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Abstract 

A key liquid crystalline property for electro-optic applications is the Frederiks threshold electric 

field. There has been recent experimental interest in liquid crystal-based colloidal suspensions in 

which the colloidal nanoparticles both possess a permanent electric polarization and provide strong 

director anchoring on the particle surface. Such suspensions are sometimes known as Filled Liquid 

Crystals. Our calculations suggest, in qualitative agreement with experiment, that filling the nematic 

liquid crystal with ferroelectric nanoparticles can significantly decrease the electric Frederiks transi-

tion threshold field. 
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1. INTRODUCTION 

In recent years there has been much interest in the physics and possible technological applications 

of colloidal suspensions in a liquid crystal host [1].  As early as 1970, Brochard and de Gennes [2] 

pointed out that if the colloidal particles possess a permanent magnetic moment, then the orientation 

of the local moments and the nematic director would be coupled, and this would give rise to some 

new and interesting physical effects. These systems are known as ferronematics, and further work, 

both experimental and theoretical, seems to confirm the picture predicted by Brochard and de 

Gennes [3-5].   

A system analogous to this, but in which potentially much more dramatic effects might be 

expected, involves ferroelectric rather than ferromagnetic colloidal particles. Such systems have 

been fabricated by Reznikov et al [6], who have shown that at low concentrations, at least in some 

cases, these submicron colloids appear similar to a pure liquid crystal. In particular, the colloidal 

particles do not scatter light in the manner that we might expect, and are therefore invisible. The 

particles are engineered so as to anchor the liquid crystal director strongly at the surface. It is this 

mechanism which seems to permit the intrinsic properties of the colloidal particles to influence the 

liquid crystal matrix. A further unexpected observation is that in these suspensions the Frederiks 

transition threshold voltage decreases. If this phenomenon could be replicated, there would be sig-

nificant implications for the manufacture of very low power liquid crystal displays. 

In this brief report we present a very simple theoretical model for electric Frederiks transi-

tion threshold in the ferroelectric liquid crystal suspension. The theory uses the following minimal 

postulates: (a) the colloidal particles do not affect the elastic and dielectric properties of liquid crys-

talline host; (b) each particle possesses a permanent polarization which can only be parallel or anti-

parallel to the local LC director; (c) there is no direct inter-particle interaction; (d) the field-induced 

polarization of the colloidal particles can be neglected. Condition (b) is sometimes known as strong 

director anchoring in related contexts. Hypotheses (a-d) can be relaxed in principle, and should be 



relaxed in a complete theory. Nevertheless they contain sufficient physics that they may be regarded 

as a sensible starting point. Our simple theory predicts that filling the nematic liquid crystal with 

ferroelectric nanoparticles may significantly decrease the electric Fredericks transition threshold 

voltage. 

 

2. BASIC EQUATIONS 

We consider a uniform colloidal suspension of ferroelectric submicron particles embedded in a liq-

uid crystalline host. The liquid crystal is placed in a cell of thickness L with identical homogeneous 

(i.e. planar and uniform) boundary conditions at each wall. A voltage V is applied across the cell. 

We assume the coupling between the permanent polarization of the colloidal particle and the liquid 

crystalline director to be sufficiently strong that the particle orientation is restricted to directions 

parallel or antiparallel to the local director. The theory is an extension of the basic ideas used by de 

Gennes and coworkers [2], and is related to an analogous theory for ferronematics [5], with an addi-

tional complication of local field effects.  

A free energy functional for the suspension is minimized with respect to relevant variables. 

The functional includes elastic, electric and entropy terms and takes the form: 
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The meaning of the quantities in eq.(1) is as follows 



Definition Description 

ED
rr

εε ˆ00 =  Electric displacement due to liquid crystalline effects alone. 

0D D P= +
r r r

 Total electric displacement, including both colloidal and liquid crystalline 
effects 

0E Eλ=
r r

 Local electric field felt by a colloidal particle, and which enters particle per-
manent polarization expression 

λ  Local field correction factor 

(P fdn )ρ ρ+ −= −
r r  Permanent polarization per unit volume in the colloid 

d Permanent polarization of a particle 

f   Particle volume fraction in the suspension 

ρ+ , ρ−  Fractions of ferroelectric particles oriented parallel and antiparallel to the lo-
cal LC director respectively 

v Particle volume 

iK  Frank-Oseen elastic constants of liquid crystal 

Table 1: Meanings of quantities used in this paper.  

 

The problem here is to minimize the functional (1) subject to the constraint of given voltage V ap-

plied across the cells: 
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here 1
kT

β = . 

Now we consider the splay Frederiks transition in the electric field. In this case the director 

field is given by (cos ,0,sinn )θ θ=
r . From Table 1, the dielectric displacement can be written as: 

 ( ) ( ) ( )2
0 sin sina zD E fdε ε ε θ θ ρ ρ⊥= + + − θ+ −  (4) 

Combining expressions (3) and the free energy functional (1) gives the following explicit 

expression for the free energy functional (1), as a functional of the local director )(zθ  and the local 

electric field : ( )zEz
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where eq.(2) connects the field  to the voltage constraint. ( )zEz

 In what follows we assume that ferroelectric particles are small enough, so that 1<<Edvβλ . 

Then the total free energy functional (5) to be minimized becomes 
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= +%  is the effective dielectric function anisotropy. 

Using eq. (4) we rewrite the constraint (2) in the form 
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For small angles θ  we have: 
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The free energy functional simplifies to: 
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subject to the constraint: 
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Trivially, eq. (10) also gives an expression for the displacement field as a function of V and the di-

rector profile: 
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We now substitute D into the free energy functional (9) and minimize the total free energy func-

tional with respect to the angle θ . The corresponding first integral of Euler-Lagrange equation has 

the form: 
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the additional conditions on the mid-plane of the cell, max2
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cell reflection symmetry of the cell with respect to 2/Lz = . The standard method of solving such 

problems is to change the integration over the variable z in (10) to integration over θ  using eq. (12). 

The result is the following formula for the applied voltage: 
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where D  is given by (11) with the same change in the integration variable. The Frederiks transition 

threshold voltage is obtained by taking the limit max 0θ → . It is easy to evaluate the integrals, find 

the limit and obtain: 
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 We note that, as we expect, in the absence of ferroelectric particles,  and we then re-

cover the classical formula for Frederiks transition threshold voltage [7]: 
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3. ESTIMATES 

We use experimental data for ferroelectric particles of Sn  [6] diluted in the LC mixture 

ZLI4801 (Merck) to make some estimates. Reznikov et al [6] report that their Sn  colloidal 

particles possess a spontaneous polarization of 14 µC/cm

622 SP

1.5=LC
aε

32610 m−

622 SP

2 at room temperature. For the liquid crys-

tal mixture ZLI4801, the dielectric function anisotropy . Substituting these parameters 

into eqs. (13) and (14) yields V  for a ferroelectric liquid crystal suspension with 

particle volume fraction , particle volume , and supposing a local field cor-

rection factor 

7.2/ ≈thr
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0.3 %f = v =

1λ = . 

 

CONCLUSIONS 

In this paper we have presented a simple theory of the Frederiks transition in a nematic liquid crys-

tal filled with ferroelectric nanoparticles. In our simple model, in the ferroelectric liquid crystal sus-

pension, the dependence of the angular distortion on the electric field is similar to that in the pure 

system with effective dielectric function anisotropy given by ( ) 2

0

1
a a

fd vλ λ β
ε ε

ε
+

= +% . The theory 

is consistent with the experimentally observed decrease of electric Frederiks transition threshold 



voltage [6]. We shall present elsewhere a more complete general effective medium theory for ferro-

electric liquid crystal suspension. This theory takes account of the shape, polarizability and local 

field anisotropy associated with ferroelectric particles. 
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