X) =Mg(x) =

3.2)

Implementing this into the code is straightforward, but even here care is taken to
minimize any loss of precision. Clearly, if x; is large the numerator approaches 1.0.
Computational time can be saved by avoiding the expensive exponential calculation
when the numerator will equal 1.0 to the specified precision. For double precision (16

digits of precision), this occurs for values of x; >36.8414. The code uses the

approximation in equation(3.3) for all instances where x; >38.0.

1

Mo (%) == (3.3)
X

At the other extreme is values of x;which are small. Small values can cause a loss of

precision in the numerator as the exponential term approaches 1.0 which is amplified by
then dividing by the small number. To avoid this a series expansion is performed up for

values of ¥ <0.1. For instances where ¥, is neither small nor large, the default

exponential moments function formulation, equation (3.2), is used.

2. Two Arguments

For a vector of size two, the moments function can be expressed as a relationship
between the exponential moments function of the individual arguments. The two

arguments are sorted such that x; <=x,.
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Mo(R) = Mo, x,) =22 = Hol) 34
17 A2

The same logic used in the single argument case above can be extended here, and if

X, >38.0 (since x is sorted, this also means that x, >38.0) then

1
Mq(X, X)) =——. 35
0 (X1, %) . (3.5)

Likewise, if both arguments are small, the Taylor series expansion is used to cancel terms
and avoid loss of precision.

There is also a new case that must be investigated. If x; and x, are neither both
small nor both large, then a case may arise where they are close together, and if not dealt
with correctly, leaves the same problem which is so destructive to the precision of the
Bateman equation. Here though the exponential moments function formulation can be

re-expressed using a change of variable x, = x; +dxto eliminate the subtraction in the
denominator.

Mo (X +dX) —Mg(x)  Mg(x)—e Mg (dx)
X, — (% +dx) X5

Mo (X, X +dx) = (3.6)

3. Three Arguments

If all three of the arguments are large, the inverse product approximation is used.
If all three of the arguments are small, a series expansion is used. For the case of three
arguments where either two of the arguments or all of the arguments are close together,
the following equation is used to evaluate the arguments once the arguments are sorted

into increasing order (X, <= X, <= X3).
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Mg (%, Xp) —€ Mg (X — X3, X3 — %)
X3

Mo (X, %o, X3) = (3.7)

In the general case, the 3" kind exponential moments function is handled by equation
(3.8).

A= IMo(X) =My (%) + xMo(X3) l:u (3.8)

Mo (X, X, X3) =
2= 1) (% —%)? X3 — X

4. N Arguments

For all times of interest in the implementation of this code, there are never more
than three not all large, not all small, close together arguments. Therefore, given a chain

of ndecays the decay calculation can be expressed as a recursive use of the exponential

moments function, dividing x into subvectors of the original arguments. Assuming that

the arguments are sort such that x; >=x, >=--->= X,

)= Mo(xl,...,xn_l)—Mo(xz,...,xn). (3.9)
Xn—%
Similarly to the specific argument cases of the exponential moments function introduced

Mo(}) = Mo(xl,XZ,...,Xn

above, when the arguments are either all large or all small, an inverse product or a series
expansion is used. If neither of these conditions are met, the moments function is then
called recursively until the arguments passed into the moments function are all large, all
of the arguments are small, or vectors of length one, two, or three are the only size

vectors remaining.
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II1.D: T-matrix Generation

The purpose behind the T-matrix is to be able to perform a matrix multiplication
on a vector of the initial quantities of isotopes to produce the remaining quantities of all
isotopes. The T-matrix is initialized as an identity matrix with order k (where k = the

total number of isotopes). For a stable isotope number j where 1< j <k, the T-matrix

value will remain 1.0 at position (j,j) in the matrix and no calculations are performed on
any element in the isotope column.

Each radioactive parent isotope is passed to the depth first search routine. Once a
chain is completely identified, the information is passed to a decay calculation routine
which calls the exponential moments function. The value along the diagonal is calculated

directly for every radioactive isotope using

N (t) T
N;(0) '

(3.10)

Values in the T-matrix in general will always be between 0.0 and 1.0. The only
exceptions to this are decay processes that result in more than one of the same type of
particle. For example, lithium-3 undergoes a decay which results in the emission of two
protons, effectively undergoing a spontaneous fission with three hydrogen atoms

produced by each decay of a lithium-3 atom. In this case, the T-matrix value (hydrogen-

1, lithium-3) would approach 3.0 for any time of interest much greater than the half life

of lithium-3 (7.56*107%35).
Decay mechanisms that result in the emission of neutrons, protons, or alpha

particles have these particles tracked as well. For example, decay by proton emission to a
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daughter isotope is also recorded as decaying to hydrogen. This ensures that the baryon

count is conserved throughout the decay code.

II1.E: Calculating N(t)

Once the T-matrix has been created for a time step t, finding the quantity of each

isotope at time t is straightforward. First introduced in equation (2.7), calculating N(t) is

computed directly through matrix multiplication of the T-matrix and the initial quantities

vector, N(0).
N (t) = 7 (t)N(0) (3.11)
An advantage of using the T-matrix is that several problems can be investigated
simultaneously as long as each problem is specified by its own N(O) vector. The

number of vectors of initial quantities of atoms is represented by columns of data in an
initial quantity matrix. To demonstrate this ability, all eight problem sets | wished to

investigate were contained in separate columns of the N(0) matrix as in Figure 4.

N(;,1) = N(0) : U-235,thermal neutrons
N(;,2) = N(0) : U-235,fast neutrons

N(;,3) = N(0) : U-235,high energy neutrons
N(:,4) = N(0) : U-238, fast neutrons

N(,5) = N(O) : U-238,high energy neutrons
N(;,6) = N(0) : Pu-239,thermal neutrons
N(;,7) = N(0) : Pu-239,fast neutrons

N(;,8) = N(0) : Pu-239,high energy neutrons
Figure 4 Matrix Storage of Eight Fission Product Yield Vectors at t=0
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The series of N (0) vectors can be combined into an N(0) matrix, changing
equation (3.11) to
N(t) =T (t)N(0). (3.12)
The Fortran built-in function MATMUL, when called with the arguments of the T-matrix
and N (0) matrix, performs this calculation more efficiently than possible through direct

coding of the function.

II1.F: Calculating A(E,t)

Gamma radiation information was taken from the NuDat 2 database by looking
for all decays that produced gammas. The 80,125 results produced by this search are
used to populate the data for calculation of the gamma activity produced by the range of
isotopes of interest to this thesis. Gamma energies in the database range from 76.5 eV to
11.2589 MeV, with the bulk of these occurring at the lower energies. For example, there

are only three gammas of over 10.0 MeV in the database, and all of them are produced

through the g decay of sodium-20. The distribution of gammas, broken down into 200

keV bins is shown in Figure 5 and Figure 6 below.
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Any number of energy bins can be specified and defined by the user in the input
file, ‘ProblemData.txt’. The energy bins are defined by a minimum and maximum bin
energy given in keV. Applying the energy bin construct to the matrix formulation of the

decay problem results in A(E,t) =G (E)T (t)N(0) = G(E)N(t) .
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IV. Verification Process

This research attempts to increase the precision of current exponential decay
schemes by implementing the exponential moments function. This means that a thorough
verification process had to be designed and implemented to ensure that the new code was
producing the high precision results anticipated. Verification was accomplished using a
comprehensive set of test problems that covered the entire range of potential anticipated
inputs to the exponential moments function as well as various decay chains and gamma
radiation decay energies and intensities. Mathematica was used as a benchmark for the

solutions by performing calculations with greater than machine precision.

IV.A: Defining the Range of Calculation Inputs

The range of the test problems used for verification was bounded by the extremes
of the decay constants found in the nuclear data tables and by the anticipated range of

time steps. Isotopes of interest range from hydrogen (Z=1) to californium (Z=98). The

shortest half-life in the problem scope is Li-3 with a half life of 7.56*102%s . At the other
end of the spectrum are the stable nuclides, each with effective half lives of infinity. In

practical terms, the exponential moments function will be validated using the longest
lived radioactive isotope, Ge-76, with a half life 0f3.79*10%%s. Therefore, the decay

constant, 1 , is bounded between1.83*10°3s1 and9.17*10%s71. Tests were also

performed using A =0 for the stable isotopes, but values between the 0 and

1.83*103s were not explored.
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Verification testing is also limited to time steps ranging between a nanosecond

and 25000 years (7.94*1011 s). Time steps greater than this were not tested but are not
expected to produce inaccurate results. This is because the longer time step sends
increasingly more arguments to the large argument approximation of the exponential
moments function and this approximation becomes better as the arguments become
larger.

Because the exponential moments function deals with the differences between At
values as in equation (3.1), care must be taken to ensure that not only the range of the
overall isotopes is covered, but that the difference between the values is also addressed.

Using 16 digits of precision, any difference between the two smallest A values that

exceeds 16 orders of magnitude has no effect on the values of the argument vector, X.
This sets a practical limit to the range of arguments necessary to fully test the calculation
routines.

The input values can now be specified for the test problems needed to verify the
operation of the exponential moments function subroutines. Values that populate x must

have values that range between 1.83*10™* and 2.89*10* and cover up to 21 orders of
magnitude (providing a buffer beyond the 16 digits of working precision). Additionally,
because the exponential moments function routine handles special cases for argument

vectors of size of one, two, and three and a general case to break down larger problems

into one of these three cases, x, need only consist of up to three values to completely
exercise all of the calculation paths.
In practice, verifying this section of the code was accomplished by specifying a

1.0 second time step and adjusting the decay constants to the necessary values to
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compensate. While not strictly necessary from the point of view of the code, it greatly

simplified the input to Mathematica for use in the benchmark calculations.

IV.B: Creating the Calculation Inputs

The input for the decay constants used in the decay calculation routine had to be
rational numbers so that Mathematica could perform the calculations with an arbitrary
precision to produce the benchmark values. To satisfy the rational number requirements
of both applications, | decided to define all decay constant by an integer value. Each
integer value was then used as part of an exponent of 10 to generate the necessary values
specified previously. The four decay constant values were calculated using the following
equations.

b

ﬂ'l —=101001
e

A, =101002 (4.1)
g

A =101001

A4 =10

IV.C: Verifying the Calculations

Mathematica was chosen to benchmark the results of the exponential moments
function routine because it allows a user to specify the number of working digits of
precision used in calculating the results. This increased working precision comes at the
price of increasing the calculation time significantly. The Mathematica solution was

generated by passing in the decay constant values and calculating the answer using the
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Bateman solution. The Mathematica notebook used for verification is attached in
Appendix C.
A symmetric relative difference (SRD) was used to compare the results from the

two methods. The SRD is defined as

0, y=z=0
Sso(V,2)={ |y—-1| olse (4.2)
(Iy]+[2l)/2

where y is the result produced by the exponential moments function routine and z is the
result produced by Mathematica. | chose to use the SRD as a measure of performance
because it is easy to interpret, with a value of 2.0 being the worst case scenario and
indicating that the results are uncorrelated between the two methods. Conversely, an
SRD close to zero indicates close agreement between the two methods.

I experimented with the working precision of Mathematica during the
computation, looking for the fastest computation time that still produced the smallest

SRD. I found that only after increasing the working precision to at least 100 digits did

the two computational methods converge, producing OSRD, =1.0147*10". The
Ssrp,,, Sets a limit on how much disagreement there is between the benchmark and the

code calculations. The value indicates that the answer produced by the code is good
through at least ten digits. Because no half lives are known with uncertainties to more
than five digits, the Monte Carlo propagation of uncertainty reflects only the uncertainties
in the half lives and not uncertainty due to calculations in the code.

This worst case scenario was recorded for the following argument set
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0.147996
X =| 0.147837 |. (4.3)
0.147679

Three close together not too small ( Xgmayest > 0-1) arguments produced the worst case

conditions for the code.

The requirement that Mathematica have at least 100 working digits of precision
implies that current methods for computing the decay of radioactive isotopes using the
Bateman solution, even if performed using quadruple precision, may not be accurate to

the same precision as the double precision exponential moments function solution.

IV.D: Verifying the Depth First Search Routine

The decay chain algorithm uses a recursive subroutine to perform a depth-first
search of all daughter products for a given isotope. Testing this algorithm meant creating
test problems made up of test isotopes with the necessary decay chain complexity to
ensure that any chain that was present in the actual isotope list could be completely
described.

The first and most simple problem is the decay from isotope “A” to isotope “B”,
A — B, where A is radioactive and can only decay to isotope B which is stable. From
here, the sample chains grow longer (up to 18 isotopes in length) and more complex with
an increasing number of branches (the maximum number of branches tested is three). A
complete list of the test decay chains is in Appendix B.

Once each isotope list is read in, the depth-first search is called and the decay

chains are found. After a chain is completely identified the decay calculation subroutine
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is called. The decay constants passed to the calculation subroutine are then compared
against a list of the expected decay constants created by hand for each test problem. By
this method, every time a decay chain calculation is called, the information is compared
to ensure that it is complete and accurate. Any errors in the depth first search are output
to the screen so that the user can evaluate the problem.

The depth first search also provides an opportunity for a further test of the
exponential moments function, and the results calculated during the depth first search

verification are compared again against the Mathematica solution using the SRD.
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V.  Monte Carlo Estimation of Uncertainty

A Monte Carlo simulation was used to quantify the effect of half life uncertainties
on the gamma activity produced by neutron induced fission. This was done by using an
approximation of a Gaussian distribution of pseudo-random numbers to perturb the half
life of each isotope using the uncertainty and then tracking the changes in the quantity of
each isotope and the gamma radiation activity as a result. By doing this 1000 times, the
effects of the half life uncertainties can begin to be quantified.

Because of the large relative uncertainties in the half lives of the isotopes, the
distribution cannot in fact be Gaussian. A truly Gaussian distribution requires an infinite
number of standard deviations from the mean to cover all possible outcomes. For real
world data, a Gaussian approximation may be appropriate if a reasonable (3c)
distribution of the data encompasses nearly every possibility. However, with the data
provided, some isotopes have standard deviations which are large compared to the half
life (see Table 1) and predict negative half lives within the 3o tolerance.

Recognizing that calling the half life uncertainty a standard deviation does not
adequately describe the data, | chose to treat the distribution as Gaussian and use
rejection and re-sampling to ensure that every half life has a positive value. Clearly this
approach only provides a first cut at quantifying the uncertainty in the activity
calculations, but this should still be sufficient to gain a better understanding of how the
uncertainties are propagated through decay chains.

An approximation to a normal distribution of random numbers was created by

taking the sum of twelve pseudo-random numbers uniformly distributed between 0 and 1
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and subtracting 6.0. This method provides a good approximation to a normal distribution
near the center, but loses fidelity at the tails of the distribution. For the purposes of this
thesis, the behavior at the middle of the distribution was the important component and
this method models the normal distribution well enough for tracking the propagation of
uncertainty in the isotope data.

Once the random number is produced, the value was then multiplied by the
uncertainty in the half life and added to or subtracted from the half life. If a non-positive
value for the half life is obtained by this method, another random variable is chosen until
a positive half life is found. Random variables were chosen using the built in random

number generator in Compag Visual Fortran[2].
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VI. Performance, Results, and Analysis

The implemented exponential moments function code combined with the use of a
transmutation matrix is faster than the differential equation solver or the Bateman
solution with the specified digits of working precision in Mathematica. Moreover, the
code produces answers that are more precise than other methods using the same digits of
precision. The rest of this chapter will outline the performance of the code as well as

show results from the fission product test problems.

V1. A: Performance
The time it takes to produce A (t) and A(t) with the code is highly dependent

upon the time of interest. The overhead of reading in the decay data to populate N(O)

values and gamma data must be performed only once with each data set. Then the
populated data arrays are stored to the hard drive in binary format for quick processing
during future runs.

The major factor in the run time of the code is the production of the T-matrices.
Once a T-matrix is generated, it is saved to the hard disk in a sparse format for future use
which greatly speeds any subsequent calculations using the same time of interest. The
time required to create a T-matrix from scratch depends on the time of interest.

At very short times, nearly all arguments passed to the Fortran routine are small.
When this is the case, series expansions are used which are calculated quickly in Fortran.
For very long times, arguments to the exponential moments function all become larger
than 38.0 and the T-matrix is generated quickly at these times as well. However, for time

steps where many of the arguments passed to the exponential moments function are
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neither all large nor all small, calculating the results becomes computationally costly as

the number of EXP() calls reaches a maximum.

1000 F T T T T T T T T T T T T I I I I I I I

100 ¢

CPU Run Time (s)
=

0.1 — 1 T T T T T T T T T T T T T 1
9 -8 76 -5-4-3-2-4101 2 3 45 6 7 8 9 10 11

T T T

T-matrix Time Step (10"s)
Figure 7 Time to Generate T-matrix for Given Time Steps

The computer used to execute the code had a 2.8 GHz Pentium D processor (a
dual core chip running the code on only one of the processors). However, for longer time
steps, it becomes more advantageous for the user to use stored T-matrices to reduce the
run time. For this reason, a newly generated T-matrix is automatically saved in a sparse
format once it is created.

These results are indicative of the computational cost for the current algorithm

which is only optimized to preserve precision. Optimizing the exponential moments
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function module for speed with long argument vectors should result in significant

reductions in computer run time.

VI.B: A(E})

I arbitrarily used 11 different gamma energy bins to sort the output of the decay
code. One energy bin covered all gamma energies, while the remaining ten each covered
a 1 MeV span without overlap between 1 MeV and 11 MeV. The gamma activity varied
greatly from the freshly irradiated fuel state 1.0 nanosecond after irradiation to the last
calculated time step of just over 25,000 years.

The plots of total activity show the overall effect of the combination of a fuel and
a specific neutron energy spectrum. As is shown in Figure 8, the total activity is
dominated by the lower energy gammas. Therefore, the activity at higher energy bins

must be examined separately to completely understand the decay process.
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Figure 8 Energy Bin Contributions to Activity for U-235 Thermal



Because of the large ranges of time and activity involved, the most useful way of
looking at this data is to break it into two separate sections: an early time which starts at a
nanosecond and ends around 10 seconds, and a late time for all times after 10 seconds.
Also, by changing the axis scaling, different features of the activity curves are

highlighted and examined in greater detail.

1. Total Activity

At times shortly after irradiation the type of fuel profoundly affects the overall
activity. U-238 shows significantly more activity than U-235, which is more active than
Pu-239. The activity from the fission of Pu-239 with a thermal neutron spectrum so
closely matches the activity of Pu-239 exposed to the fast fission spectrum that the lines

are nearly indistinguishable in Figure 9.
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Figure 9 Total Activity, 1 nanosecond to 10 seconds, Log-Linear
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As shown above, the activity holds nearly constant until around one tenth of a
second. The flatness of the curves is due to only very minor changes in activity at these
time steps. This indicates that the process is dominated by either isotopes that have half
lives on the order of a tenth of a second up to a few seconds or the isotopes are in secular
equilibrium with a parent isotope that has a half life in that same range . Figure 10 shows
this finding more directly by using a semi log plot. On the semi-log axis configuration,
the plot of activity of a single isotope is represented as a straight line proportional in
slope to the decay constant of the isotope. The curves shown in Figure 10 are not
perfectly straight because the activities are made up of many isotopes. Each of the top
five contributors to the total activity is from isotopes with half lives between 0.2 seconds

(Rb-96) and 2.1 seconds (Zr-99), as is shown in

45



Table 4.
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Figure 10 Total Activity, 1 nanosecond to 10 seconds, Semi-Log
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Table 4 Major Contributors to Total Activity at 4.64*10s and Half Lives

Incident
Neutron Primary
Fuel Energy | Contributors | Half Life
Sr-96 1.07 s
Thermal |y-908 0.548 s
Sr-97 0.429 s
U-235 Fast Sr-96 1.07s
Y-98 0.548 s
Y-98 0.548 s
High  [Xe-134m  |0.290 s
Sr-96 1.07 s
Rb-96 0.2028 s
Fast Y-100 0.735s
Sr-96 1.07s
U-238 Sr-98 0.653 s
Sr-96 1.07 s
High Y-98 0.548 s
Rb-96 0.2028 s
Y-100 0.735s
Sr-96 1.07 s
Fast |y-98 0.548 s
Pu-239 Zr-99 2.1s
High Xe-134m 0.290 s
Y-98 0.548 s

48



Figure 11 shows a semi-log plot of the total time to show that the activity curves
at late times are each very similar in slope. The flatness of the activity curves at the end
of the calculation range is due to the same isotope in each fuel, Sb-126. The half life of
Sb-126 is only 12.35 days. Here Sh-126 is in secular equilibrium with Sn-126 which has
a half life of 230,000 years. The activity due to the decay of Sh-126 accounts for more
than 90% of the total gamma activity in each decay chain. The differences in the activity
between isotopes reflect the initial allocation of fission fragments by mass number. High
energy neutrons create fission products with a mass number of 126 with more frequency
than fissions induced by neutrons of lower energy. The correlation of this relationship
between the production of fission products with atomic numbers of 126 and the activity at

25,000 years is 0.992.
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Figure 11 Total Activity, 1 nanosecond to 25,000 years, Semi-Log
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Figure 12 uses logarithmic axes to show detail in the activity curves over the time
of interest. Here we see that the activities are due to a combination of fuel and incident
neutron energy. For each fuel, the activity is highest for the D-T neutrons by several
orders of magnitude. For the same incident energy neutrons, the fuels are Pu-239, U-235,
and U-238 in order of decreasing activity. The areas of the curve that are largely flat are
not completely straight due to many small contributions by isotopes with half lives of the
same order of magnitude as the time in question. The portions of the curves with large
slopes indicate times where the magnitude of the half lives of the principal contributors to
the activity are of the same order of magnitude as the time. For example, at the one year
point, the principal contributor to the total activity for plutonium and the high energy
neutron fission of U-235 is Th-158 with a half life of 180 years. The remaining fuels (U-
235 thermal, U-235 fast, U-238 fast, and U-238 high) have nearly the same change in
activity at the one year point due to the same two primary contributors, Nb-95 (half life
of 34.991 days) and Zr-95 (64.0 day half life), which together account for more than
75% of the total activity in these fuels. This explains why four of the curves are basically
flat and four have large slopes at 1.0 year in the graph above.

Figure 13 shows plots of the gamma power (the product of activity and the

gamma energy) with respect to time for each fuel and neutron spectra. Additionally, the

plot overlays the Way-Wigner approximation of t~12. This clearly highlights the poor

approximation of the actual dose rate, especially for the D-T neutron fission of Pu-239.
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2. 1-2 MeV

The plot of short-time gamma activity in Figure 14 closely resembles the shape of
the total activity curves in Figure 9. The 1-2 MeV gammas account for approximately
only one fourth of the total activity. As in Figure 9, Figure 14 shows that the early time
activities are more dependent on fuel than neutron energy, although the Pu-239 high
energy fission curve is now nearly indistinguishable from the U-235 thermal curve.

Once again, the list of major contributors to the 1-2 MeV activity bin shows that
all have half lives in the several tenths of a second to a few seconds which corresponds
well to the roll over of all of the curves that occurs somewhere after 0.1 seconds. The
nearly straight curves in the semi-log plot shown in Figure 15 shows that the activities of
each of the fuels is caused by multiple isotopes, each with similar half lives. The near-
parallel nature of the curves indicates that the mixes of isotopes from each fuel sample
are likely to have many of the same daughters.

Figure 16 shows the entire range of calculated data. Once again, this plot closes

matches the plot of the total gamma activity. The steep slope at early times shows nearly

parallel lines. The activity in this bin at 2.5*10' seconds (approximately 800 years) is
primarily due to the decay of Th-158 (180 year half life). Activity at the end of the time

of interest is dominated by the decay of Sb-126, just as was the case for the total activity.
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3. 2-3 MeV

During times up to 10 seconds after irradiation of the fuel source, the activity
curves once again closely follow the shape of the 1-2 MeV activity, as well as the total
activity. However, as the bins continue to increase in energy, there is a decrease in the
magnitude of the activity in each bin. Whereas the 1-2 MeV accounted for
approximately one fourth of the total activity, the 2-3 MeV gammas only account for
around a tenth of the total activity. The curves shown in Figure 17 show the 2-3 MeV
gamma activity curves. The graph shows that the difference in fuel source is even more
pronounced in this energy bin. Sr-97 and Y-98 are the significant contributors for each

fuel and fission neutron energy in the 2-3 MeV energy bin.

58



-01

01

(s) swil

01 0l -0l

o0l 0l g0l &0l

uby sgz-nd
Jse} 6£Z-nd
|lewsy} 6£2-nd
uby gez-n
Ise} 8eZ-N
uby gez-n
}se} GeZ-N
|lewlay} GeZ-N

000

- 100

- ¢0°0

- €00

|

- ¥0°0

- S0°0

I -

- 90°0

L0°0

(uotssiy/s/sAedap 4) AjAoY
Figure 17 Gamma Activity, 2-3 MeV, 1 ns to 10 s, Log-Linear

59



= ©
e E SN —
e c P el I I =
eV oOo® oL ® =
EMERE X«
wwwaowowaomaomaom
kol o e o — I
20020202000
o
Y 00
"’@O 0[ T TR ST WY T TR T T T T T T ST T TR T T T T ¥ T T ST T YT T T T T T T T T T T T
2 -
e, C
@, U
7
S
Ve
%,
%
.
rel
Ve
>4
<,
2
<
— O o
++ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LLLOLOLOLOLOLOLOLOLOLOLOLOLOLOLOLOOLOLOLOLOLOLODL OO
bl s ks s T T T T T T T B e T TR TH: TH T . T e . T . T .

(uoissys/sAeosp 4) Aianoy

Figure 18 Gamma Activity, 2-3 MeV, 10 s to 25000 y, Log-Log
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Figure 18 shows the gamma activity in the 2-3 MeV energy bin for all times of

interest. This is the first gamma energy bin for which the activity drops below an

intensity of 107 gamma decays per second per fission before the simulation was
completed. | have set this as a lower threshold for all graphs to facilitate comparisons
among the plots. In all cases, the slope is nearly vertical when the curve crosses this
threshold, and there are no defining characteristics below this threshold.

Figure 18 also shows that activities for all fuel sources and incident neutron

energies are nearly indistinguishable, with the exception of the sub 1.0 second activities

shown in Figure 17 and a separation in the activities between 10° and 10° seconds. This

second area is magnified in Figure 19.
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The uncertainty bars in Figure 19 are standard deviations for a normal distribution
of the activity over 1000 test runs. The activity results were each checked for normality
using the Kolmogorov-Smirnov test. The standard deviations show that the fuels are
largely distinguishable within 1o after approximately two days of decay time, but that
after approximately three weeks, all of the curves are statistically indistinguishable.

The activity curves for U-235 with fast and thermal neutrons are nearly

indistinguishable, however the rest of the fuels and neutron sources show up to almost

two orders of magnitude difference. At 10%seconds (2.8 hours), different sources each
have the same major contributors to the total activity, albeit in varying intensities. The

main isotopes at this time are: Kr-88 (t,,; = 2.84days), Cs-138 (t,; = 33.41minutes),

La-142(t,4s =91.1minutes). Each of these isotopes is effectively gone by one week and

the activity becomes dominated by isotopes from new mass chains. At 2*10°seconds
(2.3 days), the primary contributors to the activity become dominated by the metastable

state of Te-131 (t,,s =1.35days), 1-132 (t,, = 2.30hours), and La-140
(thas =1.68days). The 1-132 activity is produced following the decay of Te-132
(thas =3.26days). After 3 weeks, the activities from each graph join again. At this

point, the transition is complete and more than 90% of the activity is caused by La-140 in
each isotope. During the period of interest above, the La-140 decay was largely the result
of the isotope being produced directly from fission. At later times, it is in secular

equilibrium with its parent, Ba-140 (t,,; =12.75days).
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4. 3-4 MeV

Activities in the 3-4 MeV energy bin only contribute about 2% of the total activity
at early times as shown in Figure 20. The separate fuels are once again readily
identifiable. At 1.0 second into the decay, the activity is dominated by Y-97 for all test

cases.
Figure 21 depicts an activity drop below the 1072° activity threshold at

approximately 31.8 years (109 s) after fuel irradiation. For times longer than 10.0

seconds, the curves from each input problem closely resemble each other with the

exception of some separation around the one year (3.15*107 s) point. This separation is
more clearly shown with a semi-log plot of the data as in Figure 22. The straight, parallel
lines are a reflection that all of the activity at long times is caused by the same isotope,

Rh-106 (t,,; = 28.9s). Rh-106 is in secular equilibrium with its parent isotope, Ru-106
(thar =1.02years). There is a 99.9% correlation between the total quantity of initial

fission products with a mass number equal to 106 and the ratio of the activities shown in

Figure 22.
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5. 4-5MeV

The activity due to gamma radiations with energies between 4 MeV and 5 MeV
continues the trend of decreasing contribution to the total activity, as is shown in Figure
23. The crossing of some of the activity curves is shown clearly in Figure 24 in a semi-
log plot. Crossing activity curves for a fission product decay problem indicates that the
new activity comes from not just a new set of isotopes, but that the activity from a new
mass chain has become predominant.

Figure 25 shows the late time activity of the different fuel sources. At

approximately 5.3 days (4.6*105 s) after irradiation with high energy neutrons, the Pu-
239 source shows a departure from the curves of the other seven test scenarios.

This effect is shown more prominently on a semi-log plot as in Figure 26. The
different slopes indicate a difference in isotopes that contribute to the activities.
Inspection of the data show that the activity curves of all of the isotopes, except Pu-239

high, are more than 99.99% made by the decays of Rb-88 (t,,,;s =17.73 minutes). The

relatively short half life of Rb-88 accounts for the very low activities present.
Fission products are typically neutron heavy isotopes that under go beta decays.
However, the fission of a Pu-239 nucleus with a high energy neutron results in the

production of Ga-66 (t,, =9.49 hours), a neutron light isotope that undergoes an

electron capture decay. Ga-66 is only produced on average at a rate of 2.02*10* atoms
per fission of Pu-239 by a high energy neutron but produces enough high energy gammas

to be significant as the activity from other fission products decays away.
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Figure 24 Gamma Activity, 4-5 MeV, 1 ns to 10 s, Semi-Log
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Figure 25 Gamma Activity, 4-5 MeV, 10 s to 10° s, Log-Log
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Figure 26 Gamma Activity, 4-5 MeV, 1 s to 1.2*10° s, Semi-Log
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6. 5-6 MeV

The activities produced from fission in the 5-6 MeV range differ significantly
from previously discussed energy bins. The different test cases are separated by the fuel
type rather than incident neutron energy but U-235 now exhibits a greater activity than U-
238. Pu-239 activity is still the lowest of any fuel. Figure 27 also shows an increase the
activity for the U-238 fuels between 1.0 second and 10.0 seconds. Figure 28 shows this
time scale in semi-log format to highlight the differences in the curves. The top five
gamma intensity contributions to the activity at 1.0 second are all the result of the decay

of Rb-92 (t,,s =4.49s). The same analysis at 3.0 seconds yields the same result; the

decay of Rb-92 is still responsible for the top five contributors to the total activity in the

5-6 MeV bin.
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The cause for the spike in activity in U-238 fast, and to a lesser extent U-238
high, is actually a result of the initial distribution of fission products. While relatively
little Rb-92 is present initially in U-238 compared to U-235, the precursors to this isotope

(only the direct decay branches are shown)

92 B 92 B 92 B~ 92
315€ . 35 Br 53435 36 Kr —si0: 37RDb
are present in greater quantities in U-238. The initial quantities as shown in

Table 5 and the results after 3.0 seconds are shown in

Table 6.

Table 5 Fission Product Yield per Fission Type

Neutron
Isotope Energy |Se-92 (t=0)|Br-92 (t=0)|Kr-92 (t=0)
thermal 4.17E-07] 2.68E-04| 1.66E-02
U-235 |fast 5.51E-07] 2.09E-04] 1.35E-02
high 1.15E-06] 3.03E-04| 8.25E-03
U-238 fast 1.98E-05] 2.34E-03] 2.50E-02
high 9.91E-06] 1.34E-03] 1.58E-02

Table 6 Rb-92 Quantity per Fission at t=0 s and t=3 s

Neutron Rb-92 Rb-92

Isotope Energy (t=0) (t=3)
thermal 3.13E-02| 2.85E-02
U-235 [fast 2.79E-02| 2.49E-02
high 2.93E-02| 2.29E-02
U-238 fa}st 1.47E-02| 2.33E-02
high 1.89E-02| 2.07E-02
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Figure 29 shows an even more defined separation of Pu-239 activity following
fission by a high energy neutron than demonstrated in the 4-5 MeV bin. The explanation
for the difference is the same as above, namely the presence of Ga-66. Here, the only
difference is that the activity in the other test cases is caused by the decay of Rb-90 as

opposed to Rb-88 in the 4-5 MeV case.
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7. 6-7 MeV

The 6-7 MeV energy bin activity displays many similarities to the 5-6 MeV bin.
In fact, the activity at early times is due to the same isotope, Rb-92. The rest of the
curve, as shown in Figure 31, depicts the activities from each of the different sources as

largely indistinguishable. The semi-log plot in Figure 32 is more interesting because of

the t 12 plot as well as the closeness and straightness of the activity curves. The semi-
log plot clearly shows that in the 6-7 MeV energy bin, the approximation is a poor fit for
the data. The tight packing of the curves comes from all of the top five activity

contributors being products of 1-136 (t,, =83.4s) decay.
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8. 7-8 MeV

The activity in the 7-8 MeV bin is unique in that for the test problems studied, the
activity in this bin is the result of only one gamma ray from one isotope, the 7.000 MeV
gamma emitted by the beta decay of Br-88 (t,,,;; =16.295).

The increase in activity after 1.0 second is due to the fission product yield. The

fission product decays that result in the formation of Br-88 are shown below (only the

direct decay chain is shown)

88 f~ 88 B~ .88 B~ .88
326€ 0.129s > 33AS 0.135s > 345€ 1.50s > 35 BT

Se-89 (t,4¢ = 0.41s) also results in some production of Br-89 through a beta decay

followed by a neutron emission. The combination of the A=88 chain with the Se-89

decay accounts for the increase in the activity of the U-235 and U-238 curves.

-1.2

Figure 34 demonstrates again the application of the t approximation.

The semi-log plot shows that the decay continues to be that of a single isotope, Br-88.
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Figure 33 Gamma Activity, 7-8 MeV, 1 ns to 10 s, Log-Linear
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Figure 34 Gamma Activity, 7-8 MeV, 1 s to 1,200 s, Semi-Log
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9. >8 MeV

Energy bins with minimum energies above 8.0 MeV do not have any
activity for the test problems examined. Gamma radiation energies greater than this
threshold are due to the decays of low Z materials (C-15, Na-20, Al-24, P-28, and K-36),

which have a negligible probability of being a fission product.
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VIl. Conclusions and Recommendations

VII.A: Conclusions

The primary objective of this thesis was to produce a more precise code for
calculating complex decay chains with greater precision than available by current
methods. In implementing the exponential moments function with the use of a
transmutation matrix, a code has been developed which gives the user access to quick and
precise results for problems of as much complexity as desired. The code also provides
insight into the effect on activity caused by the uncertainty of isotope data.

In implementing the exponential moments function, a proven mathematical model
used in neutron transport calculations, the data was manipulated to provide the correct
arguments necessary to calculate decay values. Verification of the method was
performed by comparison to a Mathematica benchmark implementing the Bateman
solution formula. The strong correlation between the two calculation methods gives
strong indication that the exponential moments function is in fact accurate out to 10 digits
when using double precision values in the calculation.

The use of a transmutation matrix is a novel way of approaching the decay chain
problem. The matrices are stored in a sparse format which means that a library can be
constructed to significantly reduce calculation time for some problem sets. The primary
advantage of the T-matrix is that it allows the code to evaluate many different decay
problems simultaneously.

This thesis also demonstrated one possible application of the exponential

moments function combined with the use of a T-matrix. This approach proved a
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worthwhile method that lead to an increased understanding of the activity emitted by
fission products with respect to both energy and time.

The overall results of the thesis is that a method for calculating decay products
with increased precision has been developed and can be adapted by the community where
such a requirement is needed to better understand complex decay problems or where the

uncertainty of gamma activity or isotope quantity is of interest.

VI1I1.B: Recommendations for Future Work

To implement the exponential moments function calculations and generate T-
matrices, certain assumptions had to be made to ensure that a working code could be
made and thoroughly verified. Further exploration of some of these assumptions could
produce even better results. Daughters of spontaneous fission decays were neglected in
this code. Also, the treatments of metastable states in this thesis were not complete.
Future work aimed at adding spontaneous fission decays and adding more realistic
metastable state tracking and calculation should have the largest impact in improving
performance even farther.

Further work in optimizing the exponential moments function to run faster would
also be a benefit to the code. In addition, this code used the built in pseudo-random
number generator that is part of Fortran 90/95. The implementation of a better pseudo-
random number generator and performing more than 1000 runs would improve the results

of the Monte Carlo simulation.
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Appendix A: Order Invariance of Bateman Equation

The Bateman equation for the k™ isotope is given as

ot

(A1)

Nk (t) = Nl(o) [H bi,i+1/11tj z

| start the analysis by separating out two arbitrary isotopes from the decay chain, m and n.

k-1
Nk(t) = Nl(o)bm,m+lbn,n+1)’mtﬁ“nt Hbi,nlﬂlt *
i (A.2)
k e—/ljt e—ﬂmt e—int
*Z K + k + k
o (A=A (/ln—ﬁ,m)_l_ll(ﬁ,,t—/lmt) (}Lm—ﬂn)[ll(ﬂ,,t—ﬂnt)

J¢m
j#n

i¢j i=m i=n

The next step is to swap m and n.

k-1
Nk (t) = Nl(0)bn,n+1bm,m+1ﬂ”ntﬂ’mt ]‘_[bi,iﬁ-lﬂlt *
i=1
i#m (A.3)
k —Ait ~ At At
*Z k e N e : N e

G20 (A= 2) A4 (2= A4) AL 20

J¢n

j=m | l i=n i=m

Because equations (A.2) and (A.3) are equal, the Bateman equation is invariant with

respect to order of the argument.
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Appendix B: Depth-First Search Verification Test Problems

. A—>B

A—>B
- ScC

A—>B—>E
' —->C—o>D->E

A—>B
—-C
—D

A->B—->D
—>B-o>E
—-C

A—->B—->D
' —-C—->D

A—->B—->D
" L5CoE

. AoB—>C—o>D-—>E

. A>B->C—H--->T->U
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Appendix C: Mathematica Verification Notebook

Off[CGeneral ::spelll] ;
SetDirectory[''C:\Thesis\Verify' ;
problemData = Import[' TestLambdas.csv'’, ""CSV''] ;
Iax = Length[ problenData)

strm = OpenWrite["answers.txt'"] ;

starttime = AbsoluteTime[] ;

Do]

problenData[ [1,1]]
Ar1] = N[10 1001 300] ;
problenData[ [1,2]]
A[2] = N[10 1002 . 300] ;
problemData[[1,3]]
A[3] = N[10 1003 , 300
A[4] = N[10Preplematal (.41 300 ;

Do

kl)t[i ] _

1) (4 (b iy - i) @G i - adn) |

—

bateman[k ] := [
\

b = bateman([k] ;
Write[strm, FortranForm[N[b, 201]11:;
. K, 4}]

» {0, T} ]
stoptime = AbsoluteTime[] ;
Close[stim] ;
elapsedtime = stoptime - starttime
Quit[];
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