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Abstract 

This paper reports detailed characterisation of a zinc oxide (ZnO) nanopowder synthesized by a flame 

spray pyrolysis method. Detailed characterisation of the powder was carried out following a protocol 

that aims to determine key  physicochemical characteristics that may affect its toxicity. Analysis by X-ray 

diffraction, (XRD), transmission electron microscopy (TEM) and surface area measurements confirmed 

monophasic hexagonal wurtzite ZnO nanoparticles with a specific surface area of 59 m2/g.  Histograms  

derived from TEM analysis are presented to illustrate the polydispersity within the sample; particles 

were elongated in the c-crystallographic direction, with average length ~ 23 nm and  width  ~14 nm. 

Dynamic light scattering (0.1 w/v % in deionised water, pH 7.4) revealed the particles were 

agglomerated with a modal secondary particle size of ~ 1.5 μm. Fourier transform infra-red spectroscopy 

and X-ray photoelectron spectroscopy indicated the presence of  carbonate impurities on the surface of 

the ZnO nanoparticles.  

Introduction 

Zinc oxide (ZnO) is a wide band gap semiconductor material (approximately 3.37 eV at 300 K) which has 

received great interest for its potential applications in the electronics and photonics industries (Johnson 

et al. 2004; Onreabroy et al., 2006). In addition, ZnO is used in medical and healthcare applications due 

to its antibacterial behaviour (Zhang et al. 2006). Nano-sized ZnO particles are of particular interest in 

numerous applications due to performance enhancements associated with nano-dimensions 

(Padmavathy and Vijayaraghavan, 2008; Yamamoto, 2001). Nanoparticles of ZnO are added to some 

sunscreens due to the broad range of absorbance both in the UV A and B range (Mitchnick et al. 1999). 

They exhibit high visible transparency, and superior biocompatibility to organic UV filters (Gustavsson et 

al. 2002), which has led also to the use of nano ZnO in cosmetics as well as in paints and pigments (Liufu 
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S. 2005). Synthesis of large quantities of high purity, homogenous nanoparticulate ZnO is therefore 

important in order to supply the needs of industry.  

Nanoparticles of ZnO have been prepared by physical methods, such as milling and grinding, (Shen 

2006); by thermal evaporation of ZnO (Wang, 2004) or evaporation and oxidation of zinc (Wu et al., 

2000); and by chemical solution synthesis routes such as hydrothermal synthesis (Suchanek, 2009; 

Baruah and Dutta 2009), sol-gel (Meulenkamp 1998; Mondelaers et al., 2002) and precipitation from 

both aqueous and non-aqueous solvents (Jézéquel et al., 1995, Hsieh et al., 2007). However, despite the 

wide variety of wet chemical methods, the majority of ZnO is produced in industry by gas phase 

synthesis through oxidation of Zn vapour (Auer et al, 2009). Gas phase synthesis is suitable for preparing 

ZnO nanoparticles with high crystallinity as the reaction occurs at very high temperatures over a short 

time span.  

Flame aerosol synthesis is a promising, scalable alternative gas-phase production method for zinc 

oxide nanoparticles. Here, a gaseous (vapor-fed aerosol flame synthesis, VAFS), liquid (flame-assisted 

spray pyrolysis, FASP, and flame spray pyrolysis, FSP) or solid precursor is introduced into a flame and 

converted to nanoparticles (Teoh et al., 2010). For instance, Jensen et al. (2000) produced ZnO 

nanoparticles of 25-40 nm diameter via VAFS by subliming zinc acetylacetonate into nitrogen carrier gas 

and feeding the vapor to a premixed methane-air flame. Matsoukas and Friedlander (1991) introduced 

an aerosol of solid zinc nitrate particles into a diffusion flame and studied the evolution of the  size 

distribution for the resulting ZnO nanoparticles. However, delivery of a liquid precursor into the flame 

may be the most effective route, since a broad range of less volatile raw materials is available that can 

be dissolved in organic solvents or even water, allowing relatively simple liquid precursor handling and 

dosing. In particular, flame spray pyrolysis (Bickmore et al., 1996; Mädler et al., 2002) that benefits from 

self-sustaining high temperature flames  has been shown to be a versatile and scalable method for the 

production of single- and multi-component oxide and even metal nanoparticles, as is apparent from 

recent reviews (Teoh et al., 2010; Athanassiou et al., 2010; Strobel and Pratsinis 2007). 

ZnO nanoparticle synthesis with liquid-fed flame reactors in FASP mode has been studied by 

Marshall et al. (1971), spraying an aqueous solution of zinc acetate into a town gas-air burner. Carroz et 

al. (1980) produced ZnO nanoparticles of 200 nm diameter by FSP of zinc nitrate solutions in ethanol 

and methanol. Tani et al. (2002) used FSP to produce zincite nanoparticles employing zinc acrylate as the 

precursor and methanol as the solvent. Product particle diameters obtained from nitrogen adsorption 

ranged from 10 nm to 18 nm; size increased as the rate of supply of the precursor solution to the flame 

increased from 1 ml/min to 4 ml/min. Nanoparticles made at higher precursor flow rates were slightly 
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elongated, in agreement with Strobel and Pratsinis (2011) who observed formation of ZnO nanoparticles 

with ≈ 1.5 aspect ratio by FSP employing a zinc-nitrate hexahydrate / ethanol solution. Liewhiran and 

Phanichphant (2007) reported mainly spheroidal ZnO nanoparticles with occasional hexagonal and rod-

like structures in FSP synthesis from zinc-naphthenate/toluene/acetonitrile precursors for application in 

gas sensors. Height et al. (2006) made pure as well as doped ZnO nanoparticles and rods by FSP 

conversion of a zinc-naphthenate/toluene precursor solution. The undoped ZnO particles were 

predominantly spherical with individual elongated structures.  

 

There is concern surrounding the potential toxicity of engineered nanomaterials to humans and the 

environment, a topic which at present is not fully understood. As a consequence, extensive research is 

currently being conducted aimed at investigating the toxicity of nanomaterials. ZnO nanoparticles 

produced by FSP have been used for toxicological investigation. George et al. (2010) and Xia et al. (2008) 

implemented FSP produced nanoparticles into cytotoxicity screening tools and Li et al. (2011) 

investigated the bacterial toxicity of the particles. The ZnO nanoparticles for the studies were produced 

by dissolving zinc naphthenate precursor in xylene organic solvent. Although particle size was 

determined by BET and XRD, there was no statistical analysis of size distribution and morphologies of 

particles present in the TEM sample. Xia et al. (2008) and George et al. (2010) proposed in-vitro 

toxicological screening to rank engineered nanomaterials for priority in-vivo testing and chose FSP-made 

ZnO nanoparticles as one system to study the induction of cellular responses. 

 

The aim of the present work was to synthesize and thoroughly characterize a set of ZnO nanoparticles 

that in future could be used for studies aimed at investigating the relationship between particle 

properties and toxicity. It is essential to develop a protocol to characterize the physicochemical 

properties of the test powders. Data on toxicity will be reported in future publications.  Understanding 

this relationship was a key aim of the European Union funded project ENNSATOX (www.ennsatox.eu) for 

which this research was carried out. The ZnO particles for the project were required to be around 20 nm 

in size with a narrow size distribution. Here we report the synthesis of ZnO nanoparticles by a flame 

spray pyrolysis technique that has been adapted in order to attempt to produce nanoparticles of this 

size. The precursor solution comprised zinc naphthenate dissolved in toluene. To properly inform the 

follow on toxicological investigations, it was essential that a detailed particle characterisation protocol 

was followed to ensure essential information about the morphology, size, composition and 

agglomeration state of the particles. The protocol involved the following techniques; X-ray diffraction 
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(XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected 

area electron diffraction (SAED), Fourier transform infra-red spectroscopy (FTIR), thermal gravimetric 

analysis (TGA) with evolved gas analysis (EGA), and X-ray photoelectron spectroscopy (XPS) of the dry 

powder, and dynamic light scattering (DLS) of the powder in suspension.  

 

Experimental 

In contrast to the previous studies, zinc naphtenate (STREM; 65% in mineral spirits, 10 wt % Zn) was 

chosen as the Zn precursor and was diluted with toluene (Sigma Aldrich) to give a Zn concentration of 

0.5 mol/l. The precursor solution was delivered to the flame at a rate of 5ml/min with the help of a 

syringe pump (Lambda, VIT-FIT) and atomized with coflowing 5 l/min of oxygen dispersion gas at 3 bar 

pressure drop. The oxygen and methane supporting flame feed rates were 2.5 l/min and 1.25 l/min 

respectively. The flow rates of all gases (PanGas, ≥ 99.5%) were adjusted with calibrated mass flow 

controllers (Bronkhorst EL-FLOW) and are reported at 25°C and 1 atm. Product nanoparticles were then 

collected on glass-fiber filters (Whatman GF 6, 254 mm diameter) with the help of a vacuum pump 

(Busch Seco SV1040).  

Phase analysis and crystallite size estimation of the bulk powder was achieved by X-ray powder 

diffraction (XRD) using a Philips PANalytical X’Pert X-ray diffractometer with a CuKα X-ray source 

scanning over a range of 5-80° 2θ. Furthermore, the sample was analysed by TEM using a Phillips FEI 

Tecnai TF20 field emission gun TEM operating at a gun voltage of 200 kV, fitted with an Oxford 

Instruments INCA 350 energy dispersive X-ray (EDX) system/80mm X-Max silicon drift detector (SDD) 

and Gatan Orius SC600A charge-coupled device (CCD) camera. Bright field images of the sample were 

taken to obtain information about particle size and morphology. Energy dispersive X-ray spectroscopy 

(EDX) was performed on the sample to obtain compositional information and identify any potential 

impurities. The specific surface area (SSA) of product powders was measured using N2 gas adsorption 

employing the BET isotherm. The BET-equivalent diameter of the particles was calculated assuming 

monodisperse spheres and a zinc oxide density of 5.606 g/cm3 from eq. 2:  

dBET = 6000 / (SSA x ρ), (Eq. 2) 

where dBET is the average primary particle size (nm), SSA the specific surface area (m2/g) and ρ the 

density of ZnO (g/cm3). 
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 A Thermo Scientific IS10 Fourier transform infrared spectrometer (FTIR) with an attenuated total 

reflection accessory (ATR) was employed to identify carbonate, hydroxyl or other contaminants. A 

Shimadzu TGA 50 thermogravimetric analyser was used to monitor any changes in mass when the ZnO 

powder was heated, to further investigate phase purity. Evolved gases were analysed by a Thermo 

Scientific IS10 FTIR spectrometer with a Thermo Scientific FTIR/TGA interface attached. The sample was 

heated from 10˚C to 800°C, at a rate of 10°C/min in air; an FTIR spectrum was acquired every minute in 

order to identify the gases evolved. X-ray photoelectron spectroscopy (XPS) was carried out to 

investigate the presence of impurities on the surface of the sample, complimenting FTIR studies. XPS 

measurements were performed using a VG Escalab 250 XPS with monochromated aluminium K-α X-ray 

source (Spot size diameter = 500 μm; Power = 150 W). The binding energy scale was calibrated by 

setting the carbon 1s peak to 285 eV. Spectra were analysed using mixed Gaussian-Lorentzian peak 

fitting within the processing software CasaXPS. Dynamic light scattering (DLS) measurements were 

carried out using a Malvern Zetasizer Nano ZS instrument and data manipulation was performed by the 

DTS Nano software to determine the particle size distribution. The powder was dispersed in deionised 

MilliQ water (with a resistivity of 15 MΩ.cm) at a concentration of 0.1 % w/v. The suspension was then 

ultrasonically agitated for 20 minutes, before DLS analysis.   

Results and Discussion 

The XRD pattern collected from the synthesised powder is shown in Figure 1 with the Miller indices of 

the planes indicated above each peak. The pattern is consistent with that from the JCPDS reference file 

for the hexagonal-close-packed Wurtzite structure of zincite (ref: 01-079-0206), see Table 1, that has 

also been observed in other flame-synthesized ZnO powders (Tani et al., 2002; Height et al., 2006; 

Liewhiran et al., 2007). The average crystallite size was estimated from each of the peaks using the 

Scherrer equation (Cullity, 2001) and using all of the values obtained, an average crystallite size of 22 nm 

was calculated. The (0002) peak was slightly narrower than the other peaks indicating a slightly larger 

crystallite size along these planes. This may be attributed to the presence of a number of elongated 

particles in the sample, as ZnO grows favourably in the [0001] direction, as is confirmed by TEM below. 

The specific surface area was determined as 59.0 m2/g corresponding to an average primary particle 

diameter of 18 nm which is in good agreement with XRD crystallite size estimation and indicates that 

particles are predominantly single crystals.  

The crystallite and primary particle sizes here are consistent with Height et al. (2006) using the 

same precursor solution and reactant flow rates but an additional 5 l/min of oxygen sheath gas. For 
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undoped ZnO nanopowder they obtained a specific surface area of 53 m2/g while the average crystallite 

sizes determined from the (0002) and (1010) peaks were 27 and 18 nm, respectively. The additional 

oxygen sheath gas in the experiments of Height et al. (2006) might have resulted in a hotter flame and 

slightly larger particles by increased particle residence times in the flame. Liewhiran and Phanichphant 

(2007) obtained somewhat smaller average primary particle and crystallite sizes of 16.8 nm (63.8 m2/g) 

and 18 nm, respectively, but used a toluene /acetonitrile (ΔHC=-1256 kJ/mol) solvent mixture with lower 

enthalpy of combustion compared to pure toluene (ΔHC=-3910 kJ/mol) at otherwise similar synthesis 

conditions. Thus, smaller particles grown in shorter and colder flames are expected. Interestingly, Tani 

et al. (2004) produced similar-sized particles with 58 m2/g from a methanol-based solution fed at 4 

ml/min and dispersed with 3.85 l/min oxygen (pilot flame: 1.58 l/min CH4 and 1.52 l/min O2). Given the 

low combustion enthalpy of methanol (ΔHC= -726.1 kJ/mol) and shorter high temperature residence 

times, smaller product primary particles than from the toluene-based flame here would have been 

expected.  

TEM images of the ZnO nanoparticles show the interparticle variation in size and morphology to 

have only a small distribution (Figure 2). The inset in Fig. 2(a) is of the selected area electron diffraction 

of the cluster of particles visible in Figure 2(a). The d-spacings in the material, calculated from 

measurement of the ring diameters in the SAED pattern shown in Figure 2(a), are in good agreement 

with XRD data for Zincite (ref: 01-079-0206). The high resolution TEM image in Figure 2(b) shows the 

clearly discernible lattice planes of a highly crystalline material. The indicated d-spacing of these planes 

is 2.819 Å which corresponds to the d-spacing of the {1010} planes of the ZnO crystal (JCP-DS ref: 01-

079-0206). This indicates that the preferred direction of growth of the elongated ZnO particles is in a 

direction parallel to the {1010} planes, supporting the assumption that the ZnO nanoparticles in this 

sample grow preferentially along the c-axis, <0001>, as is typically observed with gas-phase synthesis 

techniques (Wang, 2004). The widths and lengths of 250 particles were measured and the data are 

presented in histograms (Figure 3). Figure 3 (a) shows the distribution of particle lengths with an 

average value of 23 nm and a median of 22 nm. Figure 3 (b) shows the distribution of particle widths 

with an average value of 14 nm and a median of 12 nm. The Feret ratios for each particle measured are 

presented in Figure 3 (c) and the data indicate that the majority of particles are elongated with an 

average Feret ratio of 1.6. The Feret ratio histogram is skewed positively with a median value of 1.4 and 

mode of 1.3, indicating that the majority of the particles have a lower Feret ratio than the mean 

suggests, consistent with the TEM image shown in Figure 2(a). Taking into account the average particle 
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lengths and widths, the size values are in good agreement with both BET and XRD crystallite size 

determinations. The particle morphologies here qualitatively resemble those observed by Liewhiran and 

Phanichphant (2007) even though the authors reported mainly spheroidal with occasional hexagonal 

and rod-like particles consistent with Height et al. (2006). The ZnO nanoparticles obtained by Tani et al. 

(2000) at their highest precursor feed rate of 4 ml/min are also elongated,  but no aspect ratio was 

reported. Strobel and Pratsinis (2011) qualitatively estimated an aspect ratio of 1.5 for their ZnO 

particles from zinc nitrate precursor solutions. These results show that average primary particle or 

crystallite size data is insufficient to characterize flame-made zinc oxide nanopowders but a quantitative 

particle size and shape analysis should be carried out. 

 Particle size distribution data obtained by DLS for nanoparticles suspended in water at a final solution 

pH of 7.4, are shown in Figure 4. The light scattering profile of the suspension is converted into plots of 

intensity, volume and number using the instrumental software. The Rayleigh approximation states that 

the intensity of light scattered by a particle is proportional to the diameter of the particle (I α d6). The 

intensity profile in Fig. 4(a) displays a modal peak at 1500 nm, a secondary peak at 185 nm and two 

smaller peaks at 550 and 5500 nm. The intensity plot shows the relative intensity of light scattered by 

each of the size groups. The volume profile displayed in Figure 4 (b) has a modal peak at 180 nm, a 

secondary peak at 1500 nm and two smaller peaks at 550 nm and 5500 nm. The volume plot is formed 

by conversion of the intensity profile using Mie theory which takes into account the greater relative 

scattering of the larger particles compared to the small (Malvern, 2000), and hence explains the switch 

between the relative size of modal and secondary peaks. The number profile shown in Fig. 4(c) is 

derived from the volume plot and displays the relative percentage of particles in each size class. The 

number plot displays the narrowest particle size distribution, however as it is derived using a 

mathematical approximation and is not necessarily the most accurate. The plot has a principal peak at 

160 nm indicating that the majority of the nanoparticles (with an average primary particle size of 18 nm) 

in the suspension are agglomerated into clusters of particles. The secondary peak at 500 nm accounts 

for a much smaller fraction of larger agglomerates present in the suspension. Although the number 

profile indicates that the majority of the agglomerates present in the sample are below 800 nm, it does 

not show the extremely low fraction of agglomerates present that are greater than 1000 nm in 

hydrodynamic diameter, as shown by the intensity and volume plots. 

The DLS measurements were taken immediately after the sample was removed from the ultrasonic bath 

and are therefore not an indication of how well the particles are dispersed with time. The suspension is 
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unstable with the particles sedimenting within minutes of being removed from the ultrasonic bath. This 

can be explained by the solution pH of 7.4 which is relatively close to the isoelectric point of ZnO at pH 

8.4. ADD REF Particle stability must be taken into account in toxicological assays which invariably take 

place in a liquid medium. The degree of particle agglomeration in suspensions will be affected by the 

dispersing medium i.e. the presence of salts and protein serum can affect nanoparticle stability 

(Hondow et al. 2012). 

Figure 5(a) shows the FTIR spectrum obtained for the as-prepared sample. The strong band ≤ 550 cm-1 is 

characteristic of the broad band of absorption that indicates ZnO lattice bonding (Umar et al., 2009; 

Wahab et al.; 2009, Li et al., 2010).  The band at ~ 1700 cm-1 is characteristic of C=O stretching of an 

organic carbonyl group. It may be due to aldehyde, ketone or carboxylic acid compounds that have 

formed due to partial decomposition of the precursor compound zinc napthtenate  in the toluene- 

fuelled flame during the synthesis process. The band at 3400 cm-1 relates to the O-H stretch of the 

hydroxyl vibration and hence indicates hydration of the sample. Literature reports that the characteristic 

band here for O-H occurs between 3200-3600 cm-1 (Socrates, 2001), however the band present in the 

current sample spectrum continues down to 2800 cm-1. It is likely that the O-H band is masking another 

absorption band that can most probably be attributed to the asymmetrical stretch of a C-H bond 

present in the carbonyl containing compound mentioned above. The overlapping bands at 1400, 1250 

and 750 cm-1 are characteristic of inorganic carbonate which are known to have absorption bands at 

1160 cm-1, 1100-1040 cm-1 and between 900-800 cm-1 (Socrates, 2001; Chowdury et al.). This is likely to 

be present as a result of absorbed CO2.  

The FTIR spectrum in Fig 5(b) is of an aged sample of the powder and, as expected, the bands occurring 

as a result of sample hydration and carbonation increase in strength. Formation of surface carbonates 

and hydroxides is typically observed with zinc oxide exposed to ambient air since ZnCO3 is  a stable 

phase if CO2 is present, while Zn(OH)2 is close to stability in humid air (Klimm et al., 2011). Thus it must 

be taken into account that ZnO surfaces exposed to air may easily form layers of carbonate and/or 

hydroxide not only by adsorption but also by chemical reaction (Klimm et al., 2011). The FTIR spectrum 

in Fig. 5(c) was obtained immediately after the sample had been heated to 950°C in order to investigate 

whether the presence of carbonate, hydroxyl and potential organic contaminants on the surface were 

diminished. The O-H, C=O and C=H peaks were no longer detectable, suggesting that all of the moisture, 

as well as the substance responsible for the suspected C=O and C-H bands,  was removed during high 

temperature heat treatment. However, heating the sample to this temperature causes the nanoparticles 



9 
 

to sinter into larger particles (Figure 8). A sharpening and decrease in intensity of absorbances due to 

inorganic carbonate bands is observed indicating a reduction, but not removal of the surface carbonate 

phase. Either the treatment temperature was still too low for full chemical decomposition of the 

carbonate,  since a ZnO wafer showed a well-structured surface only after annealing at 1150°C in oxygen 

(Klimm et al., 2011), or the entire surface-carbonate was removed during heat treatment but transferral 

from the furnace to the FTIR instrument resulted in a limited degree of re-carbonation even in the short 

time the surface was exposed to air.  

XPS was carried out in order to investigate the surface composition of the ZnO nanoparticles in greater 

detail. XPS is usually carried out on a graphite substrate, however as the carbon content in the sample 

was of interest, indium was used instead. XPS was performed close to the time of synthesis of the 

sample (T=1 month), and then again 8 months later (T=9 months) in order to investigate the extent to 

which the sample was absorbing atmospheric CO2. The C1s region of the XPS spectra for both samples 

are shown in Figure 6 and indicate that the carbon content increases substantially, in agreement with 

FTIR analyses on ageing.  Three different carbon species are identified by XPS, each of which can be 

identified by the binding energy at which the peak occurs. The peak at 285 eV corresponds to a C-H 

bonded C atom and the peak at 288.9 eV is indicative of a carbon in a carboxylic acid, ketone or 

aldehyde (already suggested by FTIR). The peak at 286.5 eV is likely to be indicative of absorbed CO2 to 

form ZnCO3 on the nanoparticle surface.  This is also consistent with the FTIR findings (Fig. 5). The 

estimated amount of carbonate species present in the analysed surface region of the sample, expressed 

as a percentage of total carbon content, increases from 10 % at T = 1 month to 25 % at T = 8 months. 

This carbonate/hydroxide layer can constitute a significant weight fraction of high surface area 

nanoparticles and significantly affect their chemical and physical properties. Solubility for example is 

emerging as a key factor in understanding ZnO toxicity (Reed et al., 2012; Xia et al., 2008). 

Figure 7(a) shows the results of a TGA experiment performed on the sample with the mass expressed as 

a percentage of the total initial starting mass. Evolved gas analysis was performed on the sample in 

order to confirm the composition of the gases evaporating from the sample during TGA. The Gram-

Schmidt plot shown in Figure 6(b) shows how the total IR absorbance changes as the temperature rises. 

The reduction in mass observed in Figure 7(a) can be explained by the increase in overall absorbance 

observed in the Gram-Schmidt plot (Figure 7(b)). The steep drop observed in Fig. 7(a) between 50°C and 

150°C in which the sample loses around 1.5% of its total mass can be explained by water vapour, already 

identified by FTIR, evaporating from the sample. Evidence for this is observed in Figure 7(c) which shows 
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the absorbance detected in the range 1500-1900 cm-1, indicative of O-H bending, increasing in intensity 

over the same temperature range, 50°C to 150°C. There is then a more gradual reduction in weight 

between 150 and 650°C where the sample loses around 2% of its total mass. This may be surface zinc 

carbonate, which has already been identified by FTIR and XPS, decomposing to form carbon dioxide. 

Evidence for this is observed in Figure 7(d) which shows two peaks of absorbance in the range 2250-

2400 cm-1, indicative of carbon dioxide evolving between 200 and 500°C. There is a possibility that CO2 

may also be formed by decomposition of residual organic precursors present on the surface of the 

particles, for which there was evidence from XPS and FTIR. During synthesis, the maximum flame 

temperature is around 2200 - 2700°C (Mädler et al., 2002; Gröhn et al., 2012), yet out investigations 

infer that some of the precursor derivatives do not fully decompose. This may be because the particles 

experience the flame temperature for a fraction of a second, whereas in TGA analysis, despite the lower 

temperatures  the dwell times  are much longer (heating rate  10°C/s) enabling decomposition reactions 

to proceed to completion. Moreover, Gröhn et al. (2011) also observed individual precursor droplets 

escaping the spray that might contaminate the product ZnO nanoparticles on the collection filter.  

Figure 8(a) shows a TEM image of the sample after heating to 800°C for TGA and reveals that the 

particles have sintered into larger entities with an average particle size of around 250 nm. The crystalline 

structure of the powder does not change however, as the ring pattern in Figure 8(b) confirms hexagonal 

phase zincite.  

In summary, the characterisation protocol followed in this study has provided detailed information on 

the particle size and morphology, structure, and surface composition of the FSP ZnO nanoparticles.  This 

information is essential to better understand the relationship between nanoparticle properties and any 

toxic effects they may exhibit. This protocol involved X-ray diffraction (XRD), BET specific surface area 

analysis, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected 

area electron diffraction (SAED), Fourier transform infra-red spectroscopy (FTIR), thermal gravimetric 

analysis (TGA) with evolved gas analysis (EGA) and X-ray photoelectron spectroscopy (XPS) of the dry 

powder and dynamic light scattering (DLS) of the powder suspended in MilliQ water. The results 

obtained for each of the techniques, are summarised in Table 2. The protocol may be used in future 

studies for the purposes of characterising nanoparticle samples for toxicological studies. 

For the ZnO powder, XRD and BET techniques gave average particle sizes in good agreement, ~ 18-22 nm 

nm.   However, the value determined from these techniques uses formulae that assume spherical 

particles. The narrower FWHM for the 0002 peak of the XRD plot indicated that there were elongated 
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particles present in the sample that grew preferentially along the <0001> axis. Quantitative particle 

analysis by TEM imaging revealed elongated nanoparticles with an average Feret ratio of 1.6. These 

results highlight the importance of characterising a sample using  TEM to determine a detailed overview 

of the distribution of sizes and morphologies present in a sample.   Suspensions were thoroughly mixed 

prior to drop casting TEM grids, to increase the probability that TEM samples were representative. 

Individual measurements of 250 particles enabled histograms to be produced which indicated the 

polydispersity in size and shape within the TEM specimen. This additional information on particle size 

and shape will be invaluable when  comparing toxicology results for different powders. Solubility studies 

in relevant biological media would complement the detailed basic physio-chemical characterisation 

reported here (Xia, 2008).  

 FTIR, XPS and TGA revealed the presence of various forms of carbon species present in the material. It is 

likely that these compounds are a result of carbonation of the surface of the nanoparticles from storage 

in air, and although inconclusive at present, there may be organic compounds present formed by 

combustion of the precursors used in the synthesis procedure. Another possible source of 

contamination of the sample may have arisen from the glass-fiber filters on which the particles are 

collected during synthesis, which contain an organic binder. The use of toluene as the precursor solvent 

combined with a faster feed rate of 5 ml/min did not appear to produce particles significantly larger 

than those synthesized by Tani et al. (2009). 

Conclusions 

ZnO nanoparticles have been synthesised for by a flame spray pyrolysis technique, and a 

characterisation protocol  implemented to determine the physicochemical properties of the powders. 

Many of the hexagonal wurtzite ZnO particles were elongated in the c -direction:  mean particle lengths 

were 23 nm  and widths 14 nm. Surface areas were 59 m2/g.  Carbonate and hydroxide surface phases 

were identified using a combination of Fourier transform infra red spectroscopy, thermogravimetric 

analysis and X-ray photoelectron spectroscopy.  Impurities such as these may alter the physical and 

chemical behaviour of the nanoparticles,  and must be taken into account in future toxicity studies. 
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Figure 1: XRD pattern for ZnO nanopowder with the Miller indices for the reflecting plane labelled. 

 

 

 

 

 

 

 

 

 

 



Table 1: XRD peak positions for the synthesized ZnO powder (Fig. 1). Also listed are the referenced 

values for zincite extracted from the JCPDS file, 01

 

 

Number 

 

hkil 

2θ(°)

JCPDS Reference 

01-079-0206 

1 10

0 

31.77 

2 0002 34.42 

3 10

1 

36.25 

4 10

2 

47.54 

5 11

0 

56.60 

6 10

3 

62.86 

7 20

0 

66.37 

8 11

2 

67.95 

9 20

1 

69.09 

10 0004 72.57 

11 20

2 

76.96 

XRD peak positions for the synthesized ZnO powder (Fig. 1). Also listed are the referenced 

values for zincite extracted from the JCPDS file, 01-079-0206. 

2θ(°) d-spacing (Å) 

Experimental 

XRD Pattern 

JCPDS Reference 

01-079-0206 

Experimental 

XRD Pattern 

JCPDS Reference 

01

31.72 2.815 2.819 

34.42 2.603 2.604 

36.23 2.476 2.477 

47.53 1.911 1.911 

56.59 1.625 1.625 

62.83 1.477 1.478 

66.36 1.407 1.407 

67.95 1.378 1.378 

69.06 1.359 1.359 

72.57 1.302 1.302 

76.95 1.238 1.238 

XRD peak positions for the synthesized ZnO powder (Fig. 1). Also listed are the referenced 

Relative Intensity (%) 

JCPDS Reference 

01-079-0206 

Experimental 

XRD Pattern 

57.6 53.1 

41.4 40.1 

100 100 

21.4 28.7 

30.7 50.0 

26.4 45.7 

4.00 8.6 

21.7 40.0 

10.5 21.0 

1.6 3.51 

3.3 6.62 
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Figure 3: Histograms to show the variation in particle (a) Feret ratio, (b) width and (c) length.
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Figure 2: TEM images of: (a) a typical cluster of particles showing varying 

morphologies present in the sample and with the SAED pattern for the same region 

of particles inset; (b) an atomic lattice image of an elongated ZnO nanoparticle, 

with the 10¯10 lattice 
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Histograms to show the variation in particle (a) Feret ratio, (b) width and (c) length.
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(a) (b)
TEM images of: (a) a typical cluster of particles showing varying 

morphologies present in the sample and with the SAED pattern for the same region 

of particles inset; (b) an atomic lattice image of an elongated ZnO nanoparticle, 

 

Histograms to show the variation in particle (a) Feret ratio, (b) width and (c) length. 

(b) 
TEM images of: (a) a typical cluster of particles showing varying 

morphologies present in the sample and with the SAED pattern for the same region 

of particles inset; (b) an atomic lattice image of an elongated ZnO nanoparticle, 
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Figure 4: Light scattering profile for a 0.1 % w/v suspension of ZnO nanoparticles dispersed in MilliQ 

water by (a) intensity, (b) volume and (c) number. 
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Figure 5: FTIR spectrum for the ZnO nanopowder (a) shortly after preparation, (b) after 

ageing showing the increase in adsorbed water molecules and carbon dioxide on the 

surface and (c) after heating to 900°C showing evidence for the elimination of the O-H 

band and the organic carbonyl peaks previously observed. 

Figure 6: C1s region of the XPS spectra for both FSP 18 at (a) T = 1 month and (b) T = 9 months. 

Percentages of carbonate species present expressed as a percentage of total carbon, derived 

from the peak fitting are 10% at T=0 and 25% at T = 9 months. 



Table 2: Summary of characterisation protocol and the information obtained from each technique. 

 

 

Characterisation 

technique 

 

Information Obtained 

Average Particle 

Size 
Morphology  Phase 

Compsition and 

Purity 

Agglomeration 

State 
Comments 

XRD 22 nm 

Elongated 

particles 

present 

Zincite _ _ 

Bulk sample 

analysis; 

particles grow 

preferentially in 

the <0001> 

direction 

BET 18 nm _ _ _ _ 

S.S.A. = 59 

m2/g; Bulk 

sample analysis 

TEM 

Length = 23 

nm;               

Width = 14 nm 

Elongated, 

equiaxial, 

spherical.   

    

Particles appear 

agglomerated in 

images. 

Preferntial 

growth of 

particles along 

c-axis; very 

small sample 

size being 

analysed. 

EDX       

Zn and O in 

spectra; No 

unaccounteable 

elements 

present. 

_   

SAED     Zincite   _   

FTIR     _ 

ZnCO3, ZnOH2, 

H2O, possible 

contamination 

from precursor 

_ 

Probes only the 

surface of the 

sample 



 

Characterisation 

technique 

 

Information Obtained 

Average Particle 

Size 
Morphology  Phase 

Compsition and 

Purity 

Agglomeration 

State 
Comments 

TGA     _ 

Sample loses 

mass as a result 

of 

decomposition 

of surface 

contaminants 

and loss of 

moisture. 

_ 

Particles are 

sintered after 

heat treatment 

to 800oC 

EGA       

Sample evolves 

H2O and CO2 

when heated as 

a result of 

contamination. 

_   

XPS       

ZnCO3, ZnOH2, 

H2O, possible 

contamination 

from precursor 

_ 

Probes only the 

surface of the 

sample 

DLS         

Agglomertes 

present in 

suspension with 

an average size 

of 160 nm. 

Sizes of 

agglomerates 

range from a 

few particles 

clustered 

together to over 

1000 nm in 

diametre. 

DLS performed 

immediately 

after sonication. 
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Figure 7: (a) Plot from TGA showing the mass of the sample decreasing continuously as the temperature is 

increased up to 800°C, at a rate of 10°C /min. (b) Gram-shmidt total absorbance (c) O-H absorbance and (d)  C-O 

absorbance plotted against temperature. 

a) 
b) 

Figure 8: (a)TEM image and (b) SAED pattern showing the 

sintered ZnO nanoparticles after they have been heated to 800°C 

for TGA. 


