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Abstract

Calcium/calmodulin dependent protein kinase Il (CaMKIl) is implicated to play a key role in learning and memory. NR2B
subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKIl at the postsynaptic
membrane. NR2B binds to the T-site of CaMKIl and modulates its catalysis. By direct measurement using isothermal titration
calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATPyS, an analogue
of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKIl with ATP binding the catalytic site first
followed by peptide substrate. We also show that dephosphorylation of phospho-Thr?®¢-a-CaMKII is attenuated when NR2B
is bound to CaMKII. This favors the persistence of Thr**® autophosphorylated state of CaMKIl in a CaMKIl/phosphatase
conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKIl attains unique biochemical
properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory.
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Introduction

Calcium/calmodulin dependent protein kinase II (CaMKII) is
a protein found enriched in the brain. Owing to its unique
autoregulatory ability, CaMKII is implicated to play a major role
in the molecular mechanisms underlying learning and memory.
In the postsynaptic compartment, Ca*" influx through N-methyl-
D-aspartate receptor (NMDAR) activates CaMKII, following
which, it translocates from cytosol to postsynaptic density (PSD)
and binds to NMDAR subunit 2B (NR2B) [1-4]. This interaction
has been shown to be important for the induction of long term
potentiation (L'TP) which is a cellular correlate for learning and
memory [5]. The disruption of this interaction has been shown
recently to produce deficits in hippocampal LTP and spatial
learning [6]. Binding of CaMKII to NR2B, by a non-catalytic site
called T-site, enables it to remain autonomously active [7]. In
addition, the interaction between CaMKII and NR2B through
the T-site has been found to modulate the kinetics of catalysis by
the enzyme [8]. It was proposed that CGaMKII in combination
with protein phosphatase 1 (PP1), a phosphatase enriched in
PSD, can form a Ca®"-sensitive molecular switch that can
respond with specificity to the type of Ca®* signals and provide
stability to molecular memories [9-12]. Since, binding of
CaMKII to NR2B is essential for LTP, we hypothesized that
NR2B-bound CaMKII might contribute to this switch [5,6].
Therefore we have studied the biochemical properties of NR2B-
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bound CaMKII in vitro towards attaining a better understanding
of the regulatory mechanisms affecting the CaMKII-phosphatase
switch.

In the present study, by a direct measurement of binding affinity
using isothermal titration calorimetry (ITC), we show that the
affinity of the ATP analogue, ATPYS, for CaMKII increases
significantly in the presence of NR2B as shown by the change in
value of the association constant, K,. From a separate set of
experiments, we also present data to reveal how NR2B favours the
persistence of Thr?®*® autophosphorylated form of CaMKII. The
mmplications of these findings for the efficient functioning of the
CaMKII-PP1 switch are discussed.

Results

ATP saturation kinetics of NR2B bound CaMKIl

We have previously reported that CaMKII shows enhanced
activity at low [ATP] in the presence of saturating concentrations
of non-phosphorylatable GST-NR2B (S1303A) [8]. When
pretreated with subsaturating concentrations of GST-NR2B
(SI303A) also, CaMKII showed enhanced activity at lower
[ATP] compared with control CaMKII pretreated with non-
phosphorylatable GST-NR2A (S1291A) (Fig. 1 inset). It has
previously been shown by GST pull down assay that NR2A
sequence does not bind to the T-site of CaMKII [3, 8]. The
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activity of the enzyme achieves saturation at very low [ATP] in
presence of NR2B sequence and stays constant for a broad range
of [ATP] whereas in the absence of NR2B the activity attained
saturation only at much higher [ATP]. This indicates an
enhancement in affinity for ATP in the presence of NR2B
sequence. Interestingly, the maximal activity observed in the
presence of NR2B sequence was much lower than that in its
absence (Fig. 1).

Order of binding of substrates to CaMKI|

We resorted to ITC measurements to study binding of
substrates to CaMKII. For this purpose ATPYS was titrated
against calmodulin activated CaMKII in the absence of any
CaMKII binding partner as well as in their presence (Fig. 2).
We found that although the signals were weak and irregular in
the absence of any protein ligand, a clear pattern indicating
binding could be seen (Fig. 2B). The signals seemed to suggest
that the binding of ATPyS to CaMKII accompanies slow
conformational rearrangements in CaMKII. The values of the
titration parameters obtained are as follows: N =0.72+0.067,
K,=8.29x10"+1.06x10" M~', AH=—3428+379.6 cal/mol,
AS=10.8 cal/mol*K (Fig. 2B). A subsequent titration with
protein or peptide substrate detected heat changes due to
specific binding corresponding to ternary complex formation
(data not shown). Consistent with these results, titration by
ATPyS in the presence of protein ligands also showed strong
signals of heat change (Fig. 2C, 2D). When the order of
titrating substrate was reversed, by titrating protein substrate first,
non-specific signals were obtained indicating the lack of any
detectable binding (data not shown). This tends to suggest
that the substrate binding on CaMKII follows an ordered
mechanism in which ATP binds first followed by the protein

Biochemical Effects of NR2B Binding to CaMKII

substrate. Considering that there are conflicting reports re-
garding the order of binding of substrates to CaMKII [13-15],
our experiments provide direct binding data which is in
agreement with the earlier reports that have indicated that
CaMKII follows an ordered ternary complex formation mech-
anism [14,15].

Larger association constant for ATPyS binding to CaMKII
in the presence of NR2B

The ATP analogue, ATPYS was used in order to prevent
phosphorylation of the proteins in the titration experiments.
ATPyS titrations on CaMKII in the presence of protein substrates
yielded strong signals for the heat change which decreased and
approached the baseline (Fig. 2C, 2D). This suggests the formation
of a stable enzyme-substrate ternary complex proportional in
amount to the titrated substrate. Since CaMKII follows an
ordered ternary complex mechanism for its catalysis as shown in
the previous section, wherein ATP comes first in the order of
binding, the ATPYS titration data obtained here can be considered
as characteristic of ATP binding to CaMKII (Fig. 2C, 2D) [14,15].
The binding reactions were exothermic in the temperature range
of the experiments. The thermodynamic parameters and the K,
values obtained from the titrations in the presence of GST-NR2A
and GST-NR2B are shown in Table 1. The K, value for ATPyS
binding to CaMKII in presence of GST-NR2B is about 11 fold
higher than that in the presence of GST-NR2A. The difference in
the K, values in all probability arises from the increase in the
affinity of CaMKII for ATPYS, induced by NR2B as a result of its
binding to CaMKII at the T site. These findings are consistent
with data obtained from activity measurements (Fig. 1).

We carried out titrations at two different temperatures.
At 30°C there was a tendency for precipitation during the
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Figure 1. ATP saturation of NR2B bound CaMKIIl. CaMKIl was preincubated with either GST-NR2B (S1303A) (+) or GST-NR2A (S1291A) ((J) and
the activity was assayed using phosphorylatable GST-NR2A (WT) as substrate. The data were fitted to the Hill equation and plotted using Origin
software. The inset shows initial concentration points plotted separately to highlight the enhancement in activity of CaMKIl in the presence of NR2B.

Data represents three similar experiments.
doi:10.1371/journal.pone.0016495.g001
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Figure 2. ITC profiles of ATPyS titrations on a-CaMKII. Blank titrations with ATPYS in the absence of any protein (A), titrations with ATPyS on
calmodulin activated CaMKIl (B), titrations as in B in the presence of GST-NR2A (C) and titrations as in B in the presence of GST-NR2B (D) are shown.
Molar ratio is that of ligand (ATPyS) to macromolecule (a-CaMKII) after injection.

doi:10.1371/journal.pone.0016495.g002

titration while the titrations at 20°C were found to be ideal for
Table 1 shows the summary of the
thermodynamic parameters obtained at 20°C. As can be seen
from Table 1, the AH, AS and AG values are greater in
magnitude for ATPyS binding to CaMKII in the presence of
NR2B compared to ATPYS binding to CaMKII in presence of
NR2A.

the measurements.

@ PLoS ONE | www.plosone.org

Dephosphorylation of phospho-Thr?®°-CaMKil is resisted
in the presence of NR2B

We reconstituted a system i vitro to mimic the CaMKII-
phosphatase switch that has previously been proposed [10-12]. A
coupled reaction of autophosphorylation alongside dephosphory-
lation of CaMKII-Thr?** was performed considering the physi-
ological possibility of simultaneous autophosphorylation and
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Table 1. ITC data for ATPYS binding to CaMKII.

Biochemical Effects of NR2B Binding to CaMKII

Protein substrate N K, (M) AH (cal/mol) AS (cal/mol*K) AG (cal/mol)
GST-NR2A 1.28+0.0065 222x10°%+2.7x10° —6814+59.15 5.8 —8499
GST-NR2B 1.04+0.0021 2.51x107+4.3x10° —7439+32.36 8.48 —9909

presence of GST-NR2A and GST-NR2B were 2.25x10* and 8679 respectively.
doi:10.1371/journal.pone.0016495.t001

dephosphorylation. The reactions were carried out either in the
presence of GST-NR2B (S1303A) or GST-NR2A (S1291A). It was
very interesting to find that the presence of NR2B sequence caused
an increase in the level of autophosphorylated CaMKII when
compared to that in the presence of the homologous NR2A
sequence (Fig. 3 and Fig. S2). Similar results were obtained even
when the duration of the reaction was varied (data not shown).
Since the final autophosphorylation level observed at the
termination of the reaction would be the result of the forward
and reverse processes, it is possible that the increase in phospho-
Thr?®® might be due to the enhanced rate of autophosphorylation
in the presence of NR2B or due to reduced dephosphorylation
owing to the inability of the phosphatase to access phospho-Thr?®°
when NR2B resides at the T-site or both. We tried to resolve this
by another set of experiments in which the autophosphorylation
and dephosphorylation reactions were decoupled by stopping the
kinase reaction with staurosporine before phosphatase treatment.
We found that even if the autophosphorylation reaction is stopped,
the amount of phospho-Thr?*® was high in those samples with
GST-NR2B (S1303A) indicating that the presence of NR2B
segment inhibited dephosphorylation of phospho-Thr**®-CaMKII
by PP1(Fig. 4).

Discussion

CaMKII present in PSD is believed to form the CaMKII-
phosphatase switch that is involved in supporting synaptic
memory mechanisms such as LTP [10-12]. This involves the
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system of CaMKII and phospho-CaMKII that are continuously
interconverted by the kinase activity of CaMKII and the
phosphatase activity of PP1. The binding of CaMKII to NR2B
present in the PSD, during the induction of LTP [5,6], might
recruit it to the CaMKII-PP1 switch. We speculated that, NR2B-
bound CaMKII might acquire properties that very well may
modulate this switch. Hence we investigated the effects of NR2B
on both the kinase reaction as well as on the dephosphorylation of
phospho-TthgG.

We show that NR2B enhances the phosphorylation activity of
0-CaMKII at low ATP concentrations (Fig. 1). Earlier kinetics
studies had suggested a decrease in the K, value of ATP when
GST-NR2B was the peptide substrate [8]. The CaMKII autopho-
sphorylation kinetics also showed a similar effect on ATP binding
in the presence of non-phosphorylatable GST-NR2B (S1303A)
[8]. In an enzyme reaction mechanism, the apparent K, value is
representative of the several steps, each expectedly having different
rate constants [16]. It is a constant derived from the Michaelis-
Menten equation and is calculated indirectly from the measured
rate of the enzymatic reaction. It could be altered by influences at
any one of the different stages of the process. One of the reasons
for the reduction in K, could be an increase in the affinity of the
enzyme for ATP. Direct evidence of the increase in the enzyme’s
affinity for ATP in the presence of GST-NR2B can be obtained by
measuring the association constant, K, for ATP. Hence, ITC
which is one of the most direct ways to measure binding
parameters was used [17].
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Figure 3. Enhancement in the level of phospho-Thr?®® of a-CaMKIl in the presence of GST-NR2B (S1303A) in the CaMKIl/
phosphatase coupled system. CaMKIl and PP1 were maintained simultaneously active in the reaction for 5 min and the sample was then
analysed by western blotting. Panel A shows the Western blot probed using anti-phospho-Thr?®¢-a-CaMKIl antibody and GST fusion protein bands
stained by Ponceau S. Values obtained by densitometry from four experiments were used for calculating percentage dephosphorylation shown as
bar graphs in panel B. In each set, the band intensity of the sample that was not treated with PP1 [PP1 (—)] shown in A was taken as 100%.

(*p value<0.05).
doi:10.1371/journal.pone.0016495.9003
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Figure 4. Reduced susceptibility of phospho-Thr?®® of a-CaMKIl to dephosphorylation in the presence of GST-NR2B (S1303A).
CaMKIl was initially autophosphorylated in the absence of phosphatase as described in methods. Subsequently dephosphorylation by PP1 was
carried out after stopping the kinase reaction with staurosporine. Representative Western blot is shown in panel A. Quantified values from four
determinations (two experiments) of phospho-Thr?¢ levels on Western blots were used for calculating percentage dephosphorylation shown as bar
graphs in panel B. In each set, the band intensity of the sample that was not treated with PP1 [PP1 (—)] shown in A was taken as 100%.

(*p value<0.005).
doi:10.1371/journal.pone.0016495.9g004

In order to measure the parameters of nucleotide binding prior
to the phosphate transfer step, ATPyS, an ATP analogue resistant
to hydrolysis was used to prevent the reaction from proceeding to
completion which otherwise would result in a large heat change
that will mask the heat change due to binding. Moreover, the
interference of Thr?®®-autophosphorylation reaction can also be
prevented by this approach. Throughout the titration experiments
we had used calmodulin activated CaMKII so that the binding
events subsequent to calmodulin binding alone are measured. This
also avoids any reciprocal modulation of binding between ATP
and calmodulin [18,19]. Analysis by I'TC revealed that the binding
of ATPYS to CaMKII is favored by almost 11 fold increase in
affinity due to the presence of NR2B as seen by increase in K,
value (Table 1). Such insights into the functional regulation of
CaMKII become possible by I'TC analysis of CaMKII holoen-
zyme [19,20].

The K,, values obtained for ATP by the enzyme kinetics
experiments were in the micromolar range. The K, values
obtained for ATPyS binding also gives Kq (Kq=1/K,) [21] in
the micromolar range although the values are still lower than
the reported K,, values [8,22]. The difference between the
values obtained in the presence of either NR2A or NR2B using
ITC are similar to the observations made in biochemical studies
with NR2B inducing a higher affinity for the nucleotide binding
(Fig. 1) [8]. The extent of difference in K, values obtained in the
present study is however higher (~11 fold) compared to the
differences in K, values for ATP obtained by enzyme kinetics
(~6 fold) [8]. This difference might have arisen since in the
microcalorimetry experiments, the non-hydrolysable analogue,
ATPyS was used. In addition, the molar ratios of GST-NR2B
(S1303A) to CaMKII in the ITC experiments were different
from that in the kinetics experiments reported earlier [8].
However, the modulatory action of NR2B does exist at
different molar ratios of GST-NR2B (S1303A) to CaMKII
(Fig. 1) [8].

The binding order of substrates to CaMKII has been
investigated in the past. Data from enzyme kinetics experiments
favoring an ordered mechanism as well as a random mechanism
have been reported warranting further studies on the order of
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substrate binding to CaMKII [13-15,23]. Our measurements of
binding using microcalorimetry detect enthalpy changes upon
titration of ATPYS to CaMKII (Fig. 2B) but not upon titration of
the NR2A or NR2B fusion proteins to CaMKII (data not
shown). This supports an ordered substrate binding mechanism
in which the catalytic cycle of CaMKII involves the formation of
the enzyme-ATP binary complex followed by the enzyme-ATP-
protein substrate ternary complex [14,15]. However, we do not
exclude the possibility of entropically driven binding with
undetectable enthalpy changes. Since the heat changes detected
are dependent on the concentration of ATPyS added, the
difference in binding parameters obtained between the titrations
in presence of NR2A and NR2B should also be due to
differences in the ATP-binding step (Fig. 2C, 2D, Table 1).
The pattern of ATP concentration dependence of the phos-
phorylation activity was consistent with enhanced affinity in the
presence of NR2B sequence (Fig. 1). It is interesting to note that
the ternary complex formation involving GST-NR2B has a
larger —AG value compared to the complex formation with
GST-NR2A. The increase in ATPYS binding to CaMKII, in the
presence of NR2B, is driven by the electrostatic interactions
between ATPyS and CaMKII (a high AH value for ATPyS
binding to NR2B bound CaMKII). At the same time, an
increased entropy change (AS) suggests a structural rearrange-
ment facilitating ATPyS binding. The enhancement of ATP
binding indicates that the modulation by NR2B favors catalysis
in a positive way. We note that the K, value obtained for
titration by ATPYS in the absence of any peptide is smaller by
more than an order of magnitude compared to that in the
presence of peptide substrate (Figs. 2B, 2C, 2D). This might be a
consequence of the formation of the ternary complex in presence
of the peptide substrate.

The change in catalytic parameters of CaMKII upon NR2B
binding may serve its role in supporting synaptic memories. The
complex of CaMKII with NR2B may be considered as a new
enzyme form that is sensitive to lower ATP concentrations and
is also stable, owing to the persistent nature of NR2B binding to
T-site [24]. Although it is generally believed that intracellular
[ATP] is in the millimolar range and hence is not limiting, ATP
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concentrations at synapses are subject to significant variations
because of the high rates of ATP dependent processes. High
likelihood of an ATP gradient formation at spines is also
reported [25]. Moreover, it has also been reported that the ATP
required in the PSD, when necessary, can be synthesized by the
glycolytic machinery resident in the PSD which is subject to
modulation by several metabolites and hence, can be variable
[26]. Variations in [ATP] can, in principle, lead to fluctuations
in the kinase reaction in the switch if CaMKII is in the free
form. The constant rate of reaction exhibited by the NR2B-
bound CaMKII over a wide range of ATP concentrations can
thereby provide stability to the switch against variations in ATP
concentrations (Fig. 1). As it may not be feasible to have all the
CaMKII subunits bound by NR2B, it could be hypothesized
that the NR2B bound subunits in a CaMKII holoenzyme act as
the initiators of autophosphorylation reaction at low ATP
concentrations.

To address the effect of NR2B on the CGaMKII-phosphatase
system, we used an assay system in which CaMKII and PPI
were both active and the resulting level of phospho-Thr?*®-
CaMKII was measured. This led to an interesting observation
that in such a system, the level of Thr®®*® autophosphorylation
remains high when NR2B is present (Fig. 3). This could be due
to the higher autophosphorylation rate in the presence of NR2B
as reported earlier [8]. In addition, it is also possible that there is
a reduction in the rate of dephosphorylation of CaMKII in
presence of NR2B. In order to test whether the dephosphor-
ylation reaction is affected, staurosporine was added to stop the
kinase activity before the addition of phosphatase. This led to
the finding that the dephosphorylation reaction was significantly
reduced in the presence of NR2B, thus suggesting that there is
an additional regulatory mechanism other than enhancement of
kinase activity by NR2B. Any direct effect of the GST-fusion
proteins on PPl was ruled out by pNPP hydrolysis assay of the
activity of PP1 in presence of the fusion proteins (Fig. S3). It
may be speculated that the binding of NR2B to the T-site could
be causing hindrance for free access of phosphatases towards
phospho-Thr286 of CaMKIIL The conformation of the Thr?*
containing motif may undergo significant changes upon binding
of NR2B similar to what was reported ecarlier for Ca”"/
calmodulin binding [27]. The resultant resistance of NR2B
bound CaMKII subunits to dephosphorylation could very well
be assumed to be one of the reasons behind the reported
structural mechanism that prevents CaMKII dephosphorylation
in PSD [28].

One of the characteristics proposed for the CaMKII-
phosphatase switch is its energy efficient operation. Based on
kinetic considerations, the rates of both the autophosphorylation
and dephosphorylation reactions have been assumed to be low
for the proper functioning of the switch. Since the dynamic
maintenance of the switch consumes ATP, low reaction rates for
the forward and reverse reactions help in minimizing consump-
tion of ATP and thus energy efficient functioning of the switch
[10]. Our data shows that the binding of NR2B causes
reduction in the rates of the phosphorylation (Fig. 1, 25 uM
to 100 uM) and dephosphorylation reactions (Fig. 4), thereby
providing a biochemical mechanism that permits the functioning
of the kinase-phosphatase switch in an energy efficient manner
(Fig. 5). In summary, our study reports the direct biochemical
effects of NR2B binding to CaMKII that might confer stability
and energy efficiency to the CaMKII-phosphatase switch in
PSD. The data presented can contribute to building of
quantitative biochemical models of CaMKII function at
synapses.

@ PLoS ONE | www.plosone.org

Biochemical Effects of NR2B Binding to CaMKII

Materials and Methods

Materials

Amicon Ultra centrifugal devices were from Millipore. PIPES,
Hepes, IPL-41 insect cell culture medium, antibiotic/antimycotic
cocktail, fetal bovine serum (FBS), protease inhibitor cocktail, -
mercaptoethanol, calmodulin purified from bovine testes, etc. were
from Sigma-Aldrich, USA. ATPyS was from Roche or Sigma.
PD-10 desalting columns, calmodulin-Sepharose, glutathione-
Sepharose, etc. were from Amersham/GE Healthcare, USA.
Reduced glutathione was from Sisco Research Laboratories, India
or Calbiochem, USA. §f21 cells were from National Centre for
Cell Science, Pune, India. For our experiments, we have used
GST fusions of peptide sequences based on the phosphorylation
sites of NMDAR subunits NR2A and NR2B and termed them as
GST-NR2A and GST-NR2B respectively [8,29]. Corresponding
non-phosphorylatable mutants [GST-NR2B (S1303A) and GST-
NR2A (S1291A)] were also used. All the GST fusion proteins were
expressed in E. col.

Expression and purification of a-CaMKII

Expression of a-CaMKII in insect cells was carried out as
described before [30]. Adherent cultures of §f21 cells in 175 cm?
flasks were infected with the stock of recombinant baculovirus
encoding WT-a-CaMKII. The infected cells were harvested
72 hours post infection. Purification of the expressed protein was
carried out as explained earlier. Each batch of purification had
msect cell pellets from 15 flasks. The cell pellets were resuspended
in lysis buffer containing 50 mM PIPES, pH 7.0, 5% betaine,
I mM EGTA, 1 mM EDTA and 1x complete protease inhibitor
cocktail (Sigma).

In the first step of purification the lysate was loaded onto a
75 ml bed volume phosphocellulose cation exchanger column pre-
equilibrated with equilibration buffer (50 mM PIPES, pH 7.0,
100 mM NaCl, 1 mM EGTA and 1 X protease inhibitor cocktail).
The bound protein was eluted with elution buffer (50 mM PIPES,
pH 7.0, 500 mM NaCl, 1 mM EGTA and 1x protease inhibitor
cocktail). The eluate having GaMKII activity was used for affinity
purification on GaM-Sepharose column as described before [8].

A 20 ml bed volume CaM-sepharose column was used for
affinity purification. Equilibration buffer contained 40 mM Hepes,
pH 7.3, 0.1 M NaCl, 10% glycerol and 2 mM CaCly. The flow-
through was collected and was reloaded once. A high salt wash
with equilibration buffer containing 1 M NaCl was given followed
by wash with equilibration buffer before elution in the buffer
having 40 mM Hepes pH 7.3, 0.5 M NaCl, 5% glycerol, and
3.5 mM EGTA.

Expression and purification of GST fusion proteins

The GST fusion proteins were expressed in BL21 DE3 strain of
E.coli as described before [8]. The expressed proteins were purified
by affinity chromatography using glutathione-Sepharose column.
The crude lysate containing the expressed protein was loaded onto
the column pre-equilibrated with PBS. The bound protein was
eluted in buffer containing 40 mM Hepes pH 7.3, 0.5 M NaCl,
5% glycerol, 3.5 mM EGTA and 10-20 mM reduced glutathione.

Concentrating the purified proteins and buffer

exchanges

We adopted a simplified procedure in which the ionic
constituents (4 mM CaCly and 15 mM MgCly) and 0.5 mM f-
mercaptoethanol required in the final titration experiments were
added to the purified CaMKII before concentrating the protein
using Amicon Ultra centrifugal devices with a molecular weight
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Autophosphorylated Dephosphorylated
CaMKII

CaMKII

Favored state

NR2B bound CaMKII Autophosphorylated NR2B bound CaMKII

CaMKIl

Figure 5. Schematic diagram showing the coupled autophosphorylation-dephosphorylation reaction in vitro that represents the
CaMKII-PP1 switch. A) The normal course of Thr?®® autophosphorylation of CaMKIl and its dephosphorylation by PP1. B) Binding of NR2B to the T-
site of CaMKII increases the ATP binding affinity. NR2B binding also makes the enzyme less susceptible to dephosphorylation by PP1. The dotted
arrows represent slower reaction rates. Both the autophosphorylation and dephosphorylation reaction rates are reduced for the NR2B-bound CaMKIl.
This helps to maintain the Thr*®®-autophosphorylated state in a CaMKII-PP1 switch with minimal consumption of ATP.

doi:10.1371/journal.pone.0016495.g005

cut-off of 100 kDa. The dodecameric a-CaMKII with a molecular
mass of approximately 600 kDa, will be retained by the filter
during concentration. The filtrate obtained by this method will
have all the constituents except the enzyme and can thereafter be
used to reconstitute the ligand solution.

The filtrate collected during concentration of the enzyme was
used to equilibrate the purified GST fusion proteins which had
been eluted in the same buffer with added glutathione. The buffer
exchange of purified GST fusion proteins was carried out using
PD10 gel filtration columns after concentrating the GST fusion
protein to a reduced volume in 10 kDa cut-off Amicon Ultra
centrifugal devices.

CaMKII subunit concentration achieved was about 48-50 uM
while GST fusion proteins were concentrated to 416460 uM (Fig.
S1).

Protein concentration

Concentrations of the purified proteins were estimated by the
bicinchoninic acid (BCA) method.

ATP saturation kinetics with NR2B treated CaMKII
Kinetic analyses were carried out as described earlier [8].
CaMKII was preincubated along with Ca?*/CaM (2 mM/27 U
per ul), and 3.2 uM of either GST-NR2B (S1303A) or GST-
NR2A (S1291A). This was used as the enzyme source for the
assay. Assay had a final concentration of 2 mM CaCly, and
2.7 U/ul CaM. [y-°*P] ATP at concentrations ranging from
0.2 uM—-100 UM was used to carry out the assay. The
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phosphorylated bands were detected from the autoradiogram
and were quantified by densitometry using QuantityOne
software.

Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) experiments were done
using a VP-ITC system (Microcal Inc.). All the experiments
presented were conducted at 20°C while trials at 30°C were also
done. The buffer used was 40 mM Hepes, pH 7.3, 0.5 M NaCl,
5% glycerol, 4 mM CaCly, at least 4 U/ul calmodulin, 0.5 mM f-
mercaptoethanol, 3.5 mM EGTA and 15 mM MgCl, except for
the blank titration (Fig. 2A) in which calmodulin was absent.
ATPYS was reconstituted in the same buffer. Multiple titrations
were carried out at various concentrations to optimize the
conditions. ATPYS taken in the syringe had a concentration of 1
to 1.5 mM. Injection parameters for the ligand were 6-8 pl/
injection with time spacing of 200-700 seconds depending on the
progress of the titrations. The final protein concentrations used for
the experiments were 21 uM subunit concentration of a-CaMKII
and 82 uM GST-NR2A or GST-NR2B. Three sets of ATPyS
titrations were performed; 1) ATPyS titration on CaMKII, 2)
ATPyS titration on CaMKII with GST-NR2A, and 3) ATPyS
titration on CaMKII with GST-NR2B. Titrations were initiated
after incubating CaMKII in the buffer to ensure binding of
calmodulin. The titration experiments involving the GST fusion
proteins were carried out in two steps, with the GST-fusion
protein substrate being titrated first followed by the ATPyS
titration.
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Analysis of Calorimetric data

Data obtained from the titrations was analyzed using Origin™™
7.0 software. Before analysis of the data, the heat changes
accompanying ATPyS binding to CaMKII alone were subtracted
from the individual data of enthalpy change accompanying
ATPyS binding to NR2B or NR2A saturated CaMKII. The data
were fit to single binding site model. From the curve, values for
stoichiometry of binding (N), association constant (K,) and
enthalpy of binding (AH) were obtained. Change in entropy
(AS) was obtained using the equation :(AG;, = AH,,—TAS), where
AGL=—-RTInK,; R and T represent the gas constant and the
absolute temperature (in Kelvin), respectively.

Dephosphorylation of phospho-Thr*®°-CaMKiII

a) Simultaneous autophosphorylation and depho-
sphorylation of CaMKII. The reactions were carried out in
the presence of non-phosphorylatable GST-NR2A or GST-
NR2B. A preincubation step having 0.8 pM CaMKII, 6.4 uM
of either GST-NR2B (S1303A) or GST-NR2A (S1291A), 2 mM
CaCly and 27 U/ul CaM was carried out before the assay.
The reaction mix for assay was similar to that of the
autophosphorylation reaction described earlier except for the
addition of phosphatase, PP1 [8]. Each assay tube contained final
concentrations of 50 mM Tris (pH 8.0), 10 mM MgCly, 0.4 mM
EGTA, 1.3 mM CaCl,, 6.7 U/ul CaM, 0.2 mg/ml BSA, 1 mM
MnCly, 0.9 uM of ATP, 0.2 uM CaMKII and either 1.6 uM
GST-(S1291A)-NR2A or 1.6 pM GST-(S1303A)-NR2B in the
presence or absence of 3.75 units of PP1 in a total volume of 20 pl.
The reaction duration was mostly 5 minutes, but 1 minute, and
15 minutes durations were also tried. The reactions were started
by the addition of ATP and were stopped by the addition of 5 x
SDS sample buffer. The reaction samples were resolved in a 10%
SDS-PAGE and western blotting was carried out to monitor
Thr*®® autophosphorylation. A mouse monoclonal anti-phospho-
Thr?*®--CaMKII primary antibody was used in conjunction with
alkaline phosphatase conjugated secondary antibody. Experiments
using y-"2P-ATP were also performed. The reaction samples were
resolved in a 10% SDS-PAGE gel which was later dried and
exposed to phosphor screen and was subsequently scanned in a
BioRad PhosphorImager.

b) Dephosphorylation autophosphorylation.
Autophosphorylation reaction was carried out as mentioned
above for 30 seconds without including phosphatase or the
GST fusion proteins and the reaction was terminated by adding
10 uM staurosporine, a kinase inhibitor. After stopping the
autophosphorylation reaction, aliquots of the autophosphorylated
CaMKII were incubated with GST-NR2B (S1303A) or GST-
NR2A (S1291A) separately, in the same buffer. The
dephosphorylation reaction in these samples was initiated by the

after
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followed by addition of 5x SDS sample buffer.

Supporting Information

Figure S1 A) Representative SDS-PAGE showing purified o-
CaMKII (1 pg). B) SDS-PAGE of purified and concentrated GST-
NR2A and GST-NR2B used for ITC experiments. Molecular
sizes are indicated in kDa. 16 pg of purified GST-NR2A and
15 pg of purified GST-NR2B were loaded.

(TIF)

Figure $2 Enhancement in the level of phospho—Thr286 of a-
CaMKII in the presence of GST-NR2B (S1303A) in the
CaMKII/phosphatase coupled system. Autoradiogram of autop-
hosphorylated CaMKII (**P-labeled) is shown. The duration of
the reaction was 1 minute. Reactions were started by addition of
0.7 uM [y-**P] ATP as described in methods. Data represents at
least three similar experiments.

(TIF)

Figure 83 PPl activity assay using pNPP (para-Nitrophenyl
Phosphate) hydrolysis to investigate the effect of GST fusion
proteins on the activity of PP1. A 50 ul reaction was set up which
had 1x PP1 buffer (50 mM HEPES, pH 7.0, 0.1 mM EDTA,
5mM DTT and 0.025% Tween-20), 1 mM MnCl,, 50 uM
pNPP, 0.34 uM GST-(S1291A)-NR2A or 0.27 uM  GST-
(S1303A)-NR2B and 2.5 U of PP1. The experiment was carried
out in a 96 well plate. The reaction mixture was incubated for
10 minutes at 30°C. The reaction was stopped by the addition
0.5 M EDTA and the absorbance was measured at 405 nm
wavelength in an automated microplate reader. The activity was
unaffected in the presence of GST fusion proteins but was
significantly reduced by the phosphatase inhibitor, okadaic acid.
(TIF)
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