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ABSTRACT

10 Benchtop NMR spectrometers are now becoming more widely employed in university teaching 

laboratories. These low-field instruments are increasingly used in reaction monitoring and product 

purity applications. NMR spectra obtained using these spectrometers (40-80 MHz) tend to suffer 

from significant overlap of signals when compared to those obtained at 300-400 MHz or above, and 

therefore some reactions may be less suited to analysis using such benchtop systems. Whilst some 

15 reactions can be modified to make them more amenable to analysis on low-field benchtop 

spectrometers, the fact remains that many common undergraduate laboratory chemistry reactions 

remain as a stalwart of the university education system. Therefore, there is currently a major 

requirement for benchtop NMR analysis to improve in order to facilitate student understanding. 

Herein, it is demonstrated a combination of spectral analysis and simulation at low-fields (40–80 

20 MHz) that allows the fine structure of second-order effects and overlapping spectra to be deduced, 

enabling an improved understanding of the low-field benchtop NMR technique within 

undergraduate student cohorts. The evolution of well-resolved and distinct multiplets at 400 MHz 

to complex, overlapping multiplets at 40–80 MHz also serves as a useful guide for laboratory 

demonstrators and academic staff when explaining the advantages of such benchtop systems. The 

25 Wittig reaction has been a standard reaction practical session in many university teaching 

laboratories since the 1980s, the products of which are a mixture of cis- and trans-stilbenes. This 

reaction serves as an ideal example of how benchtop NMR and analysis can support chemistry 

teaching laboratories.
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INTRODUCTION

The Wittig reaction1 was first published in 1953, and this synthetic route has since become a 

significant economic and educational success, earning Wittig a Nobel prize in Chemistry in 1979. 

40 In 1973, Markl and Merz2 reported the simultaneous preparation of cis- and trans-stilbenes from 

the Wittig condensation of benzaldehyde with benzyltriphenylphosphonium chloride (Scheme 1). 

This method was eminently applicable to undergraduate teaching laboratories and has been widely 

adopted in this context globally.3

45 Scheme 1. Reaction of benzaldehyde with benzyltriphenylphosphonium chloride to form a mixture of cis-stilbene (major product), trans-
stilbene (minor product) and by-product of triphenylphosphine oxide.

In principle, it is possible to separate the cis- and trans- stilbene regioisomers for their 

analytical characterization using techniques such as melting point, FTIR spectroscopy or electronic 
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50 absorption spectrophotometry. However, high-field 1H NMR spectroscopy removes the requirement 

for prior purification of the products arising, since the relative yields of the cis- and trans- 

regioisomers can be determined simply by integrating the alkene signals located at 6.63 and 7.13 

ppm respectively with triphenylphospine oxide not appearing in this part of the NMR spectrum. In 

addition, the cost saving on equipment, chemicals and laboratory time by the omission of a time-

55 consuming purification step is very attractive to many teaching laboratories.

The requirement of having access to high-field NMR spectrometers (typically 300-400 MHz 

operating frequencies)4 is, of course, a significant consideration since these generally range 

between $100-300K, and, while these instruments may be financed as a research instrument on 

which undergraduate teaching time can be hired on an hourly rate basis, the full-economic cost 

60 per laboratory experiment and per student can be substantial. Currently, many novel applications 

are being explored for NMR spectroscopy, particularly with regard to the miniaturization of ‘state-

of-the-art’ rapid analytical monitoring technologies.5,6,7,8 Indeed, many universities have now 

invested in low-field, benchtop NMR spectrometers and utilize them in chemistry undergraduate 

teaching experiments9,10,11 in order to determine reaction progress and product purities, for 

65 example. The value of the student experience that comes with direct access to a benchtop NMR 

instrument, however, must be considered when the purchase price is discussed; the cost of these 

facilities lies between $20-70K. Also, tangible and intangible savings of staff time and sample 

transport to high-field NMR instruments available support a stronger financial case to invest in 

benchtop NMR systems within the teaching laboratory. Herein, the advantages offered to a 

70 potentially wide range of undergraduate laboratory experiments by the application of benchtop 

NMR spectrometers is highlighted, and the benefits of supporting low-field spectral computations 

in tandem.

Few undergraduates have access to ‘hands-on’ training on large, high-field NMR spectrometers, 

with many analyses taking place as a remote service with the students receiving their NMR 

75 spectrum and associated data, or even a generic handout containing this information recorded 

some years prior. Unfortunately, this process, which disconnects key linkages between students 

and their institutional NMR spectrometer(s), strongly impacts on the educational value of such 

laboratory classes, i.e. pedagogically-important synchronous connections between NMR lecture 

materials and the on-site practical assessment of reaction products using this technique are 
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80 broken (Figure 1). Therefore, this represents one of the most compelling reasons for inclusion of 

benchtop NMR spectrometers within undergraduate laboratories, in order to allow students to have 

a ‘hands-on’, real-time access to a means of analysis which provides substantial information on 

their analyte samples during laboratory classes. Recent advances in pedagogical analytical 

chemistry12 have highlighted the importance of pooling novel and well-established teaching 

85 techniques to a course where the practical and theoretical components are intrinsically inter-

linked.

Several universities have had success using benchtop NMR spectrometers at an operating 

frequency of 45 MHz, and these low-field systems have been used to analyse Fischer esterification 

products,13 and the free radical-mediated bromination of ethylbenzene14. Moreover, the portability 

90 of these systems also permits them to be used in university-high school partnership program in the 

USA15, and university outreach strategies in the UK.16

Figure 1. The disconnect in pedagogy (shown in red) caused by the removal of ‘hands-on’ NMR spectroscopy in teaching laboratories 

during a typical higher education institute academic year.

95

The teaching of NMR theory, that is offered at undergraduate level is focused on high-field 

magnets (300-400 MHz and beyond), however, the rules and principles do not strictly apply to low-

field benchtop NMR spectrometers in the same manner.17,18 In recent decades, many NMR courses 

and text books have evolved to the point where low-field NMR magnets are no longer mentioned, 

100 and the influence of first- and second-order effects are no longer covered in significant detail. The 

term “roofing” for the slight distortion away from the classic 1:1 1:2:1 and 1:3:3:1 Pascal’s triangle 
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intensities of simple multiplet resonances is insufficient to analyze a closely coupled ABX spin-

system. Hence, both undergraduates and university academic staff should develop the ability to 

appreciate modifications to the appearance of NMR spectra as a function of magnetic field strength. 

105 As early as the middle of the 20th century it was reasoned that the direct (through-space) 

dipole-dipole coupling between two hydrogen nuclei would average to zero in view of random 

isotropic motion in the liquid state which is indeed correct (J-coupling tensor 3x3 matrix averages 

to zero). However, small couplings of a few Hz in magnitude were routinely observed. This was the 

subject of much debate but rationalized by the influence of the bonding electrons between the 

110 hydrogen atoms (H-C-H or H-C-C-H etc ) and is therefore referred to as the indirect (through-bond) 

dipole-dipole coupling. This interaction can be defined as the average of the diagonal of the 

elements of the J-coupling tensor, which is scalar, indicating that the isotropic component of the J-

coupling Hamiltonian is independent of molecular motion. Now more commonly referred to as the 

J-coupling in undergraduate chemistry lectures and text books, the size of this interaction between 

115 neighboring hydrogen atoms is the same at 40 MHz as at 400 MHz; it is field independent, thus a 

typical 3JHH coupling in an aromatic group will correspond to 7.7 Hz at 40 MHz as well as at 400 

MHz.19 As the magnitude of the J-coupling remains the same size in different magnetic fields, this 

has significant influence on the appearance of NMR spectra recorded at different magnetic fields 

since the chemical shifts involved are field independent on the ppm scale, but are field dependent 

120 on the Hz scale . Consequently, by inspection, a doublet may appear to be “larger” at 40 MHz (40 

Hz per ppm) than at 400 MHz (400 Hz per ppm). This, in turn, leads on to the second-order nature 

of the spectra being more pronounced at low-field than high-field, in which a doublet can appear to 

be distorted and no longer adhere to a 1:1 intensity ratio. This distortion arises from the quantized 

energy levels that exist for the spin-system and the transition probabilities between each level 

125 therein. Undergraduates are taught that allowed transitions by established selection rules appear 

as resonances in the spectra, whereas forbidden transitions by the selection rules do not appear to 

be present therein. Thus, for a first-order spectrum both transitions that create a doublet are 

equally probable, hence producing the 1:1 doublet intensity ratio (HAHX). When the chemical shift 

difference between the coupling pair of hydrogens (in Hz) approaches approximately 10 times the J-

130 coupling between them, one of the transitions becomes less probable (less allowed), leading to a 

distorted doublet as indicated by the term “roofing” (HAHB). For a strongly second-order system in 
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which the chemical shift difference between the coupling pair of hydrogen nuclei (in Hz) 

approaches approximately 5 times the J-coupling between them, then the transition probability 

decreases significantly for one signal in the doublet, leading to a steeply roofed doublet (HAHA’). The 

135 natural end point occurs when the chemical shifts of the two hydrogen nuclei are equivalent i.e. 

they have the same chemical shift value, and in this model the transition probability of one signal 

in the doublet is zero, therefore giving rise to a signal that appears to be a singlet.

Herein, the high- and low-field NMR spectra of cis- and trans-stilbenes serve as an illustrative 

140 example to highlight these changes. In particular the computationally-simulated spectra 

decrementing from 400 → 300 → 200 → 80 → 60 → 40 MHz, allows students to follow the 

evolution of multiplets from prominent and clearly distinct signals at the higher operating 

frequencies to those affected by lower resolution, with an increasing level of spectral overlap and 

significant second-order effects.

145 CHEMICAL SHIFTS AND COUPLING CONSTANTS.

Analysis of NMR multiplets to extract chemical shift and coupling constant values has been a 

central part of NMR spectroscopy since the 1950s,20,21 when the AA′BB′ spin-system22 of 

thiophene,23 furan and pyrrole,24 and substituted fluoro-aromatics25 were recorded at 30, 40 and 

150 60 MHz, and analyzed using pencil and paper calculations. Since that time, detailed 

theoretical26,27,28 and computational progress has vastly improved our solutions to such NMR 

problems. This resulted in the employment of computational methods such as Laocoon,29 and 

PANIC,30 and in more recent decades, by graphic-based calculations such as those featured in 

WinDNMR,31 Louiville calculations employing the experimental pulse-programs within NMR-SIM,32 

155 iterative methods such as SpinWorks,33,34 and line-shape algorithm approaches, i.e. ANATOLIA in 

2018,35 such that it has never been easier to analyze experimental NMR spectra. In addition, the 

theoretical chemistry community has developed spectral prediction routines for common electronic 

structure codes such as Gaussian,36 allowing for the calculation of NMR shielding tensors and 

coupling from ab initio methodologies as well as semi-empirical methods.37,38

160 Mnova39 is a popular suit of commercial software that can process, predict and analyze NMR 

spectra from all NMR vendors. One module allows extraction of first-order coupling constants but 

Page 6 of 22

ACS Paragon Plus Environment

Submitted to the Journal of Chemical Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Journal of Chemical Education 3/27/19 Page 7 of 22

does not allow iterative analysis of second-order spin-systems. The chemical shift and coupling 

data extracted from highly second-order spectra using other methods can be input manually to 

generate simulated spectra. Spin Works is a popular spectral analysis program that employs an 

165 assign-iterate method to optimize spectral parameters, and works very well, however the assign 

process can be slow and time consuming even when the “automatic assign” feature is employed. 

Thus, multiple attempts to extract parameters can be time consuming, especially when input 

parameters produce a calculated spectrum that is very different to the experimental spectrum. 

Win-D-NMR is a graphical program that used chemical shift and coupling values to generate a 

170 spectrum, a significant advantage of this program is that a chemical shift and/or coupling 

constant value can be incremented with the resulting spectrum updated in real time, which allows 

an intuitive visual comparison to be made regarding the influence of parameters on the appearance 

of the spectrum. Bruker TopSpin4.0 is free for academic use and contains a line-shape analysis 

module, DAISY40 that can analyze first-order and some second-order spin-systems. TopSpin can 

175 import experimental data sets from benchtop spectrometers (JCAMP-DX), and from JEOL and 

Varian spectrometers ready for analysis using ANATOLIA. 

It is prudent to consider chemical shift and scalar coupling constant values at an operating 

frequency of 400 MHz before moving on to spectra recorded at only 60 MHz. The literature values 

for the AA′BB′C spin-system of the aromatic protons in stilbene are an excellent starting point for 

180 analysis, and the SpinWorks module30,31 and ANATOLIA generated excellent fits to the 400 MHz 1H 

NMR spectra of the trans-regioisomer, which displayed small second-order effects within the 

clearly-defined doublets and triplets. However, the 1H NMR spectrum of cis-stilbene was more 

complex, since the doublet and triplet patterns overlap significantly, even at an operating 

frequency of 400 MHz, and the second-order effects are significant (∆δ/J <5) for all coupling nuclei. 

185 In this instance, the iterative line-shape analysis program ANATOLIA proved to be more user 

friendly and a faster analysis method than the traditional assign-iterate methods and achieved an 

excellent match with experimental results. The results are shown in Table 1 and 2

Table 1. Chemical Shift and Coupling Constant values for cis- and trans-
stilbenes.

Cis-stilbene Trans-stilbene
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δA = δA′ 7.285 ppm 7.550 ppm

δB = δB′ 7.259 ppm 7.391 ppm

δC 7.225 ppm 7.292ppm

δD 6.633 ppm 7.150 ppm
3JAB = 3JA′B′ 7.92 Hz 7.92 Hz
3JBC = 3JB′C 7.47 Hz 7.47 Hz

4JAA′ 2.05 Hz 2.05 Hz
4JBB′ 1.42 Hz 1.42 Hz

4JAC = 4JA′C 1.22 Hz 1.22 Hz
5JAB′ = 5JA′B 0.60 Hz 0.60 Hz

Recorded and analyzed at 400 MHz in CDCl3, but the same dataset can be used to calculate 
spectra at any magnetic field strength.

Table 2. Chemical Shift difference (∆δ) in Hz and Ratio with Coupling Constants.

Cis-stilbene Trans-stilbene Cis-stilbene Trans-stilbene
Field strength 400 MHz 400 MHz 60 MHz 60 MHz

∆δ  A - Β 10.51 Hz 63.42 Hz 1.58 Hz 9.51Hz

∆δ  B - C 13.74 Hz 39.57 Hz 2.06 Hz 5.94Hz

∆δ  A - Β / 3JAB 10.51/7.92 = 1.33 63.42/7.92 = 8.00 1.577/7.92 = 0.20 9.513/7.92 = 1.20

∆δ  B - C / 3JBC 13.74/7.47 = 1.84 39.57/7.47 = 5.29 2.061/7.47 = 0.28 5.936/7.47 = 0.80

∆δ  A - C / 4JAC 24.25/1.22 = 19.88 102.99/1.22 = 84.42 3.64/1.22 = 2.98 15.45/1.22 = 12.66

∆δ  A - Β′ / 5JAB′ 10.51/0.60 = 17.52 63.42/0.60 = 105.7 1.58/0.6 = 2.63 9.51/0.6 = 15.86

Recorded and analyzed at 400 MHz and 60 MHz in CDCl3.
For ∆δ/J < 5 then second-order coupling effects are expected.

190

The 1H NMR spectrum of trans-stilbene is comprised of three magnetically-distinct sets of 

aromatic hydrogen nuclei, together with the vinylic hydrogen, which are labelled AA′, BB′, C 

(aromatics) and D (vinylic), as shown in Figure 2. If the 3JHH couplings are considered, (~8.0 Hz) 

then the expected multiplet patterns would be AA′, doublet; BB′, triplet; and C, triplet, with the 

195 integration ratio of 2:2:1, respectively, for the ortho-, meta- and para-position hydrogens (2,6-, 3,5-, 

and 4-positions). However, it is important to include additional coupling constant parameters in 

such evaluations, since the magnetic inequivalence of the A and A′, and B and B′ nuclei gives rise 

to significant couplings between them, i.e. of the order of approximately 1-2 Hz. Once the long-

range 4JAC, 4JA′C couplings of ~1.22 Hz and 5JAB′, 5JA′B couplings ~ 0.6 Hz are included, then the 1H 

200 NMR spectrum can be accurately calculated and predicted at any magnetic field. The chemical shift 

(ppm) of the AA′, BB′ and C nuclei remain the same at both 400 and 60 MHz magnetic fields 
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(indeed any magnetic field). However, the chemical shift differences ∆δ in Hz are significant at 400 

and 60 MHz operating frequencies (400 Hz per ppm vs 60 Hz per ppm respectively), and hence 

spectra recorded at low-field display significant second-order effects, when δ∆/J < 5. It is important 

205 to note that undergraduates should not be expected to analyze and obtain these values themselves, 

but employ these data to generate spectra at a variety of magnetic fields in order to observe 

changes in their appearance and configuration. Analysis of such 1H NMR spectra acquired at ≥ 400 

MHz provides a dataset of chemical shift and coupling constant values that can then be used for 

predictively calculating the corresponding 60 MHz spectral profile.

210

Figure 2. Phenyl moiety and alkene, with the AA′BB ′CD labelling and scalar coupling 

interactions.
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215 Figure 3. 1H NMR spectrum of trans-stilbene in CDCl3 at 400 MHz, displaying the classic double-triplet-triplet patterns. This analysis was 
performed using ANATOLIA and SpinWorks software programs to yield accurate chemical shift and coupling constants (top: calculated, 
bottom: experimental).
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220 Figure 4. 1H NMR spectrum of cis-stilbene in CDCl3 at 400 MHz: Here, second-order effects are significant, and signal overlap and 
distorted intensities prevent the classic doublet-triplet-triplet patterns from being observed. Nevertheless, computational analysis using 
ANATOLIA and SpinWorks software programs allowed accurate chemical shift and coupling constant values to be extracted from the 
profile. (top: calculated, bottom: experimental).

225 By calculating NMR spectra at a variety of different magnetic field strengths, and comparing 

these to experimental ones, it is clear that some of the signals that could easily be assigned to 

“impurities” are actually part of the NMR spectrum. This is clear in Figures 3 and 4, in which the 

classic doublet-triplet-triplet system is clearly visible in trans-stilbene at 400 MHz, but more 

difficult to visualize for the cis-isomer since the chemical shift values of these aromatic 1H nuclei 

230 are very similar and the second-order effects are significant. The calculated NMR spectra for 400-

45 MHz of trans-stilbene serves as a useful illustration to students to guide them from familiar 

high-field NMR spectra to less familiar low-filed NMR spectra. In Figure 5, the cis-stilbene 

spectrum obtained at only 60 MHz displays low intensity signals both upfield and downfield of the 

aromatic signal envelope, which may erroneously be attributed to impurities, and the asymmetry of 

235 the main aromatic resonance may be explained as “poor shimming”. Only by comparing the 

calculated spectrum to the experimental spectrum can these signals be rationalized unequivocally.

Page 11 of 22

ACS Paragon Plus Environment

Submitted to the Journal of Chemical Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Journal of Chemical Education 3/27/19 Page 12 of 22

240 Figure 5. Calculated 1H NMR spectrum of trans-stilbene in CDCl3 at 400, 300, 200, 100, 80, 60 and 45 MHz using NMR-SIM software and 
accurate chemical shift and coupling constant values. Linewidths were kept to a minimum in order to show as much detail as possible. 
The experimental spectrum at an operating frequency of 60 MHz shows an excellent fit to the calculated profile. 
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The Wittig reaction typically yields ~60-70% of the cis-stilbene product, and 30-40% of the 

245 trans-product, and these two isomers are readily distinguishable in the 60 MHz 1H NMR spectrum 

via their vinylic proton signals located at δ = 6.63 ppm and 7.15 ppm respectively. For this 

experiment, ~100 mM solutions were used (~20 mg of total stilbene in 0.70 mL of CDCl3) which 

provided an excellent signal-to-noise (SNR) ratio of 208 (Bruker TOPSPIN-4.0.3 “sinocal” command 

) with only 16 scans completed on the benchtop system. Determination of the exact cis-:trans- ratio 

250 of stilbenes synthesized by each student during a practical laboratory class can be readily obtained 

by integrating the vinylic proton resonances; an example of the appearance of the calculated 

spectrum for a 70:30 mol% mixture of these isomers is shown in Figure 6. It is important to 

highlight that the SNR is of such a high level that an acceptable spectrum can be obtained using a 

single scan using a ~100 mM solution, and still provides a reliable estimate of the cis-:trans- ratios 

255 of stilbene product analytes. Therefore, solutions of ~10 mM (~2 mg sample in 0.70 mL CDCl3) 

could be used with a larger number of scans. 

With regard to Wittig reaction chemistry, it is clear from these studies that using ~2 g of the 

benzaldehyde starting material for this purpose is excessive, and that much smaller amounts could 

260 be used. The cost of benzaldehyde is ~$35 for 100 g, and that of benzyltriphenylphosphonium 

chloride is ~$60 for 100 g of material. Moreover, there are significant cost savings achievable via 

reductions in the amounts and volumes of reagents and solvents required, i.e. dichloromethane (20 

mL), aqueous NaOH solution (20 mL), distilled water (30 mL), saturated aqueous sodium bisulfite 

solution (50 mL), anhydrous sodium sulfate ( ~5 g), absolute ethanol (30 mL), low-b.pt (30-60 °C) 

265 petroleum ether (30 mL), etc.; typical current standard undergraduate laboratory requirement 

values are provided in brackets. One salient point to highlight is that benchtop NMR spectrometers 

do not necessitate the use of deuterated solvents, which therefore offers wider choice of low-cost 

solvents and a significant financial saving, thus a judicious selection of a solvent that has signals 

in a different part of the spectrum from the signals of interest can yield perfectly acceptable 

270 spectra, particularly if solvent suppression methods are employed. Therefore, this novel low-field 

benchtop NMR analysis approach offers major economic budgetary advantages to undergraduate 

teaching laboratory activities.
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Figure 6. Calculated and experimental 1H NMR spectra of trans-stilbene in CDCl3 at 60 MHz (upper); calculated and experimental 1H 
275 NMR spectra of cis-stilbene in CDCl3 at 60 MHz (centre); and calculated 1H NMR spectra of a 70:30 mixture of cis-;trans-stilbene at 60 

MHz (lower). Computational analysis was performed using ANATOLIA, WinDNMR, NMR-SIM and/or SpinWorks software modules to 
yield accurate chemical shift and coupling constant values.
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EXPERIMENTAL
280

The lab experiment is part of the 2nd year undergraduate practical chemistry class and is set up 

for ~110 students each year. The undergraduates have access to the lab for 4 hours at a time with 

up to a maximum of 20 hours available for the experiment – however, this is very rarely required. A 

single lab session is sufficient for most students to complete the chemistry. Academics create the 

285 lab classes, technical tutors (with degree and PhD level qualifications) run the lab class, post-docs 

and PhD students monitor the lab classes. Group demonstrations are provided for "tricky" 

chemistry at the start of the class, thereafter the students follow a detailed lab script. Careful 

reagent handling is required throughout the lab class, particularly for the handling of NaOH 

solution and starting materials. The lab capacity of ~60 requires that the year group is split in two 

290 and the class ran twice. The students are not expected to use the ANATOLIA software, but have 

access to benchtop NMR spectrometers and handouts of 400 MHz NMR spectra which connects the 

400 MHz result to the 40-80 MHz results.

The second-year students have 12 NMR lectures very early in the term, covering spin, chemical 

shift, couplings, 13C-DEPT, COSY and HMQC, nOe, T1 and T2, solvent and temperature effects, 

295 inorganic NMR, solid-state NMR. The second year students have an assessed NMR workshop 

question (H, C, DEPT,COSY, HMQC and nOe) in term 1 where then need to assign 1H and 13C 

signals, this year they have cinnamyl acetate, and construct multiplets and the contributing 1H-1H 

interactions from neighbors.

High-field 1H spectra were recorded using JEOL ECS-400 MHz or Bruker Avance-I 400 MHz 

300 NMR spectrometers, using an auto-tune probe and 5 mm NMR tubes. Samples were prepared 

using ~20 mg of stilbene dissolved in a 0.70 mL volume of CDCl3 obtained from Apollo-UK, i.e. ~ 

100 mM solutions. High quality 5-mm diameter NMR tubes purchased from Norell were used at 

both 400 and 60 MHz operating frequencies. 1H NMR spectra were recorded using the small flip-

angle pulse program with P90 = 15.25 μs covering a sweep width of 12.0 ppm (4,789 Hz) with 64K 

305 time domain data points giving an acquisition time of 685 s, with a relaxation delay of 5 s, Fourier-

transformed using 128K data points and referenced to an internal TMS standard at 0.00 ppm.

Benchtop 1H NMR spectra were acquired on a Magritek-Ultra 60 MHz NMR spectrometer, with 16 

scans, covering a sweep-width of 81 ppm with 64K data points in the FID, and providing an 
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acquisition time of 6.55 s and a digital resolution of 0.059 Hz (pulse angle was 90° with a pulse 

310 length of 12.8 µs). FID fourier transformed using zero-filling to 128k data points providing a 

spectrum with 0.038 Hz resolution. The T1 relaxation time was measured and found to be under 2 

s for each signal, and therefore a repetition time of 10 s between scans was sufficient to allow 

relaxation of the 1H nuclei to equilibrium subsequent to each scan. The total experimental time 

required to record the 1H NMR spectrum was 2 min and 40 s. The temperature of the sample at 

315 both 400 and 60 MHz was 20°C (the magnet temperature was 26.5 °C for the latter spectrometer).

Following the reaction of benzaldehyde with benzyltriphenylphosphonium chloride (typically 2.0 

g and 7.4 g respectively, equivalent to a 1:1 molar ratio) in dichloromethane (20 mL), products form 

on addition of 20 mL of aqueous NaOH solution (50% w/w), the mixture being stirred for 30 min. 

Subsequently, the organic phase was separated, washed with a 30 mL volume of distilled water, 

320 and then 50 mL of a saturated solution of sodium bisulfite was added until the solution was 

neutralized. The organic phase was then dried over anhydrous sodium sulfate, filtered and 

evaporated to dryness. Finally, 30 mL of absolute ethanol was added to the thick cloudy residue, 

and the mixture then cooled in an ice bath for 15 min. The primary precipitate obtained was trans-

stilbene (yield ca.1.0 g), mp 122-123 °C. The filtrate was then evaporated, and a 40 mL volume of 

325 low boiling-point petroleum ether (30-60 °C) was added to precipitate triphenylphosphine oxide (~5 

g), mp 146-147 °C. The filtrate arising following removal of triphenylphosphine oxide was then 

evaporated, yielding a liquid, cis-stilbene (yield ~1.5 g).

HAZARDS

330 Benzyltriphenylphosphoniumchloride (CAS Number 1100-88-5) can be fatal if swallowed or if 

inhaled, it is toxic in contact with skin, causes skin irritation, causes serious eye irritation, may 

cause respiratory irritation, toxic to aquatic life with long lasting effects. Dispose of in halogen 

waste. 

Benzaldehyde (CAS Number 100-52-7), harmful if swallowed, harmful in contact with skin, 

335 causes skin irritation, Dispose of in hydrophilic waste.

Sodium hydroxide (CAS 1310-73-2) may be corrosive to metals, causes severe skin burns and 

eye damage, neutralised with 5M HCl. 
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Magnesium sulfate (CAS Number 7487-88-9), no hazard statements applicable dispose of in waste 

bin. 

340 Dichloromethane (CAS Number 75-09-2), causes skin irritation, causes serious eye irritation, 

may cause respiratory irritation, may cause drowsiness or dizziness, suspected of causing cancer, 

may cause damage to organs. Dispose of in halogenated waste.

Sodium bi-sulfite saturated solution (CAS Number 7631-90-5), harmful if swallowed, causes 

serious eye damage, contact with acids liberates toxic gas.bi-sulfite waste bottle provided.

345 Ethanol (CAS Number 64-17-5), highly flammable liquid and vapor, causes serious eye irritation, 

hydrophilic waste, light petroleum highly flammable liquid and vapor, harmful if swallowed, may be 

fatal if swallowed and enters airways, causes skin irritation, may cause drowsiness or dizziness, 

toxic to aquatic life with long lasting effects. Dispose of in hydrophobic waste.

(E)- (Z)- stilbene product (trans- CAS Number 103-30-0) (cis- CAS Number 645-49-8), harmful if 

350 swallowed, causes serious eye irritation, toxic to aquatic life with long lasting effects.

Triphenylphosphine oxide (CAS Number 791-28-6) product harmful if swallowed, causes skin 

irritation, causes serious eye irritation, may cause respiratory irritation, 

CONCLUSIONS

355 A combination of ‘state-of-the-art’ spectral analysis and experimental benchtop NMR methods 

provides valuable information which helps to explain of the overlapping features that are common 

in low-field NMR spectra. This renders benchtop NMR spectrometer systems much more applicable 

and accessible to undergraduate teaching laboratories. One significant advantage of calculating 

low-field NMR spectra is that commonly-employed undergraduate laboratory experiments in 

360 synthetic organic chemistry or other areas which may be dismissed as being “too complicated” or 

“lacking sufficient analytical information” can now be understood and used, without recourse to 

wholesale changes in methods or reagents, which may have unwanted cost and safety implications. 

In conclusion, ANATOLIA software is an effective and robust tool which markedly facilitated the 

extraction of chemical shift and scalar coupling constant values from second-order overlapping 

365 spectra.
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