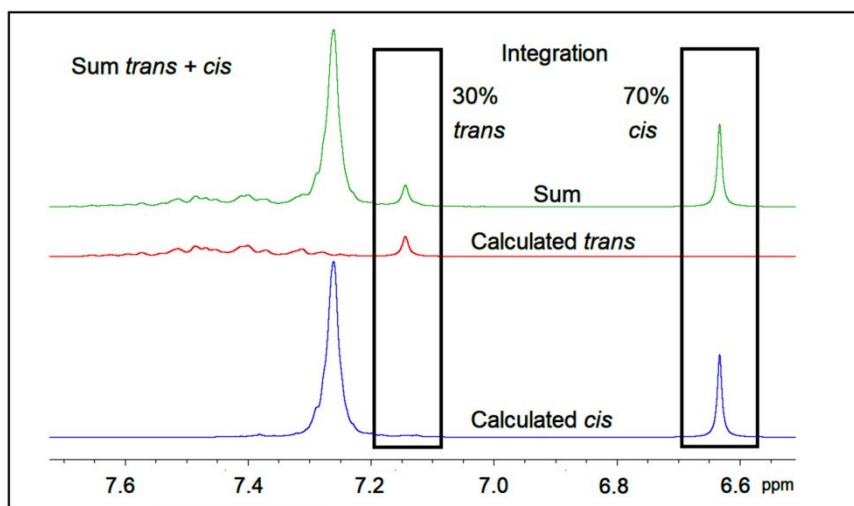


Benchtop NMR Spectroscopy and Spectral Analysis of the *cis*- and *trans*-stilbene Products of the Wittig Reaction.

Mark Edgar *†, Benita C. Percival‡, Miles Gibson‡, Jinit Masania‡, Ken Beresford‡, Philippe B. Wilson‡, Martin Grootveld‡.

† School of Science, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.


‡ Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.

Dedicated to Professor Raymond J. Abraham on his 86th birthday (November 2019).

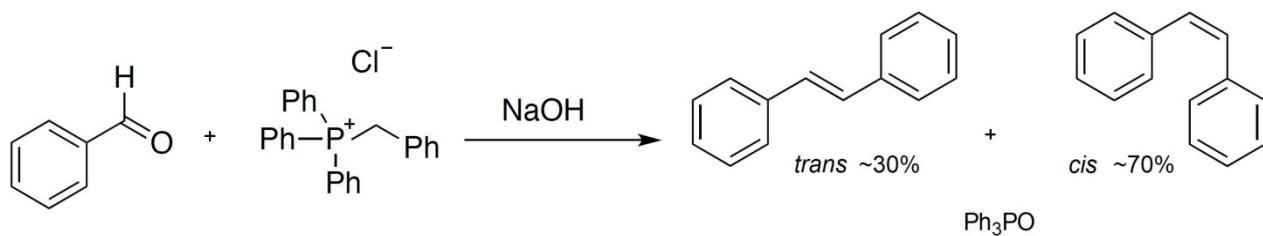
ABSTRACT

Benchtop NMR spectrometers are now becoming more widely employed in university teaching laboratories. These low-field instruments are increasingly used in reaction monitoring and product purity applications. NMR spectra obtained using these spectrometers (40-80 MHz) tend to suffer from significant overlap of signals when compared to those obtained at 300-400 MHz or above, and therefore some reactions may be less suited to analysis using such benchtop systems. Whilst some reactions can be modified to make them more amenable to analysis on low-field benchtop spectrometers, the fact remains that many common undergraduate laboratory chemistry reactions remain as a stalwart of the university education system. Therefore, there is currently a major requirement for benchtop NMR analysis to improve in order to facilitate student understanding. Herein, it is demonstrated a combination of spectral analysis and simulation at low-fields (40–80 MHz) that allows the fine structure of second-order effects and overlapping spectra to be deduced, enabling an improved understanding of the low-field benchtop NMR technique within undergraduate student cohorts. The evolution of well-resolved and distinct multiplets at 400 MHz to complex, overlapping multiplets at 40–80 MHz also serves as a useful guide for laboratory demonstrators and academic staff when explaining the advantages of such benchtop systems. The Wittig reaction has been a standard reaction practical session in many university teaching laboratories since the 1980s, the products of which are a mixture of *cis*- and *trans*-stilbenes. This reaction serves as an ideal example of how benchtop NMR and analysis can support chemistry teaching laboratories.

GRAPHICAL ABSTRACT

KEYWORDS

Second-Year Undergraduate, Laboratory Instruction, Organic Chemistry, Analysis, Inquiry-


Based/Discovery Learning, NMR Spectroscopy, conformational analysis

INTRODUCTION

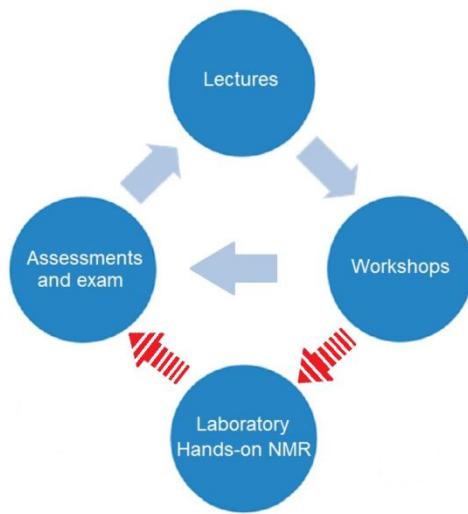
The Wittig reaction¹ was first published in 1953, and this synthetic route has since become a significant economic and educational success, earning Wittig a Nobel prize in Chemistry in 1979.

In 1973, Markl and Merz² reported the simultaneous preparation of *cis*- and *trans*-stilbenes from the Wittig condensation of benzaldehyde with benzyltriphenylphosphonium chloride (Scheme 1).

This method was eminently applicable to undergraduate teaching laboratories and has been widely adopted in this context globally.³

Scheme 1. Reaction of benzaldehyde with benzyltriphenylphosphonium chloride to form a mixture of *cis*-stilbene (major product), *trans*-stilbene (minor product) and by-product of triphenylphosphine oxide.

In principle, it is possible to separate the *cis*- and *trans*- stilbene regioisomers for their analytical characterization using techniques such as melting point, FTIR spectroscopy or electronic


1
2
3 50 absorption spectrophotometry. However, high-field ^1H NMR spectroscopy removes the requirement
4 for prior purification of the products arising, since the relative yields of the *cis*- and *trans*-
5 regioisomers can be determined simply by integrating the alkene signals located at 6.63 and 7.13
6 ppm respectively with triphenylphosphine oxide not appearing in this part of the NMR spectrum. In
7 addition, the cost saving on equipment, chemicals and laboratory time by the omission of a time-
8 consuming purification step is very attractive to many teaching laboratories.
9
10 55
11
12
13
14

15 The requirement of having access to high-field NMR spectrometers (typically 300-400 MHz
16 operating frequencies)⁴ is, of course, a significant consideration since these generally range
17 between \$100-300K, and, while these instruments may be financed as a research instrument on
18 which undergraduate teaching time can be hired on an hourly rate basis, the full-economic cost
19 per laboratory experiment and per student can be substantial. Currently, many novel applications
20 are being explored for NMR spectroscopy, particularly with regard to the miniaturization of 'state-
21 of-the-art' rapid analytical monitoring technologies.^{5,6,7,8} Indeed, many universities have now
22 invested in low-field, benchtop NMR spectrometers and utilize them in chemistry undergraduate
23 teaching experiments^{9,10,11} in order to determine reaction progress and product purities, for
24 example. The value of the student experience that comes with direct access to a benchtop NMR
25 instrument, however, must be considered when the purchase price is discussed; the cost of these
26 facilities lies between \$20-70K. Also, tangible and intangible savings of staff time and sample
27 transport to high-field NMR instruments available support a stronger financial case to invest in
28 benchtop NMR systems within the teaching laboratory. Herein, the advantages offered to a
29 potentially wide range of undergraduate laboratory experiments by the application of benchtop
30 NMR spectrometers is highlighted, and the benefits of supporting low-field spectral computations
31 in tandem.
32
33 65
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

50 Few undergraduates have access to 'hands-on' training on large, high-field NMR spectrometers,
51 with many analyses taking place as a remote service with the students receiving their NMR
52 spectrum and associated data, or even a generic handout containing this information recorded
53 some years prior. Unfortunately, this process, which disconnects key linkages between students
54 and their institutional NMR spectrometer(s), strongly impacts on the educational value of such
55 laboratory classes, i.e. pedagogically-important synchronous connections between NMR lecture
56 materials and the on-site practical assessment of reaction products using this technique are
57
58
59
60

1
2
3 broken (Figure 1). Therefore, this represents one of the most compelling reasons for inclusion of
4 benchtop NMR spectrometers within undergraduate laboratories, in order to allow students to have
5 a 'hands-on', real-time access to a means of analysis which provides substantial information on
6 their analyte samples during laboratory classes. Recent advances in pedagogical analytical
7 chemistry¹² have highlighted the importance of pooling novel and well-established teaching
8 techniques to a course where the practical and theoretical components are intrinsically inter-
9 linked.
10
11 85
12
13
14
15

16
17 Several universities have had success using benchtop NMR spectrometers at an operating
18 frequency of 45 MHz, and these low-field systems have been used to analyse Fischer esterification
19 products,¹³ and the free radical-mediated bromination of ethylbenzene¹⁴. Moreover, the portability
20 of these systems also permits them to be used in university-high school partnership program in the
21 USA¹⁵, and university outreach strategies in the UK.¹⁶
22
23 90
24
25
26

44 Figure 1. The disconnect in pedagogy (shown in red) caused by the removal of 'hands-on' NMR spectroscopy in teaching laboratories
45 during a typical higher education institute academic year.
46
47 95
48

49 The teaching of NMR theory, that is offered at undergraduate level is focused on high-field
50 magnets (300-400 MHz and beyond), however, the rules and principles do not strictly apply to low-
51 field benchtop NMR spectrometers in the same manner.^{17,18} In recent decades, many NMR courses
52 and text books have evolved to the point where low-field NMR magnets are no longer mentioned,
53 and the influence of first- and second-order effects are no longer covered in significant detail. The
54 term "roofing" for the slight distortion away from the classic 1:1 1:2:1 and 1:3:3:1 Pascal's triangle
55
56
57 100
58
59
60

1
2
3 intensities of simple multiplet resonances is insufficient to analyze a closely coupled ABX spin-
4 system. Hence, both undergraduates and university academic staff should develop the ability to
5 appreciate modifications to the appearance of NMR spectra as a function of magnetic field strength.
6
7

8
9 105 As early as the middle of the 20th century it was reasoned that the direct (through-space)
10 dipole-dipole coupling between two hydrogen nuclei would average to zero in view of random
11 isotropic motion in the liquid state which is indeed correct (J-coupling tensor 3x3 matrix averages
12 to zero). However, small couplings of a few Hz in magnitude were routinely observed. This was the
13 subject of much debate but rationalized by the influence of the bonding electrons between the
14 hydrogen atoms (H-C-H or H-C-C-H etc) and is therefore referred to as the *indirect* (through-bond)
15 dipole-dipole coupling. This interaction can be defined as the average of the diagonal of the
16 elements of the J-coupling tensor, which is scalar, indicating that the isotropic component of the J-
17 coupling Hamiltonian is independent of molecular motion. Now more commonly referred to as the
18 J-coupling in undergraduate chemistry lectures and text books, the size of this interaction between
19 neighboring hydrogen atoms is the same at 40 MHz as at 400 MHz; it is field independent, thus a
20 typical $^3J_{HH}$ coupling in an aromatic group will correspond to 7.7 Hz at 40 MHz as well as at 400
21 MHz.¹⁹ As the magnitude of the J-coupling remains the same size in different magnetic fields, this
22 has significant influence on the appearance of NMR spectra recorded at different magnetic fields
23 since the chemical shifts involved are field independent on the *ppm* scale, but are field dependent
24 on the Hz scale . Consequently, by inspection, a doublet may appear to be “larger” at 40 MHz (40
25 Hz per ppm) than at 400 MHz (400 Hz per ppm). This, in turn, leads on to the second-order nature
26 of the spectra being more pronounced at low-field than high-field, in which a doublet can appear to
27 be distorted and no longer adhere to a 1:1 intensity ratio. This distortion arises from the quantized
28 energy levels that exist for the spin-system and the transition probabilities between each level
29
30 120 therein. Undergraduates are taught that allowed transitions by established selection rules appear
31 as resonances in the spectra, whereas forbidden transitions by the selection rules do not appear to
32 be present therein. Thus, for a first-order spectrum both transitions that create a doublet are
33 equally probable, hence producing the 1:1 doublet intensity ratio (H_AH_X). When the chemical shift
34 difference between the coupling pair of hydrogens (in Hz) approaches approximately 10 times the J-
35 coupling between them, one of the transitions becomes less probable (less allowed), leading to a
36 distorted doublet as indicated by the term “roofing” (H_AH_B). For a strongly second-order system in
37
38 125
39
40
41
42
43
44
45
46
47
48 130
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 which the chemical shift difference between the coupling pair of hydrogen nuclei (in Hz)
4
5 approaches approximately 5 times the J-coupling between them, then the transition probability
6
7 decreases significantly for one signal in the doublet, leading to a steeply roofed doublet (H_AH_A). The
8
9 natural end point occurs when the chemical shifts of the two hydrogen nuclei are equivalent i.e.
10
11 they have the same chemical shift value, and in this model the transition probability of one signal
12
13 in the doublet is zero, therefore giving rise to a signal that appears to be a singlet.
14
15
16

17 Herein, the high- and low-field NMR spectra of *cis*- and *trans*-stilbenes serve as an illustrative
18 example to highlight these changes. In particular the computationally-simulated spectra
19 decrementing from $400 \rightarrow 300 \rightarrow 200 \rightarrow 80 \rightarrow 60 \rightarrow 40$ MHz, allows students to follow the
20 evolution of multiplets from prominent and clearly distinct signals at the higher operating
21 frequencies to those affected by lower resolution, with an increasing level of spectral overlap and
22 significant second-order effects.
23
24

25 **145 CHEMICAL SHIFTS AND COUPLING CONSTANTS.**

26

27 Analysis of NMR multiplets to extract chemical shift and coupling constant values has been a
28 central part of NMR spectroscopy since the 1950s,^{20,21} when the AA'BB' spin-system²² of
29 thiophene,²³ furan and pyrrole,²⁴ and substituted fluoro-aromatics²⁵ were recorded at 30, 40 and
30 60 MHz, and analyzed using pencil and paper calculations. Since that time, detailed
31 theoretical^{26,27,28} and computational progress has vastly improved our solutions to such NMR
32 problems. This resulted in the employment of computational methods such as Laocoon,²⁹ and
33 PANIC,³⁰ and in more recent decades, by graphic-based calculations such as those featured in
34 WinDNMR,³¹ Louiville calculations employing the experimental pulse-programs within NMR-SIM,³²
35 iterative methods such as SpinWorks,^{33,34} and line-shape algorithm approaches, i.e. ANATOLIA in
36 2018,³⁵ such that it has never been easier to analyze experimental NMR spectra. In addition, the
37 theoretical chemistry community has developed spectral prediction routines for common electronic
38 structure codes such as Gaussian,³⁶ allowing for the calculation of NMR shielding tensors and
39 coupling from *ab initio* methodologies as well as semi-empirical methods.^{37,38}

40 Mnova³⁹ is a popular suit of commercial software that can process, predict and analyze NMR
41 spectra from all NMR vendors. One module allows extraction of first-order coupling constants but
42
43

1
2
3 does not allow iterative analysis of second-order spin-systems. The chemical shift and coupling
4 data extracted from highly second-order spectra using other methods can be input manually to
5 generate simulated spectra. Spin Works is a popular spectral analysis program that employs an
6 assign-iterate method to optimize spectral parameters, and works very well, however the assign
7 process can be slow and time consuming even when the “automatic assign” feature is employed.
8 Thus, multiple attempts to extract parameters can be time consuming, especially when input
9 parameters produce a calculated spectrum that is very different to the experimental spectrum.
10 Win-D-NMR is a graphical program that used chemical shift and coupling values to generate a
11 spectrum, a significant advantage of this program is that a chemical shift and/or coupling
12 constant value can be incremented with the resulting spectrum updated in real time, which allows
13 an intuitive visual comparison to be made regarding the influence of parameters on the appearance
14 of the spectrum. Bruker TopSpin4.0 is free for academic use and contains a line-shape analysis
15 module, DAISY⁴⁰ that can analyze first-order and some second-order spin-systems. TopSpin can
16 import experimental data sets from benchtop spectrometers (JCAMP-DX), and from JEOL and
17 Varian spectrometers ready for analysis using ANATOLIA.
18
19

20 It is prudent to consider chemical shift and scalar coupling constant values at an operating
21 frequency of 400 MHz before moving on to spectra recorded at only 60 MHz. The literature values
22 for the AA'BB'C spin-system of the aromatic protons in stilbene are an excellent starting point for
23 analysis, and the SpinWorks module^{30,31} and ANATOLIA generated excellent fits to the 400 MHz ¹H
24 NMR spectra of the *trans*-regioisomer, which displayed small second-order effects within the
25 clearly-defined doublets and triplets. However, the ¹H NMR spectrum of *cis*-stilbene was more
26 complex, since the doublet and triplet patterns overlap significantly, even at an operating
27 frequency of 400 MHz, and the second-order effects are significant ($\Delta\delta/J < 5$) for all coupling nuclei.
28 In this instance, the iterative line-shape analysis program ANATOLIA proved to be more user
29 friendly and a faster analysis method than the traditional assign-iterate methods and achieved an
30 excellent match with experimental results. The results are shown in Table 1 and 2
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 1. Chemical Shift and Coupling Constant values for *cis*- and *trans*-stilbenes.

	Cis-stilbene	Trans-stilbene
--	--------------	----------------

$\delta A = \delta A'$	7.285 ppm	7.550 ppm
$\delta B = \delta B'$	7.259 ppm	7.391 ppm
δC	7.225 ppm	7.292 ppm
δD	6.633 ppm	7.150 ppm
$^3J_{AB} = ^3J_{A'B'}$	7.92 Hz	7.92 Hz
$^3J_{BC} = ^3J_{B'C}$	7.47 Hz	7.47 Hz
$^4J_{AA'}$	2.05 Hz	2.05 Hz
$^4J_{BB'}$	1.42 Hz	1.42 Hz
$^4J_{AC} = ^4J_{A'C}$	1.22 Hz	1.22 Hz
$^5J_{AB'} = ^5J_{A'B}$	0.60 Hz	0.60 Hz

Recorded and analyzed at 400 MHz in $CDCl_3$, but the same dataset can be used to calculate spectra at any magnetic field strength.

Table 2. Chemical Shift difference ($\Delta\delta$) in Hz and Ratio with Coupling Constants.

	Cis-stilbene	Trans-stilbene	Cis-stilbene	Trans-stilbene
Field strength	400 MHz	400 MHz	60 MHz	60 MHz
$\Delta\delta$ A - B	10.51 Hz	63.42 Hz	1.58 Hz	9.51 Hz
$\Delta\delta$ B - C	13.74 Hz	39.57 Hz	2.06 Hz	5.94 Hz
$\Delta\delta$ A - B / $^3J_{AB}$	$10.51/7.92 = 1.33$	$63.42/7.92 = 8.00$	$1.577/7.92 = 0.20$	$9.513/7.92 = 1.20$
$\Delta\delta$ B - C / $^3J_{BC}$	$13.74/7.47 = 1.84$	$39.57/7.47 = 5.29$	$2.061/7.47 = 0.28$	$5.936/7.47 = 0.80$
$\Delta\delta$ A - C / $^4J_{AC}$	$24.25/1.22 = 19.88$	$102.99/1.22 = 84.42$	$3.64/1.22 = 2.98$	$15.45/1.22 = 12.66$
$\Delta\delta$ A - B' / $^5J_{AB'}$	$10.51/0.60 = 17.52$	$63.42/0.60 = 105.7$	$1.58/0.6 = 2.63$	$9.51/0.6 = 15.86$

Recorded and analyzed at 400 MHz and 60 MHz in $CDCl_3$.

For $\Delta\delta/J < 5$ then second-order coupling effects are expected.

The 1H NMR spectrum of *trans*-stilbene is comprised of three magnetically-distinct sets of aromatic hydrogen nuclei, together with the vinylic hydrogen, which are labelled AA', BB', C (aromatics) and D (vinylic), as shown in Figure 2. If the $^3J_{HH}$ couplings are considered, (~8.0 Hz) then the expected multiplet patterns would be AA', doublet; BB', triplet; and C, triplet, with the integration ratio of 2:2:1, respectively, for the *ortho*-, *meta*- and *para*-position hydrogens (2,6-, 3,5-, and 4-positions). However, it is important to include additional coupling constant parameters in such evaluations, since the magnetic inequivalence of the A and A', and B and B' nuclei gives rise to significant couplings between them, i.e. of the order of approximately 1-2 Hz. Once the long-range $^4J_{AC}$, $^4J_{A'C}$ couplings of ~1.22 Hz and $^5J_{AB'}$, $^5J_{A'B}$ couplings ~ 0.6 Hz are included, then the 1H NMR spectrum can be accurately calculated and predicted at any magnetic field. The chemical shift (ppm) of the AA', BB' and C nuclei remain the same at both 400 and 60 MHz magnetic fields

(indeed any magnetic field). However, the chemical shift differences $\Delta\delta$ in Hz are significant at 400 and 60 MHz operating frequencies (400 Hz per ppm *vs* 60 Hz per ppm respectively), and hence spectra recorded at low-field display significant second-order effects, when $\delta\Delta/J < 5$. It is important to note that undergraduates should not be expected to analyze and obtain these values themselves, but employ these data to generate spectra at a variety of magnetic fields in order to observe changes in their appearance and configuration. Analysis of such ^1H NMR spectra acquired at ≥ 400 MHz provides a dataset of chemical shift and coupling constant values that can then be used for predictively calculating the corresponding 60 MHz spectral profile.

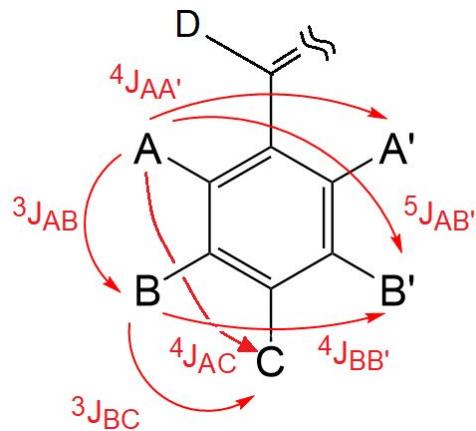
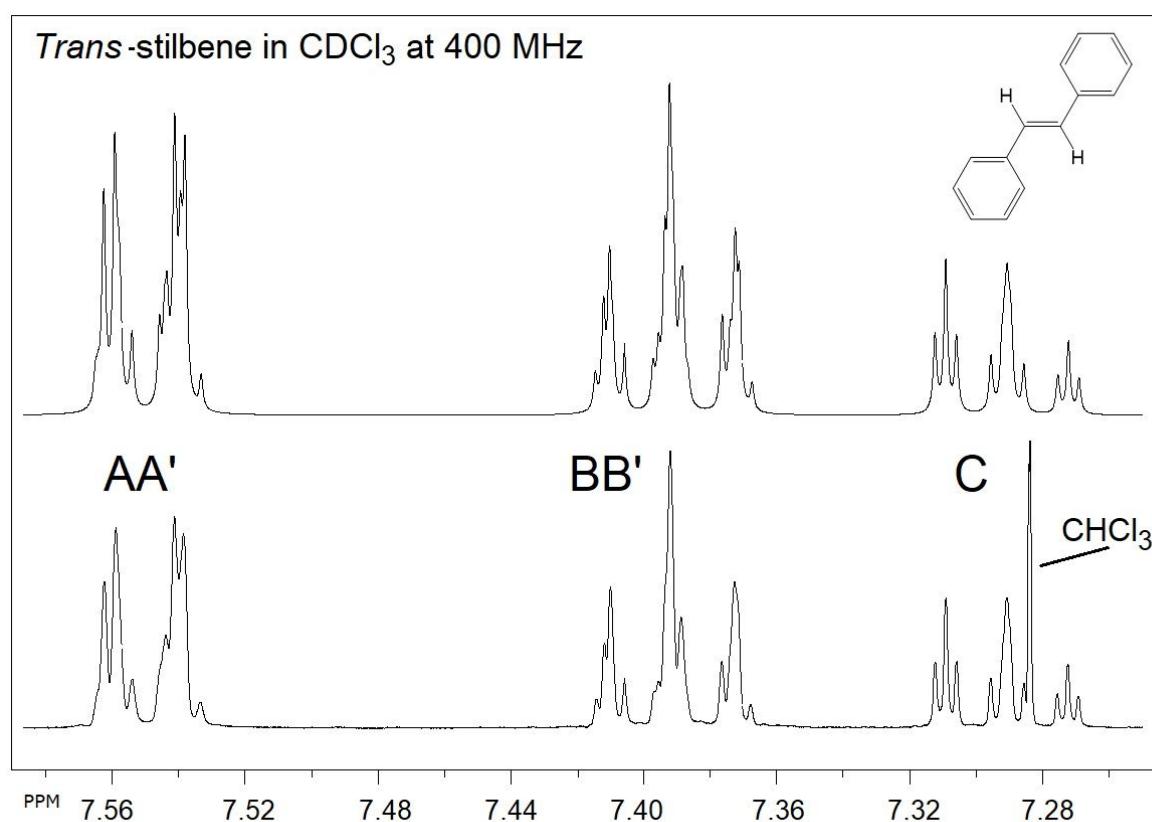



Figure 2. Phenyl moiety and alkene, with the AA'BB'CD labelling and scalar coupling interactions.

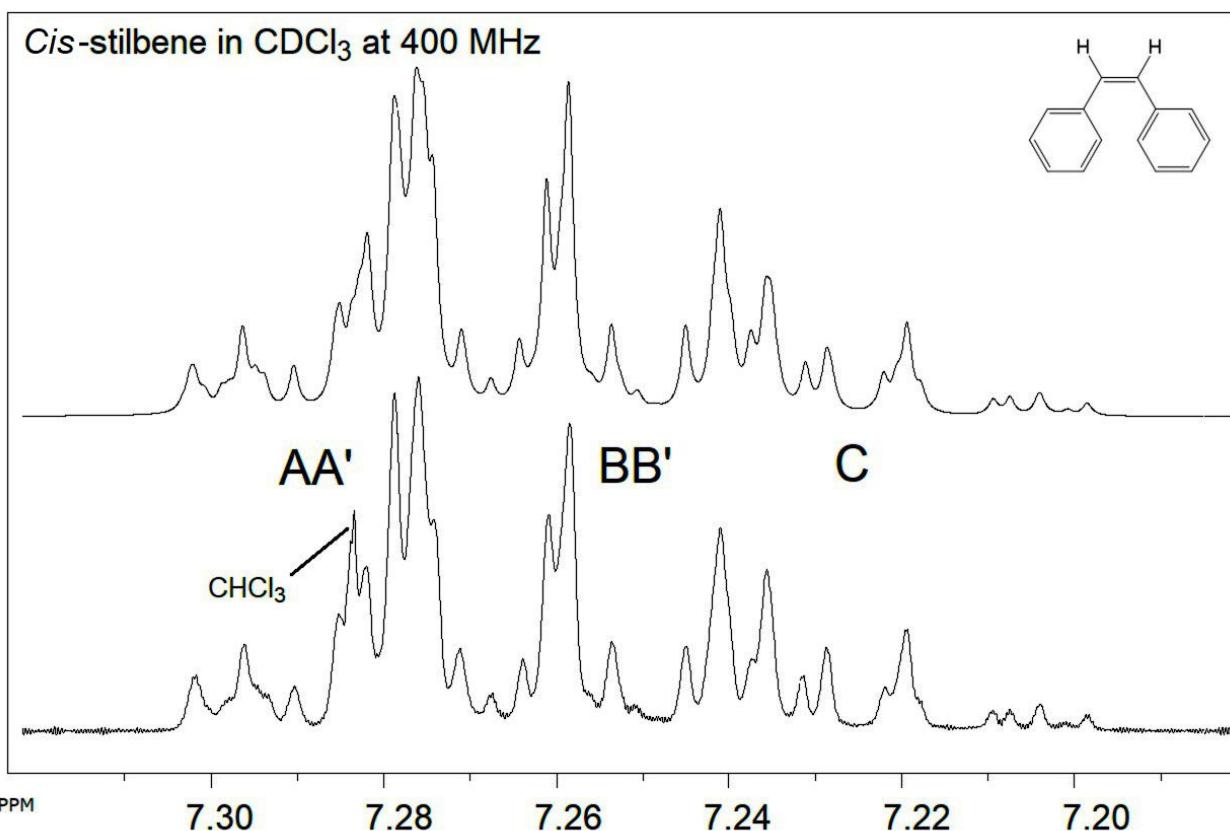


Figure 4. ^1H NMR spectrum of *cis*-stilbene in CDCl_3 at 400 MHz: Here, second-order effects are significant, and signal overlap and distorted intensities prevent the classic doublet-triplet-triplet patterns from being observed. Nevertheless, computational analysis using ANATOLIA and SpinWorks software programs allowed accurate chemical shift and coupling constant values to be extracted from the profile. (top: calculated, bottom: experimental).

By calculating NMR spectra at a variety of different magnetic field strengths, and comparing these to experimental ones, it is clear that some of the signals that could easily be assigned to “impurities” are actually part of the NMR spectrum. This is clear in Figures 3 and 4, in which the classic doublet-triplet-triplet system is clearly visible in *trans*-stilbene at 400 MHz, but more difficult to visualize for the *cis*-isomer since the chemical shift values of these aromatic ^1H nuclei are very similar and the second-order effects are significant. The calculated NMR spectra for 400-45 MHz of *trans*-stilbene serves as a useful illustration to students to guide them from familiar high-field NMR spectra to less familiar low-field NMR spectra. In Figure 5, the *cis*-stilbene spectrum obtained at only 60 MHz displays low intensity signals both upfield and downfield of the aromatic signal envelope, which may erroneously be attributed to impurities, and the asymmetry of the main aromatic resonance may be explained as “poor shimming”. Only by comparing the calculated spectrum to the experimental spectrum can these signals be rationalized unequivocally.

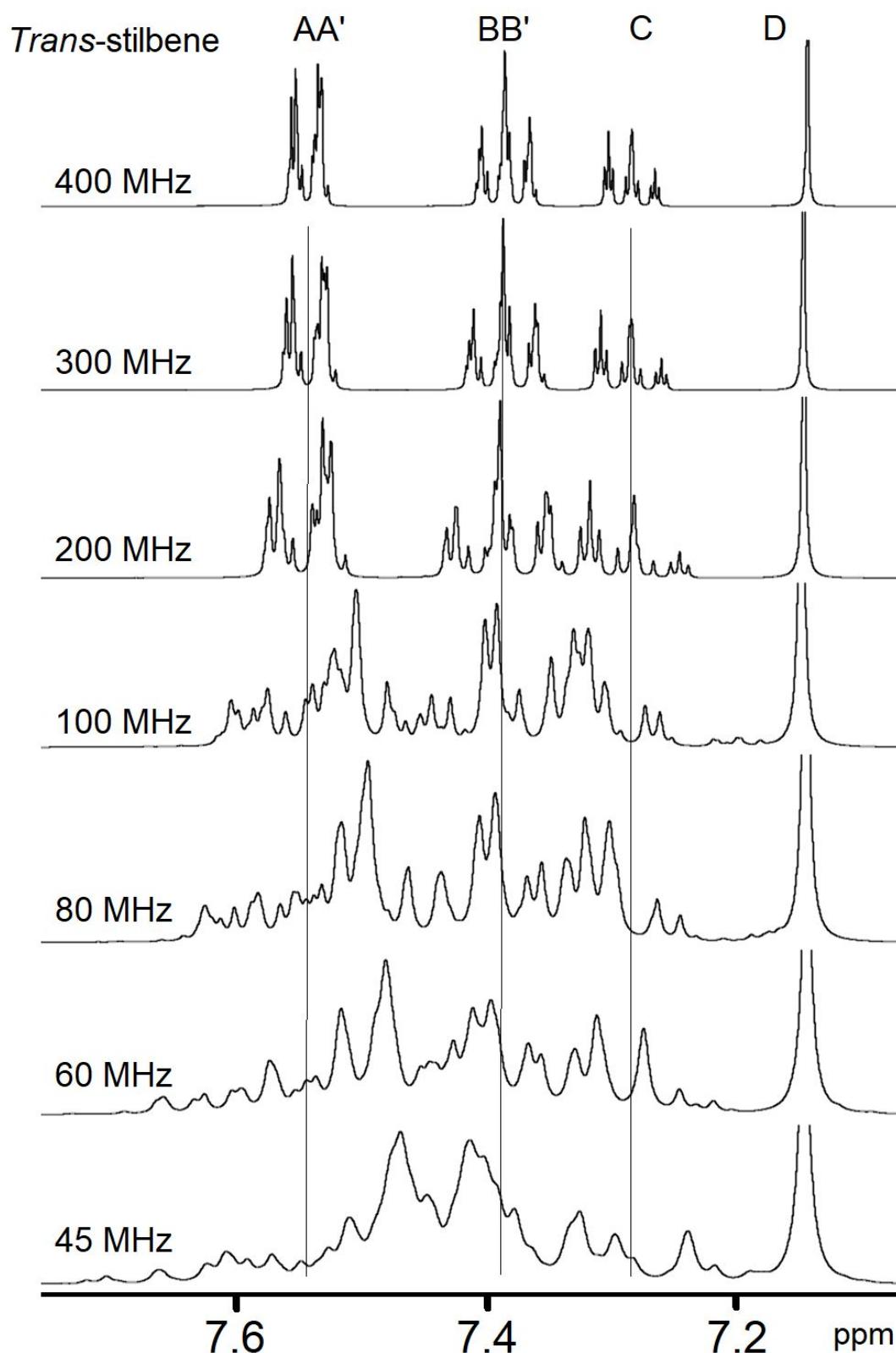


Figure 5. Calculated ^1H NMR spectrum of *trans*-stilbene in CDCl_3 at 400, 300, 200, 100, 80, 60 and 45 MHz using NMR-SIM software and accurate chemical shift and coupling constant values. Linewidths were kept to a minimum in order to show as much detail as possible. The experimental spectrum at an operating frequency of 60 MHz shows an excellent fit to the calculated profile.

1
2
3 The Wittig reaction typically yields ~60-70% of the *cis*-stilbene product, and 30-40% of the
4
5 245 *trans*-product, and these two isomers are readily distinguishable in the 60 MHz ^1H NMR spectrum
6 via their vinylic proton signals located at δ = 6.63 ppm and 7.15 ppm respectively. For this
7
8 experiment, ~100 mM solutions were used (~20 mg of total stilbene in 0.70 mL of CDCl_3) which
9 provided an excellent signal-to-noise (SNR) ratio of 208 (Bruker TOPSPIN-4.0.3 “sinocal” command
10) with only 16 scans completed on the benchtop system. Determination of the exact *cis*-:*trans*- ratio
11
12 of stilbenes synthesized by each student during a practical laboratory class can be readily obtained
13 by integrating the vinylic proton resonances; an example of the appearance of the calculated
14 spectrum for a 70:30 mol% mixture of these isomers is shown in Figure 6. It is important to
15 250 highlight that the SNR is of such a high level that an acceptable spectrum can be obtained using a
16 single scan using a ~100 mM solution, and still provides a reliable estimate of the *cis*-:*trans*- ratios
17
18 of stilbene product analytes. Therefore, solutions of ~10 mM (~2 mg sample in 0.70 mL CDCl_3)
19 could be used with a larger number of scans.
20
21
22
23
24
25 255
26
27
28
29
30
31
32
33
34
35 260
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

With regard to Wittig reaction chemistry, it is clear from these studies that using ~2 g of the benzaldehyde starting material for this purpose is excessive, and that much smaller amounts could be used. The cost of benzaldehyde is ~\$35 for 100 g, and that of benzyltriphenylphosphonium chloride is ~\$60 for 100 g of material. Moreover, there are significant cost savings achievable via reductions in the amounts and volumes of reagents and solvents required, i.e. dichloromethane (20 mL), aqueous NaOH solution (20 mL), distilled water (30 mL), saturated aqueous sodium bisulfite solution (50 mL), anhydrous sodium sulfate (~5 g), absolute ethanol (30 mL), low-b.pt (30-60 °C) petroleum ether (30 mL), etc.; typical current standard undergraduate laboratory requirement values are provided in brackets. One salient point to highlight is that benchtop NMR spectrometers do not necessitate the use of deuterated solvents, which therefore offers wider choice of low-cost solvents and a significant financial saving, thus a judicious selection of a solvent that has signals in a different part of the spectrum from the signals of interest can yield perfectly acceptable spectra, particularly if solvent suppression methods are employed. Therefore, this novel low-field benchtop NMR analysis approach offers major economic budgetary advantages to undergraduate teaching laboratory activities.

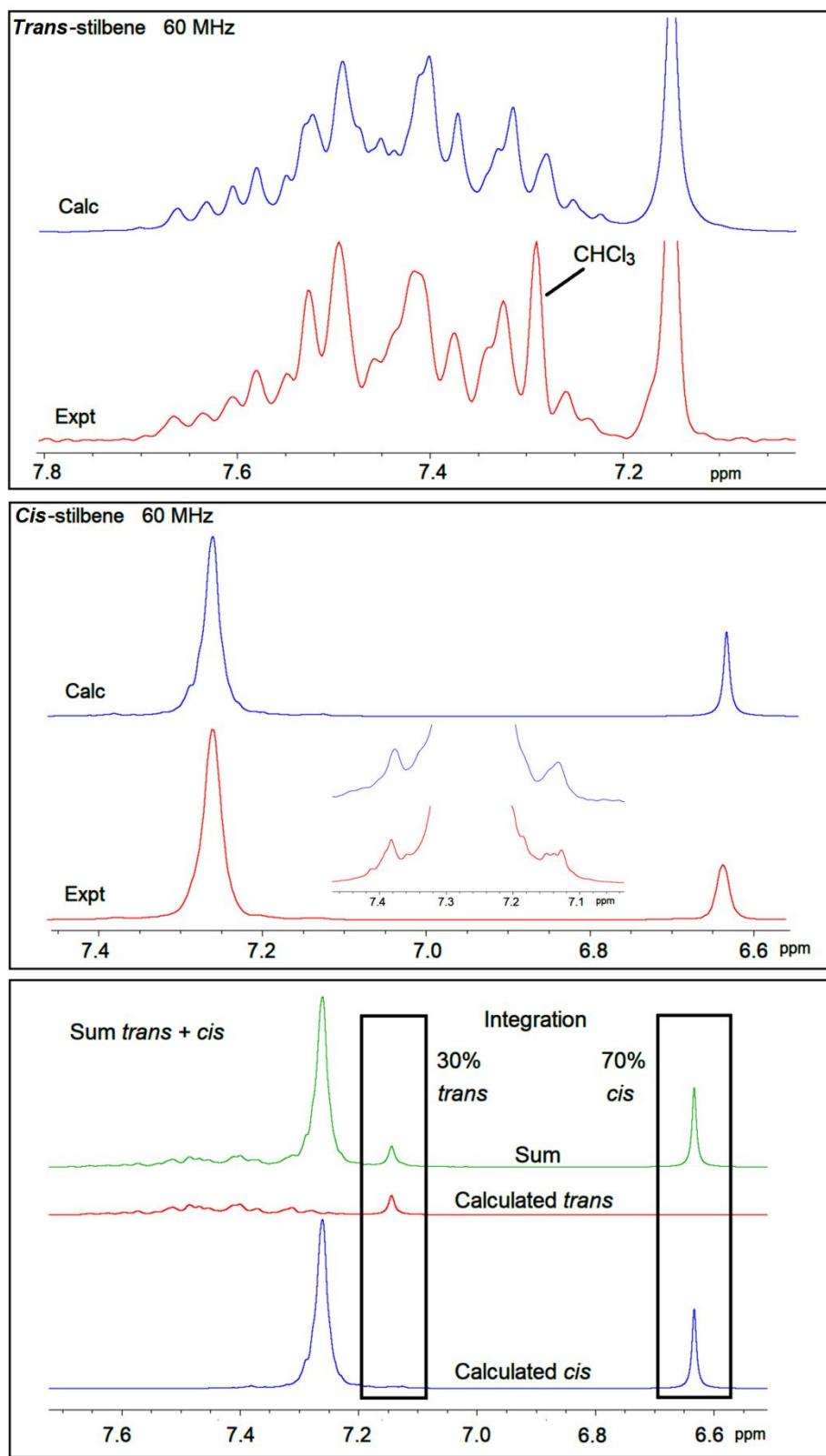


Figure 6. Calculated and experimental ^1H NMR spectra of *trans*-stilbene in CDCl_3 at 60 MHz (upper); calculated and experimental ^1H NMR spectra of *cis*-stilbene in CDCl_3 at 60 MHz (centre); and calculated ^1H NMR spectra of a 70:30 mixture of *cis*-;*trans*-stilbene at 60 MHz (lower). Computational analysis was performed using ANATOLIA, WinDNMR, NMR-SIM and/or SpinWorks software modules to yield accurate chemical shift and coupling constant values.

EXPERIMENTAL

The lab experiment is part of the 2nd year undergraduate practical chemistry class and is set up for ~110 students each year. The undergraduates have access to the lab for 4 hours at a time with up to a maximum of 20 hours available for the experiment – however, this is very rarely required. A single lab session is sufficient for most students to complete the chemistry. Academics create the lab classes, technical tutors (with degree and PhD level qualifications) run the lab class, post-docs and PhD students monitor the lab classes. Group demonstrations are provided for "tricky" chemistry at the start of the class, thereafter the students follow a detailed lab script. Careful reagent handling is required throughout the lab class, particularly for the handling of NaOH solution and starting materials. The lab capacity of ~60 requires that the year group is split in two and the class ran twice. The students are not expected to use the ANATOLIA software, but have access to benchtop NMR spectrometers and handouts of 400 MHz NMR spectra which connects the 400 MHz result to the 40-80 MHz results.

The second-year students have 12 NMR lectures very early in the term, covering spin, chemical shift, couplings, ¹³C-DEPT, COSY and HMQC, nOe, T₁ and T₂, solvent and temperature effects, inorganic NMR, solid-state NMR. The second year students have an assessed NMR workshop question (H, C, DEPT, COSY, HMQC and nOe) in term 1 where then need to assign ¹H and ¹³C signals, this year they have cinnamyl acetate, and construct multiplets and the contributing ¹H-¹H interactions from neighbors.

High-field ¹H spectra were recorded using JEOL ECS-400 MHz or Bruker Avance-I 400 MHz NMR spectrometers, using an auto-tune probe and 5 mm NMR tubes. Samples were prepared using ~20 mg of stilbene dissolved in a 0.70 mL volume of CDCl₃ obtained from Apollo-UK, i.e. ~100 mM solutions. High quality 5-mm diameter NMR tubes purchased from Norell were used at both 400 and 60 MHz operating frequencies. ¹H NMR spectra were recorded using the small flip-angle pulse program with P₉₀ = 15.25 μ s covering a sweep width of 12.0 ppm (4,789 Hz) with 64K time domain data points giving an acquisition time of 685 s, with a relaxation delay of 5 s, Fourier-transformed using 128K data points and referenced to an internal TMS standard at 0.00 ppm. Benchtop ¹H NMR spectra were acquired on a Magritek-Ultra 60 MHz NMR spectrometer, with 16 scans, covering a sweep-width of 81 ppm with 64K data points in the FID, and providing an

1
2
3 acquisition time of 6.55 s and a digital resolution of 0.059 Hz (pulse angle was 90° with a pulse
4 length of 12.8 μ s). FID fourier transformed using zero-filling to 128k data points providing a
5 310 spectrum with 0.038 Hz resolution. The T_1 relaxation time was measured and found to be under 2
6 s for each signal, and therefore a repetition time of 10 s between scans was sufficient to allow
7 relaxation of the ^1H nuclei to equilibrium subsequent to each scan. The total experimental time
8 required to record the ^1H NMR spectrum was 2 min and 40 s. The temperature of the sample at
9 315 both 400 and 60 MHz was 20°C (the magnet temperature was 26.5 °C for the latter spectrometer).
10
11

12
13 Following the reaction of benzaldehyde with benzyltriphenylphosphonium chloride (typically 2.0
14 g and 7.4 g respectively, equivalent to a 1:1 molar ratio) in dichloromethane (20 mL), products form
15 315 on addition of 20 mL of aqueous NaOH solution (50% w/w), the mixture being stirred for 30 min.
16 Subsequently, the organic phase was separated, washed with a 30 mL volume of distilled water,
17 and then 50 mL of a saturated solution of sodium bisulfite was added until the solution was
18 neutralized. The organic phase was then dried over anhydrous sodium sulfate, filtered and
19 evaporated to dryness. Finally, 30 mL of absolute ethanol was added to the thick cloudy residue,
20 and the mixture then cooled in an ice bath for 15 min. The primary precipitate obtained was *trans*-
21 stilbene (yield *ca.*1.0 g), mp 122-123 °C. The filtrate was then evaporated, and a 40 mL volume of
22 320 low boiling-point petroleum ether (30-60 °C) was added to precipitate triphenylphosphine oxide (~5
23 g), mp 146-147 °C. The filtrate arising following removal of triphenylphosphine oxide was then
24 325 evaporated, yielding a liquid, *cis*-stilbene (yield ~1.5 g).
25
26

41 HAZARDS

42

43
44 330 Benzyltriphenylphosphoniumchloride (CAS Number 1100-88-5) can be fatal if swallowed or if
45 inhaled, it is toxic in contact with skin, causes skin irritation, causes serious eye irritation, may
46 cause respiratory irritation, toxic to aquatic life with long lasting effects. Dispose of in halogen
47 waste.
48
49

50
51 Benzaldehyde (CAS Number 100-52-7), harmful if swallowed, harmful in contact with skin,
52 335 causes skin irritation, Dispose of in hydrophilic waste.
53
54

55
56 Sodium hydroxide (CAS 1310-73-2) may be corrosive to metals, causes severe skin burns and
57 eye damage, neutralised with 5M HCl.
58
59

1
2
3 Magnesium sulfate (CAS Number 7487-88-9), no hazard statements applicable dispose of in waste
4 bin.
5
6

7 340 Dichloromethane (CAS Number 75-09-2), causes skin irritation, causes serious eye irritation,
8 may cause respiratory irritation, may cause drowsiness or dizziness, suspected of causing cancer,
9 may cause damage to organs. Dispose of in halogenated waste.
10
11

12 13 Sodium bi-sulfite saturated solution (CAS Number 7631-90-5), harmful if swallowed, causes
14 serious eye damage, contact with acids liberates toxic gas.bi-sulfite waste bottle provided.
15
16

17 345 Ethanol (CAS Number 64-17-5), highly flammable liquid and vapor, causes serious eye irritation,
18 hydrophilic waste, light petroleum highly flammable liquid and vapor, harmful if swallowed, may be
19 fatal if swallowed and enters airways, causes skin irritation, may cause drowsiness or dizziness,
20 toxic to aquatic life with long lasting effects. Dispose of in hydrophobic waste.
21
22

23 24 (E)- (Z)- stilbene product (*trans*- CAS Number 103-30-0) (*cis*- CAS Number 645-49-8), harmful if
25 swallowed, causes serious eye irritation, toxic to aquatic life with long lasting effects.
26
27

28 29 Triphenylphosphine oxide (CAS Number 791-28-6) product harmful if swallowed, causes skin
30 irritation, causes serious eye irritation, may cause respiratory irritation,
31
32

33 CONCLUSIONS 34

35 355 A combination of ‘state-of-the-art’ spectral analysis and experimental benchtop NMR methods
36 provides valuable information which helps to explain of the overlapping features that are common
37 in low-field NMR spectra. This renders benchtop NMR spectrometer systems much more applicable
38 and accessible to undergraduate teaching laboratories. One significant advantage of calculating
39 low-field NMR spectra is that commonly-employed undergraduate laboratory experiments in
40 synthetic organic chemistry or other areas which may be dismissed as being “too complicated” or
41 “lacking sufficient analytical information” can now be understood and used, without recourse to
42 wholesale changes in methods or reagents, which may have unwanted cost and safety implications.
43
44 In conclusion, ANATOLIA software is an effective and robust tool which markedly facilitated the
45 extraction of chemical shift and scalar coupling constant values from second-order overlapping
46 spectra.
47
48
49
50
51
52
53
54
55
56 365
57
58
59
60

ASSOCIATED CONTENT**Supporting Information****Supporting Info:**

The Supporting Information is available on the ACS Publications website at DOI:

10.1021/acs.jchemed.XXXXXXX. [ACS will fill this in.]

Introduction to help install the ANATOLIA program, ABX spin-system example, description of the ANATOLIA input data files, ABX output file, input data files for stilbene, 400 MHz ^1H NMR spectrum of *trans*-stilbene, 400 MHz ^1H NMR spectrum of *cis*-stilbene, 60MHz, 80 MHz and 400 MHz ^1H NMR spectra of crude reaction mixture (triphenylphosphine oxide, *trans*-stilbene and *cis*-stilbene (DOCX).

AUTHOR INFORMATION**Corresponding Author**

*E-mail: m.edgar@lboro.ac.uk

ORCID Mark Edgar: 0000-0002-8579-1088

ResearcherID: V-4166-2017

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge Magritek (Philipsstraße 8, 52068 Aachen, Germany) for the loan of a SpinSolve-60 Ultra benchtop NMR spectrometer to the School of Pharmacy (DMU) and for 80 MHz NMR spectra of the crude mixture of *cis*- *trans*-stilbene, Ben Buckley's research group (University of Loughborough) for pure samples of *cis*- and *trans*-stilbenes, and finally Stuart Pinkney for computational and IT expertise.

REFERENCES

(1) Wittig, G.; Geissler, G. Zur Reaktionsweise des Pentaphenyl-phosphors und einiger Derivate. *Justus Liebigs Ann. Chem.*, **1953**, 580, 44.
doi.org/10.1002/jlac.19535800107

1
2
3
4 (2) Markl, G.; Merz, A., Carbonyl-Olefinierungen mit nicht-stabilisierten Phosphin-
5 alkylidenen im wäßrigen System. *Synthesis*, **1973**, 5, 295-297. doi.org/10.1055/s-
6 1973-22193
7
8 (3) Warner, J. C.; Anastas, P. T.; Anselme, J. P. The Wittig reaction in the
9 undergraduate organic laboratory. *J Chem. Educ.*, **1985**, 62 (4), 346. DOI:
10 10.1021/ed062p346
11
12 (4) Mills, N. S.; Shanklin, M., Access to NMR Spectroscopy for Two-Year College
13 Students: The NMR Site at Trinity University. *J. Chem. Educ.*, **2011**, 88 (6), 835–839.
14 DOI: 10.1021/ed100715y
15
16 (5) Edgar, M. Physical Methods and Techniques: NMR Spectroscopy. *Annu. Rep. Prog.*
17 *Chem., Sect. B*, **2011**, 107, 308–327. DOI: 10.1039/C1OC90006D
18
19 (6) Edgar, M. Physical Methods and Techniques: NMR Spectroscopy. *Annu. Rep. Prog.*
20 *Chem., Sect. B*, **2013**, 109, 256-274. DOI: 10.1039/C3OC90012F
21
22 (7) Grootveld, M.; Percival, B. C.; Gibson, M.; Osman, Y.; Edgar, M.; Molinari, M.;
23 Mather, M. L.; Casanova, F.; Wilson, P. B. Progress in low-field benchtop NMR
24 spectroscopy in chemical and biochemical analysis, *Analytica Chimica Acta*, Available
25 online 23 February 2019. <https://doi.org/10.1016/>
26
27 (8) Percival, B. C.; Grootveld, M.; Gibson, M.; Osman, Y.; Molinari, M.; Jafar, F.; Sahota,
28 T.; Martin, M.; Casanova, F.; Mather, M. L.; Edgar, M.; Masania, J.; Wilson, P. B.
29 Low-Field, Benchtop NMR Spectroscopy as a Potential Tool for Point-of-Care
30 Diagnostics of Metabolic Conditions: Validation, Protocols and Computational
31 Models. *High-Throughput*, **2019**, 8(1), 2-33. <https://doi.org/10.3390/ht8010002>.
32
33 (9) Reisch, M. S. An NMR Renaissance. *Chem. Eng. News*, **2015**, 93 (37), 19-21. DOI:
34 10.1021/cen-09337-bus1
35
36 (10) Soulsby, D.; Wallner, A.S. Introduction to NMR Spectroscopy in the Undergraduate
37 Curriculum, NMR Spectroscopy in the Undergraduate Curriculum: First Year and
38 Organic Chemistry Courses Volume 2, Chapter 1, pp 1–10, *ACS Symposium Series*,
39 Vol. 1221, **2016**. DOI: 10.1021/bk-2016-1221.ch001
40
41 (11) Dimick Gray, S. M. Using Benchtop NMR in Undergraduate Organic Courses, NMR
42 Spectroscopy in the Undergraduate Curriculum: First Year and Organic Chemistry
43 Courses Volume 2, Chapter 8, pp 107–118, *ACS Symposium Series*, Vol. 1221, **2016**.
44 DOI: 10.1021/bk-2016-1221.ch008
45
46 (12) Masania, J.; Grootveld, M.; Wilson, P. B. Teaching Analytical Chemistry to Pharmacy
47 Students: A Combined, Iterative Approach. *J. Chem. Educ.*, **2018**, 95, 47–54. DOI:
48 10.1021/acs.jchemed.7b00495
49
50
51
52
53
54
55
56
57
58
59
60

(13) Yearty, K. L.; Sharp, J. T.; Meehan, E. K.; Wallace, D. R., Jackson, D. M.; Morrison R. W. Implementation of PicoSpin Benchtop NMR Instruments into Organic Chemistry Teaching Laboratories through Spectral Analysis of Fischer Esterification Products. *J. Chem. Educ.* **2017**, 94 (7), 932–935. DOI: 10.1021/acs.jchemed.6b00972

(14) Isaac-Lam, M. F. Analysis of Bromination of Ethylbenzene Using a 45 MHz NMR Spectrometer: An Undergraduate Organic Chemistry Laboratory Experiment. *J. Chem. Educ.* **2014**, 91 (8), 1264–1266. DOI: 10.1021/ed400365p

(15) Bonjour, J. L.; Hass, A. L.; Pollock, D. W.; Huebner, A; Frost J. A. Bringing NMR and IR Spectroscopy to High Schools. *J. Chem. Educ.* **2017**, 94 (1), 38–43. DOI: 10.1021/acs.jchemed.6b00406

(16) <https://www.stem.org.uk/> (accessed March 2019).

(17) Mann, B. E. The Analysis of First-Order Coupling Patterns in NMR Spectra. *J. Chem. Educ.*, **1995**, 72 (7), 614-615. DOI: 10.1021/ed072p614

(18) Abraham, R. J. *The Analysis of High Resolution NMR Spectra*, Elsevier Publishing Co., New York, **1971**. DOI: 10.1021/ed049pA603.

(19) Levitt, M. H. *Spin Dynamics, basics of nuclear magnetic resonance*, John Wiley & sons, p211, **2001**, ISBN: 0471489220

(20) Richards, R. E.; Schaeffer, T. P. High Resolution Proton Resonance Spectra of some p-substituted Benzenes. *Trans. Faraday Soc.* **1958**, 54, 1280. DOI: 10.1039/TF9585401280

(21) Corio, P. L.; *Structure of High-Resolution NMR-Spectra*, Academic Press. New York **1966**, 143. <https://doi.org/10.1002/bbpc.19670710722>

(22) Gunther, H. 1H-NMR Spectra of the AA'XX' and AA'BB' Type – Analysis and Classification. *Angew. Chem. Int. Ed.* **1972**, 11 (10), 861-873. doi.org/10.1002/anie.197208611.

(23) Abraham R. J.; Bernstein H. J. The Proton Magnetic Resonance Spectra of Thiophene. *Can. J. Chem.* **1959**, 37, 2095-2097. <https://doi.org/10.1139/v59-307>

(24) Abraham R. J.; Bernstein H. J. The Proton Resonance Spectra of Furan and Pyrrole. *Can. J. Chem.* **1959**, 37, 1056-1065. <https://doi.org/10.1139/v59-153>

(25) Gutowsky H. S., Holm, C.H., Saika, A., and Williams, G. A. Electron Coupling of Nuclear Spins. I. Proton and Fluorine Magnetic Resonance Spectra of Some Substituted Benzenes. *J. Am. Chem. Soc.* **1957**, 79 (17), 4596. DOI: 10.1021/ja01574a007

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(26) Edgar W. Garbisch Jr., Analysis of complex NMR spectra for the organic chemist. I. Second-order approach with specific application to the two spin system, *J. Chem. Educ.* **1968**, 45 (5), 311-321. DOI: 10.1021/ed045p311

(27) Edgar W. Garbisch Jr., Analysis of complex NMR spectra for the organic chemist. II. Three spin systems of the ABC, ABX, ABK, and AB2 types, *J. Chem. Educ.* **1968**, 45 (6), 402-416. DOI: 10.1021/ed045p402

(28) Edgar W. Garbisch Jr., Analysis of complex NMR spectra for the organic chemist: III. Four spin systems of the ABC2, ABX2, ABK2, AA'BB', and AA'XX' types, *J. Chem. Educ.* **1968**, 45 (7), 480-493. DOI: 10.1021/ed045p480

(29) Clark, M.; Thrasher, J. S. LAOCOON PC: NMR simulation on a personal computer, *J. Chem. Educ.*, **1990**, 67 (3), 235. DOI: 10.1021/ed067p235.2

(30) Bruker software available in 1970s onwards on the ASPECT computer.

(31) Reich, H. J. WinDNMR: Dynamic NMR Spectra for Windows. *J. Chem. Educ.*, **1995**, 72 (12), 1086. DOI: 10.1021/ed072p1086.1

(32) NMRSIM Copyright (C) 1999 by Bruker Analytik GmbH. Part No. H9171.

(33) SpinWorks 3.1, Copyright © 2009, Kirk Marat, University of Manitoba.

(34) Martin, J. S.; Quirt, A. R. NMR Spectra of Symmetric Molecules. I. The Spin Hamiltonian for Twofold Symmetry, *J. Magn. Reson.* **1971**, 5, 318-327.
[https://doi.org/10.1016/0022-2364\(71\)90082-5](https://doi.org/10.1016/0022-2364(71)90082-5)

(35) Cheshkov, D. A.; Sheberstov, K. F.; Sinitsyn, D. O.; Chertkov, V. A. ANATOLIA: NMR software for spectral analysis of total line-shape. *Magn. Reson. Chem.*, **2018**, 56, 449-457. doi: 10.1002/mrc.4689.

(36) Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.

1
2
3
4 W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian,
5 Inc., Wallingford CT, 2016.

6

7 (37) Abraham, R. J.; Edgar, M.; Griffiths, L.; Powell, R. L. Calculation of Proton Chemical-
8 Shifts in Hydrocarbons. *J. Chem. Soc., Chem. Commun.*, **1993**, 20, 1544-1545. DOI:
9 10.1039/C39930001544

10 (38) Abraham, R. J.; Edgar, M.; Griffiths, L.; Powell, R. L. Substituent chemical shifts
11 (SCS) in NMR. Part 5. Mono-and di-fluoro SCS in rigid molecules. *J. Chem. Soc.,*
12 *Perkin Trans. 2*, **1995**, 24, 561-567. DOI: 10.1039/P29950000561

13 (39) <http://mestrelab.com/software/mnova/nmr/> (accessed March 2019).

14 (40) Weber U.; Spiske R.; Hoffken H. W.; Haigele G.; Thiele H., WIN-DAISY Manual.
15 Bremen. Bruker-Franzen Analytik GmbH **1993**.

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60