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Abbreviations 

∆HA   amorphous material formation energy 

∆Hd   relative lattice distortion energy 

∆HP   new phases formation energy 

∆HS   specific surface area  

∆HT   macroenergy state of activated solid 

API   active pharmaceutical ingredient 

AUC   area under curve 

C   constant for the milled material 

Cryst. %  crystallinity of the API 

d(0.1)   particle diameter below which 10% of the sample volume exists 

d(0.5)   particle diameter below which 50% of the sample volume exists 

d(0.9)   particle diameter below which 90% of the sample volume exists 

E   milling energy 

fluidMel  a solid-state meloxicam containing product produced by fluidization 

HPC   hydroxypropyl cellulose 

HPH   high pressure homogenization 

HPMC   hydroxypropyl methylcellulose 

LD50   the amount of a material that is sufficient to kill 50 percent of the  

   treated population.    

lyoMel   a solid-state meloxicam containing product produced by lyophilization 

Mel   meloxicam 

MelD   meloxicam dispersion 

Mel-PVA PM  meloxicam–poly(vinyl alcohol) physical mixture 

microMel  micro-sized raw meloxicam 

nanoMel  milled nano-sized meloxicam 

n   constant for mill 

NSAID  non-steroidal anti-inflammatory drug 

PEG   poly(ethylene glycol) 

PM   physical mixture 

Poloxamer  poly(ethylene)–poly(propylene glycol) 



 

 

PS   particle size 

PSD   particle size distribution 

PVA    poly(vinyl alcohol) 

PVP   polyvinylpirrolidone 

rawMel  untreated raw meloxicam 

SDS   sodium dodecylsulfate  

SLS   sodium lauryl sulphate 

SSA    specific surface area 

XRPD    X-ray powder diffraction 

ZrO2   zirconium-oxide 
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1. INTRODUCTION 

Particle design techniques are widely used to modify the physicochemical and 

biopharmaceutical properties of APIs (Maghsoodi et al., 2008). Particle engineering 

techniques that control the crystal size distribution and morphology and make use of different 

additives can offer improvements as concerns the solubility, rate of dissolution and 

permeability of poorly water-soluble drugs and can open up new, alternative administration 

routes as well (Pomázi et al., 2011, Ghosh et al., 2012, Maggi et al., 2013). From the early 

2000’s synthesis of poorly water-soluble drugs has been rapidly increased, therefore the 

particle size reduction especially the nanonization (particle size < 1000 nm) may be the 

solution to reach rapid saturation concentration and better bioavailability of these drugs.  

The nanonization techniques can be classified as bottom-up and top-down techniques. 

During the bottom-up processes nanoparticles are built from dissolved agent. Top-down 

processes comprise disintegration techniques, where the raw material is broken down via 

mechanical forces. Milling belongs among top-down methods. Due to the reduced particle 

size, the increased specific surface area and the surface charge of the particles can be occurred 

particle aggregation. To prevent the particle aggregation, the addition of stabilizing agents 

(polymers, surfactants) is needed (Ujhelyi et al., 2012).  

New approach in a wet milling process is the combined techniques, where the 

planetary ball mill is combined with pearl milling technology to reach nanosize range. 

Planetary ball milling is mainly used in laboratory-scale research work. Pearl milling is a 

commonly used milling process for industrial purposes. Separately, both techniques are well 

known but we do not yet know enough about a combinative technique as optimization of 

process parameters, testing for robustness and selection of additives (polymer, surfactant). 

 Present PhD thesis shows new results on this topic, which may help nanonization of 

active ingredients, stabilization of nanoparticles without surfactant, and improved 

bioavailability of the final product. 
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2. THEORETICAL BACKGROUND  

2.1. Strategies to increase the dissolution/solubility of poorly water-soluble active agent 

A significant and increasing percentage of the synthetized small molecule APIs are poorly 

water soluble (Merisko-Liversidge et al., 2011, Junghanns et al., 2008). Consequently, the 

liberation, the absorption, hence the bioavailability of these drugs is not satisfying (Liu et al., 

2011). 

The most important available routes to optimize the dissolution characteristics or/and the 

solubility properties of the APIs are the followings: 

• particle size reduction (most commonly used route) (Khadka et al., 2014), 

• amorphization – breakdown of the crystal structure (Jójárt-Laczkovich et al., 2016), 

• polymorphism - developing a new crystal structure of the API to achieve higher 

solubility (Bhatia et al., 2018),  

• salt forming - in the case of active substances which tend to form salt, this method can 

be used to enhance the water solubility (Horváth et al., 2016). 

Particle size reduction techniques are widely used to produce micro- or nanoparticles in order 

to increase the specific surface area thereby improve the dissolution characteristics of poorly 

soluble drugs. According to the Noyes–Whitney equation, the dissolution rate is directly 

proportional to the specific surface area, therefore improved dissolution rate, higher saturated 

concentration and better bioavailability of the API can be achieved (Shegokar et al., 2010, 

Dokoumetzidis et al., 2006).  

The size reduction techniques can be also classified as bottom-up and top-down 

techniques. During the bottom-up processes micro- or nanoparticles are built from dissolved 

agent with gas anti-solvent recrystallization, aerosol solvent extraction system (Yim et al., 

2014f), atomized rapid injection for solvent extraction, rapid expansion of supercritical 

solution (Chan et al., 2011) and depressurization of an expanded liquid organic solution 

(Ventosa et al., 2001). Due to the complexity of these methods, as per our knowledge there 

are no pharmaceutical products on the market based on this technology (Shegokar et al., 2010, 

Finke et al., 2017). 

Top-down processes comprise disintegration techniques, where the raw material is broken 

down via mechanical forces. The most known top-down processes: dry (Suryanarayana et al., 
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2001) and wet ball milling (Peltonen et al., 2010), jet milling (Moorthi et al., 2013), high 

pressure homogenization (Müller et al., 2006) and high-energy sonication (Bartos et al., 

2015). 

2.2. Milling 

Milling is a commonly applied technique to produce micro- or nanosized drug crystals. The 

main effect of the process is the comminution of particles, which results in changes in 

physicochemical properties of the ground material. Due to the mechanical activation, the 

initial structure of the material usually becomes disordered, amorphization or generation of 

other metastable forms can be registered (Baláž, 2008). One possible description for 

characterizing the macro-energy state of activated solid (∆HT) equals to the sum of the energy 

of microstates (Pourghahramani, 2007) calculated according to the following equation: 

∆HT = ∆Hd + ∆HS + ∆HA + ∆HP 

where ∆Hd is the relative lattice distortion (dislocation density), ∆HS is the specific surface 

area (grain boundary) and ∆HA is the formation of amorphous material (Heegn, 1979) and 

∆HP is the formation of new phases. There are numerous types of milling techniques; dry and 

wet milling can be distinguished (Dahiya, 2017): 

• Dry milling – the conventional method of particle size reduction. 

• Wet milling – in this method, a sufficiently concentrated dispersion of drug particles 

in an aqueous or non-aqueous liquid medium is treated. Increased mill capacity, lower 

energy consumption, and easier handling of materials can be perceived as advantages 

of the process. However, it must be said, in the course of the milling process, 

increased wear of the milling medium and corrosion can occur, and the liquid agent is 

needed as a milling medium due to the properties of the milled materials: high residual 

moisture content, high potency of degradation in dry milling conditions. 

2.2.1. Dry milling 

Dry milling techniques are usually used for micronization and nanonization (Naik et al., 2015, 

Liu et al., 2014). Criteria of the dry milling nanonization are the use of an additive and a long 

milling time, furthermore, during the nanonization changes may occur in the physicochemical 

structure of the drug (Kürti et al., 2011). Cutter mill, roller mill and planetary ball mill can be 

mentioned, as machines for dry milling processes. 
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The general milling law is defined by Walker et al. (Perry, 1963): 

𝑑𝐸 = −C
𝑑𝑥

𝑥𝑛
 

where E is grinding energy per unit mass, x is particle size and C and n are constants for a 

given material and mill. It is impossible to produce a differential decrease in particle size by 

grinding because mass is conserved, so that a finite quantity of small material is produced in 

addition to the particle of near original size. In this form, the equation is absurd (Perry, 1963). 

Three sub-definitions are commonly used to determine the energy consumption of the 

milling: Rittinger’s, Bond’s and Kick’s and Kirpicsov’s law. In case of micronization, the 

Rittinger theory describes the PS reduction produced relative to the energy (E) input of 

milling: the new surface area generated is directly proportional to the E required for the PS 

reduction. As the surface area of a quantity of particles of uniform diameter x is proportional 

to 1/x, the E required for PS reduction is therefore also proportional (Austin, 1973): 

𝑑𝐸 = 𝐶 (
1

𝑥1
) − (

1

𝑥2
) 

In dry co-milling (the poorly water-soluble API is milled with water-soluble additives for 

preparation of dry nanodispersions) PVP, SDS, PEG, HPMC, and cyclodextrin derivatives are 

used as additives (Dahiya, 2017). 

In case of milling hygroscopic or heterogenic materials (during the milling process these 

materials tend to stick) and nanonization (due to the high SSA and decreased particle size, 

instabilities can be occurred), additives need to be added. Ethylene-glycol, Aerosil® and 

magnesium-stearate are the most commonly used additives for dry milling processes. (Fritsch 

GmbH). In general, many areas of industrial production avoid dry milling processes due to the 

higher energy demand risk of environmental contamination (Duroudier et al., 2016) and the 

long process time. 

Planetary ball milling belongs to high energy milling methods. The working principles of 

the mill: during the operation the milling container rotates about its own and an external axel, 

so it carries out a planetary movement (Broseghini et al., 2016). According to the rotation 

direction, horizontal and vertical type planetary ball mill can be distinguished. In the 

conventional use the total kinetic energy of the milling components consists of the centrifugal 

force of the vial, the centrifugal force of the vial, the centrifugal force of the disk and the 
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Coriolis force (Harris, 2013) (Figure 1). In terms of the energy used by the mill to achieve 

particle size reduction, the collision energy can be defined. The collision energy is the sum of 

the kinetic energy of the beads acting perpendicular to the direction of the disk rotation and 

the collision heat generated by the milling components and the container wall. The process is 

mainly used in laboratory-scale research work. It is a common technique for dry milling 

(Suryanarayana et al., 2001), nevertheless it is suitable for wet milling processes as well (Liu 

et al., 2011, Ghosh et al. 2012, George et al., 2013). 

 

 

 

Figure 1. Energies occurring during a planetary ball milling process 

2.2.2. Wet milling 

Wet milling is a method, in which a sufficiently concentrated dispersion of drug particles in 

an aqueous or non-aqueous liquid medium is treated. Increased mill capacity, lower energy 

consumption and easier handling of materials can be perceived as advantages of the process. 

However, it shall be mentioned, to carry out the milling process, increased wear of the milling 

medium and corrosion can occur, and API instability can present difficulties. 



 

6 

 

Wet milling is applicable for micronization (Pomázi et al., 2013), but is usually used for 

nanonization (Bilgili et al., 2006, Loh et al., 2015).  

Drug pre-dispersions produced by wet milling can be formulated as capsules, granules, 

tablets, injectables, sprays and gels (Wang et al., 2013, Junyaprasert et al., 2015). The colloid 

mill, the toothed high-shear inline mixers, the cone mill, high-pressure homogenization and 

the pearl mill can be classified as wet milling equipments. 

Media milling is a commonly used milling process in pigment-, photo- and magnet industry. 

Commercially, in pharmaceutical industry the media milling is exemplified by the 

NanoCrystal® technology from Elan Pharma International Ltd. (Dublin, Ireland) (Junghanns 

et al., 2008). In terms of the machine size, originally the mill was constructed for industrial 

purposes. The labor scale machine production due to extensive usability was launched (Figure 

2). The milling is executed by a high energy rotating stirrer in the milling chamber, which 

induces the motion of the milling components. Micro-sized beads are used as milling media 

(100-500 µm). The process is time-consuming and requires lot of energy (Merisko-Liversidge 

et al., 2011, Azad et al., 2014).  

 

Figure 2. Schematic illustration of the wet media milling process (Loh et al. 2015). 

A major drawback of media milling is the erosion of the mostly zirconia, glass or pearl 

milling media arising from the intensive mixing forces. Residues of the milling media may 

result in product contamination (Peltonen et al., 2010, Shegokar et al., 2010) leading to 



 

7 

 

chemical destabilization of the newly formed particle surfaces and possibly affecting critical 

product characteristics such as PS and PSD. In case of wet milling processes, stabilizing 

agents are needed to prevent the physicohemical changes of the API. The main functions of a 

stabilizer in nanodispersions/suspensions are to wet drug particles during the milling process, 

and to prevent Ostwald’s ripening (crystal growth in colloidal suspensions) (Kim, 2004) and 

agglomeration in order to yield a physically stable formulation by providing steric or ionic 

barriers. Different concentrations of stabilizer agents (e.g. polymers) can also influence the 

viscosity and the electrokinetic property of the particles, according to the DLVO theory 

(Derjaguin et al., 1941), and thus the stability of the nanosuspension as well. Surfactants help 

to wet the particles and thus reduce their aggregation tendency (Table 1) (Van Eerdenbrugh et 

al, 2008, Merisko-Liversidge et al., 2011). In addition to the advantages of surfactants, they 

have the biggest disadvantage of increasing the speed/energy of motion of the milling balls 

during wet milling, which can lead to the degradation of the active ingredient. When used as 

an external surfactant to solidify the nanosuspension, its solubility-enhancing effect may be 

emphasized, thereby increasing the degree of crystallinity of active agent in the solid product 

and reducing its dissolution rate (Verma et al., 2011). It should be noted, that the presence of 

surfactants is also contraindicated in some cases e.g. pediatric therapy, hypersensitivity, 

irritation, etc. 

Conventional formulations contain these excipients in common, but the new tendency is to 

ignore the surfactants and look for other options to stabilize the nanoparticles in the products 

and achieve the desired biological effect (Bhakay et al., 2014, Azad et al., 2015, Kim et al., 

2018). 
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Table 1. List of additives used in wet media milling 

Polymer Concentration 

(%) 

Literature reference 

HPC 2.4 -19.6 Lee et al. (2006), Lee (2003) 

PVA 50 Wiedmann et al. (1997), Bartos et al. (2018) 

PVP 30 Liversidge et al. (1995), Ding et al. (2019) 

 

Surfactant   

Cremophor® 100  Wahlstrom et al. (2007), Chiang et al. (2007) 

Poloxamer 188 60 Liversidge et al. (1995), Zhang et al. (2018) 

Poloxamer 338 50 Merisko-Liversidge et al. (1996), Mouton et al. 

(2006) 

Poloxamer 407 20 Jia et al. (2002), Zheng et al. (1997) 

Poloxamine 908 20 Na et al. (1999), Girdhar et al. (2018) 

Polyglyceryl-10 

laurate 

16.7 Kondo et al. (1993),  

Tyloxapol 20 Ostrander et al. (1999) 

SLS 0.15 Vergote et al. (2001) 

Polysorbate 80 1 Merisko-Liversidge et al. (1996), Sievert et al. 

(2018) 

Sorbitan 

monooleate 

1 Merisko-Liversidge et al. (1996) 
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Crystalline state is one of the most important parameters affecting drug stability, dissolution 

extent, and efficacy. The high energy wet milling techniques tend to create a partially 

amorphous active agent. The high energy amorphous particles are unstable, especially in the 

presence of crystalline particles, and inclined to convert to low energy crystalline state over 

time. The saturation solubility between amorphous and crystalline nanoparticles is different, 

therefore the diffusion process will be similar to Oswald’s ripening, leading to a rapid 

conversion of amorphous nanoparticles to crystalline state (Wu et al., 2011). 

2.2.3. Combined wet milling process 

The original meaning of the term “combined milling process” is the combination of two 

consecutive individual milling processes. Recently a group of combinative nanonization 

technologies were developed. There are five known groups: NANOEDGER 

(microprecipitation followed by HPH), microprecipitation immediately followed by HPH, 

spray-drying followed by HPH, lyophilization followed by HPH, and the combinative 

technology (media milling followed by HPH) (Shegokar and Muller, 2010).  

The combined wet milling process used in this research work is a fusion of two basic 

milling techniques, in both cases the milling is performed in presence of grinding media 

(beads). In the Retsch method recommendation list, combination of the planetary ball mill and 

the grinding media of the pearl mill is preferred as a novel milling technique in order to 

prepare pre-dispersions with nanoparticle size of the API (Retsch GmbH, Haan, Germany). 

This combined milling technique unites the advantageous properties of the basic milling 

processes: 

• Particle size reduction with high energy transfer in labor-scale conditions, produced by 

the planetary ball mill.  

• The micro-sized beads of the wet stirred media milling give a higher reduction rate 

according to the basically used millimeter-scale beads – the particle size reduction rate 

is inversely proportional to the size of the bead size (Gao et al., 1995). 

The milling is followed by a bead-elimination process: the concentrated milled dispersions are 

filtered by a sieve with 150 μm mesh size in order to remove the pearls. For the washing of 

the pearls, purified water is used. Due to the dilution, the particle-stabilizing effect of the 

applied additive will not be satisfactory. 
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The robustness testing of the milling process is a necessary method to discover the limits of 

the process parameters variabilities while the product quality can be maintained (Nalluri et al., 

2010). During the optimization process, beside the optimal process parameters, the range of 

parameters can also be determined, and as a result, a nanosuspension can be provided which 

as an intermediate product, with further modification or stabilization routes can be 

transformed into a liquid, semi-solid or solid state drug delivery systems (Bartos et al., 2019). 

2.3. Transformation of nanosuspension as an intermediate product into solid state product 

(fluidization, lyophilization) 

Nanosuspensions can be defined as colloidal dispersions of nanosized drug particles (< 500 

nm) that are produced by different nanonization processes and stabilized by various excipients 

(Müller et al., 1998). Nanocrystals also enhance adhesiveness to the gastrointestinal mucosa, 

resulting in prolonged gastrointestinal residence and, thus, increased uptake via the 

gastrointestinal tract (Malamatari et al., 2018). 

Despite the advantages of drug nanoparticles, they present various drawbacks including 

sedimentation, particle agglomeration or crystal growth. During the wet nanonization, due to 

the reduced particle size, the increased specific surface area, the surface charge of the 

particles and the high particle mobility, particle aggregation can be occurred. To prevent the 

particle aggregation, further stabilization is needed (Peltonen et al., 2010). 

Nanosuspensions can be applied as final liquid dosage forms using further different excipients 

(viscosity enhancer, flavoring, preservative agents, etc.), however, their stabilization is a 

major challenge (Wang et al. 2013, Zheng et al., 2013). It is well known that, despite the 

stabilization, nanosuspensions have a short expiration time, and there are patients who do not 

prefer this form or the presence of a surfactant. One way to overcome the instability and 

surfactant problem is to design solid dispersion (Nagy et al., 2012) produced by spray drying, 

spray freeze drying and freeze drying (lyophilization) (Fülöp et al. 2018) It is well known that 

the dry nanosuspensions can cause difficulty in hydration and redispersibility (Kim et al., 

2018, Van Eerdenbourgh et al., 2008). Other processes for transforming a nanosuspension 

into solid-state forms (tablets, capsules) are very different: deposition as coatings, 

incorporation in granules and pellets and the 3D printing technologies (Prasad et al., 2016).  

Spray drying and lyophilization (freeze drying) are the commonly used techniques for the 

solidification of nanosuspension because of their easy application and industrial acceptability  
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(Colombo et al., 2017) The powders produced by these processes often suffer from poor 

flowability and high hygroscopicity, therefore other technologies are applied to transform 

nanosuspensions into oral dosage forms as tablets and capsules (Kayaert et al., 2011). 

Layering of nanosuspension onto the surface of granules, pellets, sugar beads, etc. using a 

fluidization technique is used as an alternative method for solidification of nanosuspension  

(Möschwitzer et al, 2006, Kayaert et al., 2011, He et al., 2013, A. Azad et al., 2014, Mittal, 

2017). The advantage of this process that may be used various additives in order to achieve 

the desired purpose, e.g. i) different polymers stabilize the nanosuspension, and act as a 

coating materials resulted in fast dissolution rate, ii) surfactants prevent the aggregation of 

nanoparticle and can modify the drug release (Vergote et al., 2001, Bose et al., 2012).  In any 

case, the fluidization technique also provides an opportunity to stabilize the broken structure 

of the ground crystals in the nanosuspension by using crystallization inhibitors (Jójárt-

Laczkovich et al., 2011). 

The water solubility of NSAIDs is poor or very poor in general but increasing pH results in 

higher solubility (Szabó-Révész, 2018). Mel, a member of the oxicam family of NSAIDs, as a 

moderately selective cyclooxygenase (COX-2) inhibitor can have a role in acute pain therapy 

but a basic requirement is rapid absorption through the gastric mucosa. Mel has a weak acidic 

character with pKa of 3.43, therefore its solubility in gastric juice (pH=1.2) is very poor but 

its logPapp is 2.43 (pH=2.0), which predestines the fast absorption from the stomach (Simmons 

et al., 2004, Bartos et al., 2016, Szabó-Révész, 2018). Since the solubility of Mel is very poor 

in gastric juice, the preparation of a nanosuspension with a fast dissolution rate may be a 

solution. 

PVA is a polymer, which is frequently used as a stabilizer, coating the particles and 

promoting their separation from each other (Bartos et al., 2015).  

The acute oral toxicity of PVA is very low, with LD50s in the range of 15–20 g/kg. Orally 

administered PVA is very poorly absorbed from the gastrointestinal tract and it does not 

accumulate in the body when it is administered orally. The PVA is not mutagenic or 

clastogenic. It can be concluded, that the orally distributed PVA is nontoxic (De Merlis et al., 

2003).  
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 3. AIMS 

The aim of this work was to study the wet milling process, where the planetary ball mill was 

combined with pearl milling technology and optimize the process parameters and predict the 

robustness of the process and design the amount of the additive (PVA) in order to produce 

Mel containing nanosuspension. PVA as a protective polymer had a dual function, partly to 

increase the efficiency of milling (without any pre-milling procedure, surfactant free samples) 

and partly to stabilize the Mel containing nanosuspension as an intermediate product.  

Furthermore, the optimized Mel formulations were tested on the cell culture model of 

intestinal epithelium. 

The purpose of the work was further to produce a surfactant-free product by solidifying of 

Mel containing nanosuspension. Critical product parameters were considered to be the 

particle size distribution of the drug (d(0.9) < 500 nm), stabilization of the degree of 

crystallinity altered during milling, and enhancement of the bioavailability of the solid 

product with fast absorption from the stomach for rapid analgesia. The transformation of the 

nanosuspension was done by fluidization and lyophilization.  

The main steps in the experiments were as follows: 

i. Optimization of the critical process parameters of the combined wet milling (ratio of pre-

dispersion and pearls, milling time and rotation speed) in order to produce Mel containing 

nanosuspension as an intermediate product without any pre-treating procedure and surfactant 

(nanoMel). 

ii. Investigation of the influence of the PVA amount on the milling effectiveness and the PSD 

and crystallinity of the Mel in the ground products which does not contain any additional 

excipients, thus surfactant. 

iii. Perform in vitro dissolution test and cell culture studies (cell viability and permeability) to 

control the amount of PVA. 

iv. Testing the robustness of combined wet milling process to determine the interval of the 

Mel amount and to predict the degree of crystallinity of the milled products. 

v. Transformation of the surfactant-free nanoMel sample into solid-state products by 

fluidization and lyophilization and investigation of the product stability (particle size, 

crystallinity), and in vitro release of Mel  
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vi. Bioavailability of the products was studied by in vivo animal tests to justify applicability of 

the surfactant-free samples containing nanonized Mel. 

4. MATERIALS AND METHODS 

4.1. Materials 

The characteristics of Mel and the used additives are shown in Table 2. All other reagents 

used during the work were purchased from Sigma-Aldrich, Ltd. (Budapest, Hungary) 

Table 2. Properties of the materials used in the research work 

 Mel PVA MCC Trehalose 

Chemical 

structure 

  

 

 

 

 

Chemical 

name 

4-hydroxy-2-

methyl-N-(5-

methyl-2-

thiazolyl)-2H-1,2 

benzothiazine-3-

carboxamide-1,1-

dioxide 

Poly(vinyl 

alcohol) 

Microcrystalline 

cellulose 

 

Alpha-D-

trehalose-

dihydrate 

Manufacturer EGIS Ltd. 

(Budapest, 

Hungary) 

Sigma Aldrich 

Co. LLC, St. 

Louis MO, USA 

FMC 

Biopolymer, 

Philadelphia USA 

Karl Roth GmbH 

+ Co. KG. 

(Karlsruhe, 

Germany) 

Physical 

properties 

Mw:351.4 g/mol 

a yellow powder 

poor solubility in 

water 

Mw:44.05 g/mol 

a white powder 

soluble in water, 

slightly soluble in 

ethanol semi-

crystalline 

Mw:370.35 g/mol 

a white powder, 

insoluble in water 

Mw:342.3 g/mol 

a white powder, 

soluble in water,  

 

4.2. Methods 

4.2.1. Optimization of combined wet-milling process 

The samples were milled with the steel jar with 50 ml volume of the Retsch PM 100 planetary 

ball mill (Retsch PM 100 MA, Retsch GmbH, Germany) combined with 0.3 mm ZrO2 beads 
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as the grinding media. The concentrated (10 % w/w) pre-dispersions (2 g of Mel suspended in 

18 g of aqueous dispersant medium containing PVA) were added to the ZrO2 beads. In the 

first step, the effect of different amount of ZrO2 pearls on the particle size reduction was 

investigated. The ratio of the amount of pre-dispersion and pearls (w/w) was 1:0.5, 1:1, 1:2 

and 1:4; and the milling times were 10, 30 and 50 min. In these cases, the concentration of 

PVA solution was 2.5% (w/w), and the rotation speed was 400 rpm. In the second step, design 

and analysis of experiments with three levels were used to optimize the milling time (10, 30 

and 50 min) and the rotation speed (200, 350 and 500 rpm) as independent variables. The 

amount of the pearls was chosen on the basis of the optimization study. The temperature of 

the samples was measured immediately after milling. This value did not exceed 39°C. 

4.2.2. Optimization of PVA concentration 

After optimizing the process parameters, the determination of the adequate PVA 

concentration was executed. Various amounts of PVA (2.5-7.5%) were applied to prepare the 

concentrated pre-dispersions. The concentration of the PVA solutions was increased with a 

half percent in the range. Mel content was 10% (w/w) and the optimized process parameters 

were used during the milling. The degree of particle size reduction and particle size 

distribution were the main factors for the optimization of the PVA concentration (Figure 3). 

 

Figure 3. Protocol of sample preparation in optimization of PVA content  

Each milled product was filtered by a sieve with 150 μm mesh size in order to remove the 

pearls. For the washing of the pearls, 180 g of purified water was used. In all cases, the milled 
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dispersions were ten-fold diluted products with 1 % of Mel (w/w) content.  The samples were 

selected on the basis of the particle size range (100-500 nm) and the holding time (2 weeks).   

4.2.3. Robustness determination of the process 

Eight samples were prepared from 0.5 to 4.0 g of Mel with 0.5 g increment per sample. As the 

stabilizing agent, 5% of PVA aqueous solution was added up to 20.0 g to each sample, which 

was selected on the basis of our previous experiments. The Mel and PVA concentrations of 

the samples are shown in Table 3.  

Table 3. Mel and PVA concentrations in the samples 

Sample name 
Mel% 

(w/w) 

PVA% 

(w/w) 

Mel_0.5g 2.50 5.42 

Mel_1.0g 5.00 5.28 

Mel_1.5g 7.50 5.14 

Mel_2.0g* 10.00 5.00 

Mel_2.5g 12.50 4.86 

Mel_3.0g 15.00 4.72 

Mel_3.5g 17.50 4.58 

Mel_4.0g 20.00 4.44 

*optimized sample 

4.2.4. Transformation of nanosuspension into solid compositions 

4.2.4.1. Fluidization (fluidMel) 

The Avicel PH 101 as the carrier material was used in a Strea-1 (Niro Aeromatic, Bubendorf, 

Switzerland) fluid bed chamber.  A batch size of 100 g was used. The powder was inserted 

and fluidized in the preheated chamber for a period of 10 min and at constant air velocity of  

2.5 m/s. NanoMel as liquid dispersion was implemented using a peristaltic pump (Roto 

Consulta Ebikon/Luzern, Schweiz), the applied pump speed was 9 rpm. The process took 50 

minutes, the inlet temperature was 55°C, the outlet temperature was 38°C. One batch of 

nanoMel sample (200g) was transferred onto the surface of the material, thus the fluidized 

solid-state product contained 2g of Mel, 1g of PVA and 100g of Avicel 101 (Table 4). 
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Table 4. Composition of the investigated samples 

Sample Mel 

(%) 

PVA 

(%) 

Water 

(%) 

MCC 

(%) 

Trehalose 

(%) 

fluidMela 1.94 0.97 - 97.09 - 

lyoMelb 15.38 7.70 - - 76.92 

a,bbased on dry material 

4.2.4.2. Lyophilization (lyoMel)  

Freeze-drying was performed in Scanvac CoolSafe 100-9 Pro type equipment (LaboGene 

ApS, Lynge, Denmark) equipped with a 3-shelf sample holder unit, recessed into the drying 

chamber. In each cuvette 750 mg of diluted milled suspension was filled (7.5 mg Mel content 

in every cuvette, the unit dose of Mel). As a cake-forming additive, 37.5mg of (5.0%) 

trehalose was dissolved in the nanosuspensions. The components of the final product can be 

seen in Table 4. The process was controlled by a computer program (Scanlaf CTS16a02), the 

temperature and pressure values were recorded continuously. The whole process took 71 

hours and 52 minutes. The initial temperature was 25 °C. During the freezing period, after 18 

hours and 34 minutes, the sample temperature was decreased to -40 °C. The subsequent 

drying process was conducted at 0.013 mbar air pressure for 50 hours and 50 minutes, the 

temperature increased from -40 °C to -7 °C. Finally, the secondary drying session took 2 

hours and 28 minutes. The final temperature of the dried products was 30 °C. 

4.2.5. Investigation of the samples 

4.2.5.1. Particle size distribution measurements  

The investigations on the particle size of raw Mel and nanoMel via laser diffraction were 

executed (Malvern Mastersizer S 2000, Malvern Instruments Ltd, Worcestershire, UK) with 

the following parameters: 300RF lens; small volume dispersion unit (1,000 rpm); refractive 

index for Mel: 1.720; and refractive index for dispersion medium: 1.330. During the 

measurements, distilled water was used as a dispersant, and obscuration was in the range of 

11%–16% for all measurements. In both cases, the particle size distributions were qualified by 

d(0.1), d(0.5), and d(0.9). 
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In the case of the solid-state products (fluidMel and lyoMel), the particle size of Mel was 

determined by using Scanning Electron Microscopy (SEM) images (Hitachi S4700, Hitachi 

Scientific Ltd., Tokyo, Japan). The size of the particles was calculated by ImageJ software for 

Windows (Phase GmbH, Lübeck, Germany) (Abramoff et al., 2004). By specifying the unit 

length, which is shown in each images (depending on the magnification this is a different 

value), the actual particle size can easily be determined by drawing the diameter of the 

captured particles. A diameter of a hundred captured particles was determined in the case of 

two solid phase samples. 

For nanoMel and lyoMel samples, the Z-average particle size and the polydispersity index 

(PDI) of Mel were measured using a Malvern Zeta Nano ZS (Malvern Instruments Ltd). In 

case of the particle size determination, Malvern DTS 1070 folded capillary cell was used. The 

samples were further diluted with water (25-fold) for the measurements. 

4.2.5.2. Image analysis (scanning electron microscopy - SEM)  

The particle morphology of milled dispersions and the solid-state samples were investigated. 

The diluted milled dispersions were dried in a vacuum dryer (Binder GmbH, Tuttlingen, 

Germany) at 40 °C in order to obtain solid products for physicochemical investigations. The 

shape and surface characteristics of the samples were visualized by SEM (Hitachi S4700, 

Hitachi Scientific Ltd., Tokyo, Japan). The samples were sputter-coated with gold–palladium 

under an argon atmosphere, using a gold sputter module in a high-vacuum evaporator, and the 

samples were examined at 10 kV and 10 mA. The air pressure was 1.3–13 MPa. 

4.2.5.3. X-ray powder diffraction analysis (XRPD) 

The crystallinity state of Mel in the samples was evaluated by XRPD. XRPD patterns were 

produced by a Bruker D8 Advance diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) 

system with Cu K λI radiation (λ = 1.5406 Å). The samples were scanned at 40 kV and 40 

mA from 3 to 40 2θ, at a step time of 0.1 s and a step size of 0.010°. The instrument was 

calibrated by using Si standard. The semi-quantitative determination of Mel crystallinity 

(Cryst. %) was performed using the total area under the curve (AUC) of 3 characteristic peaks 

(13.06°, 14.94° and 18.61° 2Θ) of Mel. The AUC value of the peak of raw material without 

milling (rawMel) and the dried milled dispersions (MelD) was calculated and compared 

according the following formula (Rafiq et al., 2015) 
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𝐶𝑟𝑦𝑠𝑡.% =
𝐴𝑈𝐶𝑀𝑒𝑙𝐷

𝐴𝑈𝐶𝑟𝑎𝑤𝑀𝑒𝑙
∗ 100 

4.2.5.4. Stability test 

The products (fluidMel and lyoMel) were stored in a well-closed container, at room 

temperature (23 ± 2 °C, 45 ± 5% RH) for 6 months. The crystallinity of Mel was investigated 

compared to freshly measured products. 

4.2.5.5. Differential scanning calorimetry (DSC) 

DSC measurements were carried out with a Mettler Toledo DSC 821e thermal analysis 

system with the STARe thermal analysis software V9.0 (Mettler Inc. Schwerzenbach, 

Switzerland). Approx. 2-5 mg of pure Mel and PVA as well as dried samples were examined 

in the temperature range of 25-270°C. The heating rate was 10°C/min in the presence of argon 

as a carrier gas with a flow rate of 100 ml/min. 

4.2.5.6. Raman spectroscopy 

For the investigation of Mel degradation as a function of the pearl amount and milling time in 

the dispersion, Raman spectra were acquired with a Thermo Fisher DXR Dispersive Raman 

(Thermo Fisher Sco. Inc., Waltham, MA, USA) equipped with a CCD camera and a diode 

laser operating at a wavelength of 532 nm. Raman measurements were carried out with a laser 

power of 4 and 8 mW at 25 µm slit aperture size on a 2 µm spot size. The spectra of the 

individual substances as Mel and PVA were collected using a 2-sec exposure time, a total of 

48 scanning in the spectral range of 3300-200 cm-1 with cosmic ray and fluorescence 

corrections. 

4.2.5.7. Zeta potential measurements 

The zeta potential of the dispersions and the lyophilized product was measured via Malvern 

Zeta Nano ZS (Malvern Instruments Ltd, Worcestershire, UK). The refractive index was 

1.720.  For the zeta potential determination, Malvern DTS 1070 folded capillary cell was used 

at 25°C. The diluted milled dispersions were further diluted with water (25-fold) for the 

measurements. 

4.2.5.8. Rheological investigations 

To investigate the viscosity changes during the milling process, the initial and milled PVA 

solutions and the concentrated milled dispersions were used. Rheological measurements were 
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carried out with Physica MCR101 rheometer (Anton Paar, Austria, Graz). A concentric 

cylinder measuring device with a diameter of 17 mm was used. The flow curves of the 

samples were determined at 25 °C, where the shear rate was increased from 0.1 to 100 1/s. 

The shearing time was 300 s. In this paper, viscosity values were given at 100 1/s shear rate. 

Two parallel measurements were run. 

4.2.5.9. Solubility testing of Mel in the pre-dispersions  

The solubility of Mel in the samples (rawMel, nanoMel, fluidMel and lyoMel) was 

determined. The dispersions were stirred with a magnetic stirrer at 25 °C for 24 h and then 

filtered (0.1 μm, FilterBio PES Syringe Filter) (Labex Ltd., Budapest, Hungary), and the 

dissolved drug content was analyzed spectrophotometrically (Unicam UV/VIS) (Thermo 

Fisher Scientific Inc., Waltham, MA, USA) at 364 nm wavelength (n = 3). 

4.2.5.10. Drug content determination  

The Mel content of the samples was controlled in the following way. The unit dose of the 

products with 0.75 mg of theoretical Mel was dissolved in 100 mL of phosphate buffer pH 7.4 

± 0.1. The sample was stirred with a magnetic stirrer at 25 °C for 24 h and then filtered (0.1 

μm, FilterBio PES Syringe Filter) (Labex Ltd., Budapest, Hungary), and the concentration of 

the dissolved Mel was analyzed spectrophotometrically (Unicam UV/VIS) (Thermo Fisher 

Scientific Inc., Waltham, MA, USA) at 364 nm wavelength. The investigations were repeated 

three times. 

4.2.6. In vitro studies 

4.2.6.1. In vitro dissolution studies of Mel 

To determine the dissolution extent of Mel from dispersions, the paddle method (USP 

dissolution apparatus, type II Pharma Test, Heinburg, Germany) was used. 750 mg of the 

dispersion with 7.5 mg of Mel (therapeutic dose) was filled into hard gelatin capsules within 5 

sec and put promptly into the medium. The medium was 900 ml of artificial gastric fluid at 

pH 1.2 ± 0.1 and intestinal fluid (pH 6.8 ± 0.1). The paddle was rotated at 100 rpm and 

sampling was performed up to 60 min. The Mel contents of the samples were determined by 

spectrophotometer (ATI-UNICAM UV/VIS Spectrophotometer, Cambridge, UK) at 362 nm 

(gastric juice) and 364 nm (enteric fluid). The number of parallels was three. 
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4.2.6.2. In vitro cell culture studies 

4.2.6.2.1. Human Caco-2 intestinal epithelial cell line 

Caco-2 intestinal epithelial cell line was purchased from ATCC (cat.no. HTB-37) and used 

until passage 60 for the experiments. The cells were grown in Dulbecco’s Modified Eagle’s 

Medium (Gibco, Life Technologies, Carlsbad, California, USA) supplemented with 10 % 

fetal bovine serum (Pan-Biotech GmbH, Aidenbach, Germany) and 50 μg/ml gentamycin in a 

humidified incubator with 5 % CO2 at 37°C. All plastic surfaces were coated with 0.05 % rat 

tail collagen in sterile distilled water before cell seeding in culture dishes and the medium was 

changed every 2 days. The stock solutions for cell culture experiments were the following: 

Mel, 100 mg/ml; PVA, 5% (w/w) and three products containing 100 mg/ml Mel with various 

amounts of PVA (2.5, 5 or 7.5%). The working solutions were diluted in cell culture medium 

or Ringer-Hepes buffer and contained 1 mg/ml of meloxicam for the Mel and formulation 

groups. The final concentration of PVA was 0.025, 0.05 and 0.075% (w/w). 

4.2.6.2.2. Cell viability measurement by impedance  

Impedance was measured at 10 kHz by RTCA SP instrument (RTCA-SP instrument, ACEA 

Biosciences, San Diego, CA, USA). This method is label-free, non-invasive and follows cell 

adherence, growth, number and viability real time. We have successfully tested the cellular 

effects of peptides and pharmaceutical excipients by impedance kinetics.28,29,30 For 

background measurements 50 μl cell culture medium was added to the wells, then cells were 

seeded at a density of 6 × 103 cells/well to 96-well plate with gold electrodes (E-plate 96, 

ACEA Biosciences) coated with collagen. Cells were cultured for 5 days in CO2 incubator at 

37°C and monitored every 10 minutes until the end of experiments. At the beginning of 

plateau phase of growth cells were treated with Mel, PVA and Mel+PVA samples diluted in 

cell culture medium and the effects were followed for 8 hours. Triton X-100 detergent (1 

mg/ml) was used as a reference compound to induce cell toxicity. Cell index was defined as 

Rn-Rb at each time point of measurement, where Rn is the cell-electrode impedance of the 

well when it contains cells and Rb is the background impedance of the well with the medium 

alone. 

4.2.6.2.3. Permeability study on cell culture model 

Transepithelial electrical resistance (TEER) reflects the tightness of the intercellular junctions 

closing the paracellular cleft, therefore the overall tightness of cell layers of biological 
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barriers. TEER was measured every 2 day to check the barrier integrity by an EVOM volt-

ohmmeter (World Precision Instruments, Sarasota, FL, USA) combined with STX-2 

electrodes, and was expressed relative to the surface area of the monolayers as Ω × cm2.  

Caco-2 cells were seeded onto Transwell inserts (polycarbonate membrane, 0.4 µm pore size, 

1.12 cm2 surface area; Corning Life Sciences, Tewksbury, Massachusetts) and cultured for 

three weeks (Hellinger et al., 2012, Kiss et al., 2014). The culture medium was changed and 

TEER was checked every second day. 

For permeability experiment inserts were transferred to 12-well plates containing 1.5 ml 

Ringer-Hepes buffer in the lower (basal) compartments. In the upper (apical) compartments 

culture medium was replaced by 0.5 ml buffer containing treatment solutions of Mel, PVA 

and Mel formulation groups for 1 hour. Permeability marker molecules fluorescein (10 μg/ml; 

Mw: 376 Da) and albumin (10 mg/ml; Mw: 65 kDa) labeled with Evans blue (167.5 μg/ml) 

were used for verifying the cell layer integrity. Treatment solutions from both compartments 

were collected and the Mel level was detected by Thermo Spectronic Helios Alpha UV-VIS 

spectrophotometer (Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA). 

4.2.6.3. Holding time determination of Mel in the pre-dispersions 

Since the diluted dispersions are intermediate products, it was necessary to specify the 

“holding time” of the sample through the particle size distribution.  The products were stored 

in sealed glass bottles at room temperature (25°C ± 1°C) for 2 weeks. The particle size 

distribution of the Mel in the samples was analyzed on the day of production (day 0) and after 

14 days of storage. 

4.2.7. In vivo study of Mel 

Each sample contained 60 µg/ml of Mel and 30 µg/ml of PVA in purified water. For per os 

delivery, the different formulations were individually diluted and were given at a single dose 

of 300 μg/kg of Mel to male Sprague–Dawley rats (8 weeks old, 240-260 g, n = 6) in a 

volume of 0.5 ml by gastric gavages. All animals fasted 16 hours before the per os 

administration of drugs. In order to facilitate the absorption, the solid-state forms were re-

dispersed in water immediately before administration. In a comparison study for intravenous 

administration, animals were treated with a 300 µg/kg bolus of Mel via the tail vein. 
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Intravenous (IV) injection was prepared by the dilution of passable injection with a 

concentration of 15 mg/1.5 mL (Meloxicam-Zentiva, Prague, Czech Republic) to reach the 

final concentration (0.15 mg/mL). The ingredients of the injection were meglumine, 

poloxamer 188, glycine, sodium hydroxide (for pH adjustment), sodium chloride, 

glycopherol, and water for injection. Blood samples were collected from the tail vein before 

and at 15, 30, 60, 75, 90, 120 and 180 minutes post-dosing. The experimental protocols and 

animal care methods used in the present study were approved by the National Scientific 

Ethical Committee on Animal Experimentation (permission number IV/1247/2017).). The 

animals were treated in accordance with the European Communities Council Directives 

(2010/63/EU) and the Hungarian Act for the Protection of Animals in Research (Article 32 of 

Act XXVIII).  

Plasma samples were collected into EDTA containing polyethylene tubes, centrifuged at 

1,500 g for 10 min at 5 °C. Separated plasma samples were stored at -80 °C until extraction 

and analysis. 

Determination of Mel from rat plasma  

Preparation of plasma samples, calibration standards and quality control samples  

To 90 µL of plasma sample, 10 µL of 0.1 % aqueous formic acid and 300 µL of acetonitrile 

containing piroxicam (internal standard at 12.5 ng/mL concentration) were added and the 

mixture was vortex-mixed for 60 s. The mixture was allowed to rest for 30 min at -20 °C to 

support protein precipitation. Supernatant was obtained by the centrifugation of the mixture 

for 10 min at 10,000 g at 4 °C and 20 µL was diluted with 380 µL of 0.1 % aqueous formic 

acid. Finally, 5 µL was injected into the LC–MS/MS system for analysis. 

Rat plasma calibration standards of meloxicam were prepared by spiking the working 

standard solutions (1–1000 ng/mL) into a pool of drug-free rat plasma and the procedure 

described above was followed. Calibration standards consisted of 90 µL of pooled drug-free 

plasma, 10 µL of meloxicam standard solution (in 0.1 % aqueous formic acid) and 300 µL of 

acetonitrile containing piroxicam (internal standard at 12.5 ng/mL concentration). Solutions 

containing 6.25 ng/mL and 25 ng/mL of meloxicam were used as QC samples. 20 µL of 

supernatant was taken out from both of the calibration standards and the QC samples, diluted 

with 380 µL of 0.1 % aqueous formic acid, and 5 µL was analysed by LC–MS/MS. 
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4.2.7.1. In vitro-in vivo correlation calculation 

In vitro–in vivo correlation (IVIVC) is a biopharmaceutical tool for the investigation of the 

mutual relationship of the dissolution characteristics of the in vitro and in vivo absorption 

studies (Cardot et al., 2012). In our case, the Pearson’s correlation coefficient of the AUC 

values of the in vitro and in vivo results was calculated by Microsoft Excel (Microsoft 

Corporation, Redmond, Washington, U.S.) and Statistica for Windows (StatSoft GmbH, 

Hamburg, Germany). The three prepared samples were correlated with each other in groups of 

in vitro and in vivo. To determine statistical significance, the unpaired t-test was used 

4.2.8. Statistical analyses 

Data were expressed as means ± SD, and groups were compared by using Student's t-test. For 

the evaluation of cell culture results GraphPad Prism 5.0 software (GraphPad Software Inc., 

San Diego, USA) was used. All culture data presented are means ± SD, values were compared 

using analysis of variance followed by Bonferroni posttest. Differences were considered 

statistically significant when p < 0.05. 

5. RESULTS 

5.1. Optimization of the combined wet milling process 

5.1.1. Effects of milling parameters on PSD 

The effect of pearl amount and milling time on particle size of d(0.5) was investigated. This 

study was performed using 2.5% PVA solution (Bartos et al., 2016). The ratio of the 

concentrated pre-dispersion (2.0 g of Mel+18.0 g of aqueous PVA solution) and pearl amount 

was alternated: 1:0.5, 1:1, 1:2, and 1:4 (w/w). It can be established that the pearl amount and 

the milling time have a great effect of on the d(0.5) value (Table 6). The milling efficiency 

was not satisfactory in case of ratio 1:0.5, but it increased linearly on increasing the amount of 

the milling media and the milling time except in case of ratio 1:4. It was found that the 

increase of the amount of the milling media (up to 1:2 w/w or more) causes gray coloring 

because of the high friction between the pearls and the wall of the steel jar. Therefore, the 

pearl milling amount was optimized at the ratio of 1:1 (20 g of concentrated pre-dispersion 

and 20 g of pearls), and the milling time was investigated as an independent variable in the 

factorial experimental design. Another advantage of the small amount of the grinding media 

may be the reduction of the product loss. 
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Table 6. Particle size of Mel (d(0.5)) in milled dispersion as a function of different pearl 

amount and milling time (d(0.5) of raw Mel was 34.260 ± 4.860 µm) 

 Ratio of pre-dispersion and pearl amount (w/w) 

1:0.5 1:1 1:2 1:4 

Particle size (µm) 

10 min 4.015±0.06 2.426±0.029 2.383±0.016 0.149±0.03 

30 min 0.293±0.008 0.145±0.007 0.190±0.003 0.137±0.006 

50 min 0.202±0.003 0.140±0.004 0.140±0.002 0.130±0.004 

 

During the factorial experimental design, the influence of the milling time and the rotation 

speed on the particle size reduction was investigated. The ratio of the pre-dispersion and the 

pearls was also 1:1 (w/w). Figure 4. shown that the efficiency of the particle size reduction 

was improved by increasing the milling time and the rotation speed.  

 

Figure 4. 3D illustration of the particle size changes during the second factorial experimental 

design 

Based on the results, 437 rpm and 43 min are the optimal parameters of the milling process. 

With 10% Mel amount and 5% PVA concentration the pre-dispersion – pearl ratio is 1:1. The 

PSD values of the sample produced on mathematically pre-determined parameters are as 

follows: d(0.1) – 0.067±0.001 µm; d(0.5) – 0.130±0.005 µm; d(0.9) – 0-371±0.010 µm.  
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5.1.3. Effects of PVA on PSD 

Concentrated pre-dispersions with different PVA amounts (2.5%–7.5%) were milled with 

optimized parameters (2 g of Mel+18 g of PVA aqueous solution, 20 g pearls, 437 rpm, 43 

min). The results show (Figure 5) that the lower concentration of PVA (from 2.5% to 3.5%) 

was not suitable to reach the nanosize range (< 500 nm). A higher concentration of PVA 

(6.0%–6.5%) also resulted in unsatisfactory milling effectiveness. Over 6.5% a robust 

protecting layer was probably formed on the solid particles, and nanonization was not 

possible. The curve of the Span values follows the different particle size distribution of the 

samples. The best particle size distribution was measured in the range of 4.0% and 5.5% of 

PVA. Based on the results, the concentrated milled dispersion containing 5.0% of PVA was 

selected as the optimized PVA amount. After the optimization of the wet milling process and 

the PVA amount, in order to understand the influence of the amount of PVA on the 

physicochemical properties of the samples, the milled dispersions with 3 different 

concentrations of PVA were investigated. These were the following: 2.5%, 5.0% (as 

optimized) and 7.5% of PVA. 

 

 

Figure 5. Particle size reduction effectiveness according to PVA concentrations and the Span 

values for the demonstration of particle size distribution (d(0.1) values are not shown 
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5.1.4. Rheology 

In order to exclude the viscosity changes because of the high mechanical forces during the 

milling, the viscosity of 3 raw PVA solutions (2.5%, 5%, and 7.5%) was investigated before 

the milling process, after the process (437 rpm, 43 min), and after the milling with the 

addition of Mel. The polymer solutions showed Newtonian flow behavior as their shear 

viscosity was independent of the applied shear rate. The viscosity of the polymer solutions 

increased with increasing the polymer concentration (Table 7). There were no remarkable 

differences between the viscosity of the polymer solution before and after the milling 

procedure, which may indicate there are no changes in the polymer structure. 10% Mel 

amount in the dispersions increased the viscosity of the systems and did not change the flow 

behavior – they remained Newtonian. Adding Mel to the polymer solutions, the smallest shift 

in the viscosity could be detected in case of the highest polymer concentration. This can be 

explained by the more considerable viscosity changing effect of the polymer concentration 

than that of the Mel particles. It can be concluded that the mechanical influence did not 

change the viscosity of the polymer solutions, and therefore, the structure of the PVA chains 

did not change. 
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Table 7. Viscosity values (ƞ) of the raw PVA solutions before milling (PVA %), after milling 

(PVA % milled) and the PVA solutions after milling in addition with Mel (Mel PVA % 

milled) 

  ƞ SD ± 

  mPa*s mPa*s 

PVA 2.5% 3.14 0.02 

PVA 5.0% 7.38 0.02 

PVA 7.5% 20.55 0.07 

PVA 2.5% milled 3.12 0.27 

PVA 5.0% milled 7.09 0.02 

PVA 7.5% milled 20.05 0.07 

Mel PVA 2.5% milled 4.42 0.07 

Mel PVA 5.0% milled 8.46 0.01 

Mel PVA 7.5% milled 21.65 0.07 

 

5.1.5. DSC 

DSC was used to investigate the melting of raw Mel and raw PVA and the dried samples 

(Figure 6). The DSC curve of the raw Mel revealed a sharp endothermic peak at 268.66°C, 

reflecting its melting point and an instantly following exothermic peak at 278.09°C can be 

observed. The DSC curve of raw PVA as a semi-crystalline polymer has 2 endothermic peaks 

at 169.51°C and at 222.74°C. The first peak of PVA signifies a particular decrystallization of 

PVA and the second peak is the melting temperature (Tretinnikov et al., 2012). The DSC 

curves of the dried products exhibited lower melting points of Mel than that of raw Mel. It is 

connected to the pre-melting of PVA, which induces the earlier melting of Mel in proportion 

to the amount of PVA and decreases the crystallinity degree of Mel 
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Figure 6. DSC curves of raw Mel and PVA and dried dispersions with different PVA 

concentrations 

5.1.6. XRPD 

The XRPD investigations justified the change of crystallinity degree of Mel in the dispersions 

with different PVA amounts. Figure 7 shows the fingerprints of raw materials (Mel and PVA) 

and the dried dispersions. The samples show the characteristic peaks of Mel at 2θ values: 

13.06°, 14.94°, and 18.61°. It was found that the PVA content of the samples fundamentally 

influenced the decrease of the crystallinity degree of Mel. As it was established earlier in this 

study, low (2.5%) and high (7.5%) concentrations of PVA in the milled dispersion did not 

result in suitable milling efficiency. In this case, the crystallinity degree of Mel was 75.82% at 

low PVA content (2.5%), and it decreased to 51.44% at high concentration of PVA (7.5%). 

These results are connected to the milling effectiveness. In this study, the 5.0% PVA-

containing milled dispersions showed smaller crystallinity (13.43%) and the highest milling 

efficiency. 
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Figure 7.  XRPD diffractograms of the Mel, PVA and the dried dispersion  

5.1.7. Zeta potential changes 

To determine the electrokinetic changes of the diluted dispersions, the zeta potential of the 

samples was measured. The results show that the increase of the PVA amount decreases the 

zeta potential in comparison to the sample without PVA (Table 8). The main reason for the 

zeta potential reduction can be linked to the nonionic polymer adsorption on the surface of the 

solid particles, which causes a decrease of the diffuse layer charge. A greater zeta potential-

lowering effect can be observed between 0% and 0.25% of PVA than between 0.25% and 

0.50. At 0.50% of PVA, the surface of particles is saturated by the PVA chain; therefore, the 

change of zeta potential is smaller. In case of a higher concentration of PVA (.0.50%), the 

steric hindrance stabilizes the system but hampers the disintegration/abrasion of the particles. 
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Table 8. Zeta potential values of the diluted dispersions as a function of the PVA 

concentration and particle size distribution of Mel (±SD) 

Samples 

Particle size distribution Zeta 

potential 

(mV) 

d(0.1) d(0.5) d(0.9) 

Particle size (μm) 

Mel PVA 0% 
2.508±1.100 5.762±2.700 135.640±12.90

0 
-30.7 

Mel PVA 

0.25% 

0.070±0.001 0.150±0.009 1.478±0.0400 
-20.9 

Mel PVA 

0.50% 

0.067±0.001 0.130±0.005 0.371±0.010 
-16.1 

Mel PVA 

0.75% 

1.235±0.006 2.611±0.018 5.560±0.070 
-15.7 

 

5.1.8. Raman spectroscopy 

Raman spectra and chemical maps of raw materials and products are presented in Figures 8 

and 9. The individual spectrum of Mel (a) shows that the absorption peaks are concentrated in 

the region from 1,600 to 1,000 cm-1 (fingerprint region), whereas the individual spectra of 

PVA (b and c) show only one characteristic and extended peak from 3,000 to 2,800 cm-1. 

This is the CH stretching vibration region that results a medium-to-strong intensity in Raman 

spectra. The spectra of diluted dispersions (d, e, and f) show the same characteristic region 

with the spectra of Mel – there are no detectable differences among them. Two peaks (one 

more characteristic in 2,437 cm-1 and another smaller one in 482 cm-1) appear in the spectra of 

PVA-containing dispersions and in spectra of aqueous Mel dispersion as well. The chemical 

mapping of dried dispersions profiled to this peak in 2,437 cm-1 shows that this peak cannot 

detected in this map. This peak can show a dissociated -OH group of enolic form which is 

presented when Mel is in an aqueous medium, but it is disappeared in dried form, so the 

change is reversible. The chemical map of dispersion profiled to Mel spectrogram shows 

homogenous distribution of Mel. It can be summarized that there is no chemical degradation 

or interaction in dispersion which could be detectable with Raman technique. 
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Figure 8. Investigation with Raman spectroscopy: 1. A: spectrum of raw Mel, B: spectrum of 

raw PVA, C: spectrum of raw PVA (0.50%) containing solution. 2. Comparison study of raw 

materials (Mel, PVA) and the dispersions, D: spectrum of dispersion containing 1% Mel and 

0.25 % PVA, E: spectrum of dispersion containing 1% Mel and 0.50% PVA, F: spectrum of 

dispersion containing 1% Mel and 0.75% PVA  

 

 

 

Figure 9. Investigation with Raman spectroscopy: 1. Comparing raw Mel and aqueous 

dispersion of Mel and PVA containing dispersions, A: spectrum of raw Mel, D: spectrum of 

dispersion containing 1% Mel and 0.25% PVA, E: spectrum of dispersion containing 1% Mel 

and 0.50% PVA, F: spectrum of dispersion containing 1% Mel and 0.75% PVA, G: spectrum 

of aqueous 1% Mel containing dispersion without PVA. 2. Chemical mapping of Mel 
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containing dispersion (1% Mel and 0.50% PVA) and chemical mapping of its dried form 

profiled to peak in 2437 cm-1 

5.1.9. SEM investigation 

In order to investigate the effect of milling and PVA amount on the morphology of milled 

Mel, the water was evaporated from dispersion and the dried samples were characterized. 

Figure 10 shows the raw Mel in physical mixture (Mel PVA 0.50% PM) which has an 

irregular shape with 34.260±4.860 μm as average particle size. In this PM, the PVA particles 

with size, 6 μm are located on the surface of Mel crystals. After drying of the aqueous 

dispersions, the polymer formed non-coherent and coherent think film with Mel particles. In 

case of 0.25% containing PVA (Mel PVA 0.25%), the particle size of Mel has decreased, but 

aggregation of the fragmented particles can be observed. Mel particles are in homogeneous 

disperse distribution in sample (Mel PVA 0.50%) resulted in less than 500 nm (average 

particle size: 0.130±0.005 μm). High concentration of PVA (Mel PVA 0.75%) helped the 

recrystallization of Mel (nanocrystals with smooth surface) thanks to increased solubility of 

Mel in aqueous PVA solution. Otherwise, the sample shows heterogeneous disperse system 

with nano- and microparticles. 

 

Figure 10. SEM pictures of physical mixture (Mel PVA 0.25% PM) and different PVA 

containing dried dispersions 
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5.1.10. In vitro studies of the nanosuspensions 

In case of each sample, the liberation from the hard gelatin capsules occurred within 2 sec. 

Mel has a weak acidic character (pKa 4.8), and therefore, its solubility in gastric juice 

(pH=1.2) is very poor (1.6±0.2 mg/L, at 37°C). In this medium, the greatest dissolved amount 

of Mel with 0.25% and 0.50% PVA content was maximum, 37%, within 20 min (Figure 

11A). This result is due to the wetting effect of PVA (0.25% and 0.50%), which could 

increase the solubility of Mel, and the reduction of the particle size of Mel in the dispersions. 

In contrast, a higher amount of PVA (0.75%) hinders the dissolution because a thicker 

polymer layer is formed on the Mel particles. 

In intestinal fluid (pH=6.8), the dissolved amount was higher in all cases because of the better 

solubility of Mel (0.272±0.001 mg/mL, at 37°C). Figure 11B shows that the concentration of 

PVA influences the amount of dissolved. Mel as in the case of gastric juice, but its extent is 

bigger. In this study, the dispersion containing 0.50% of PVA had the most satisfying 

dissolution behavior from among the 4 samples. It is followed by the dispersions containing 

0.25% and 0.75% of PVA, and finally the dispersion without PVA. The results justify the 

need of the polymer (PVA) and the correct choice of its quantity. 

 

Figure 11. In vitro dissolution curves of Mel in artificial gastric juice (a) and intestinal juice 

(b) 

5.1.11. In vitro cell culture studies 

Impedance measurement, as a sensitive method to detect cellular effects, did not show 

significant cell damage after treatments with Mel, PVA, and Mel formulation groups, as 
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reflected by unchanged cell index values (Figure 12). As a comparison, cells treated with the 

detergent Triton X-100 were lysed and a 100% toxicity was measured. The curves show the 

kinetics of the cellular effects of treatment solutions (Figure 12A), whereas the columns show 

the effect of Mel, PVA and Mel formulations at the 8-h time point (Figure 12B).  

Caco-2 monolayers showed high TEER values (2,660±181 Ω×cm2, n=20) before 

permeability experiments, indicating tight barrier properties. The average apparent 

permeability coefficients of marker molecules were also low (fluorescein: 0.81±0.13×10-6 

cm/s; albumin: 0.08±0.03×10-6 cm/s), in agreement with the TEER values and the formation 

of tight cell layers. 

The permeability of Mel suspension and Mel formulations was significantly higher than that 

of marker molecules. The penetration of Mel from the 3 investigated products across cell 

layers was significantly increased as compared to Mel suspension. From all the tested 

samples, the Papp value of Mel was the highest in the formulation containing 0.05% PVA 

(Figure 13). 

 

Figure 12. Cell viability kinetics (a) and results 8 hours after treatment (b) of Caco-2 

intestinal epithelial cells with Mel, PVA and formulations measured by impedance. Values 

are presented as means ± SD, n = 6-12. Statistical analysis: ANOVA followed by Dunett’s 

test. Statistically significant differences are: *, p < 0.05, compared to control group. 
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Figure 13. Evaluation of permeability of meloxicam across Caco-2 epithelial cell layers 

treated with Mel and optimized Mel-PVA formulations for 1 hour. Values are presented as 

means ± SD, n = 4. Statistical analysis: ANOVA followed by Bonferroni posttest. Statistically 

significant differences are: ***, p < 0.01, compared to control group; ###, p < 0.01 compared 

to the indicated columns. 

5.1.12. Holding time determination 

Since the investigated dispersions are intermediate products, the change of particle size 

distribution and the crystallinity index are very important during storage. In general, the time 

period before the dispersion used for the preparation of different dosage forms is 1 or 2 h, or 

possibly longer. The measurements have proven that 0.50% of PVA-containing dispersion 

had no significant changes in the particle size, particle size distribution, and crystallinity up to 

2 weeks (Table 9). 
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Table 9. Particle size distribution changes (µm) during the stability testing 

 Day 0 2 weeks 

 d(0.1) d(0.5) d(0.9) d(0.1) d(0.5) d(0.9) 

Mel PVA 0.25% 0.070 0.150 1.478 0.080 0.152 2.073 

Mel PVA 0.50% 0.067 0.136 0.371 0.068 0.140 0.427 

Mel PVA 0.75% 1.207 2.232 5.224 0.244 2.611 5.560 

 

5.2 Results of the robustness testing experiments 

5.2.1. Effect of the API content on the PSD 

Using the optimized process parameters, based on the change in the amount of Mel, the 

particle size distribution is one of the critical parameters (Bartos at al.. 2019). In this respect, 

the comparison is based on the particle size of the optimized sample “Mel_2.0g”, which had 

10% of MEL and 5% of PVA (Table 10).  

After milling, the different Mel amounts containing nanosuspensions showed same d(0.5) 

value, which means that the maximum particle diameter of 50% of the sample volume is less 

than 150 nm. By contrast, the d(0.9) values, in the case of smaller and higher amounts of Mel, 

were already outside the upper range of the desired value (500 nm). It can be assumed that the 

smaller amount of Mel (<10%) decreased the number of successful collisions of Mel and the 

milling media. The larger amount of Mel (>17.5%), however, increased the density of the 

sample and reduced milling efficiency. Span values, which contain the d(0.1) values, confirm 

the suitability of particle size distribution in the range of 10% (Mel_2.0g) and 17.5% of Mel 

(Mel_3.5g).  
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Table 10. Results of the particle size measurements 

Sample name d(0.5)/µm d(0.9)/µm Span 

Mel_raw 34.26±4.86 73.59±27.11 1.815  

Mel_0.5g 0.138±0.027 1.273±0.134 8.662 

Mel_1.0g 0.142±0.023 1.949±0.117 10.207 

Mel_1.5g 0.141±0.018 0.87±0.076 5.676 

Mel_2.0g* 0.136±0.003 0.371±0.043 2.240 

Mel_2.5g 0.139±0.006 0.413±0.037 2.655 

Mel_3.0g 0.145±0.008 0.436±0.045 2.956 

Mel_3.5g 0.141±0.013 0.448±0.050 2.700 

Mel_4.0g 0.140±0.021 0.974±0.072 6.448 

* optimized sample 

5.2.2. Crystallinity changes according to the API content 

5.2.2.1. DSC measurements 

For the crystallinity characterization of Mel, first raw Mel and PVA were investigated (Figure 

14). The DSC curve of raw Mel has a sharp characteristic melting peak at 268.66 ºC (onset-

266.83, endset-273.27 ºC), and an instantly following exothermic peak can be observed at 

279.09 ºC. PVA has two endothermic peaks at 169.51 ºC and at 222.74 ºC.  The first peak 

belongs to a particular de-crystallization and the second one presents the melting point of 

PVA. It should be noted that PVA has deacetylation in the temperature range 160-400 ºC and 

the total degradation corresponds to the degradation of vinyl acetate and vinyl pyrrolidone at 

396 ºC and 484 ºC, respectively (McNeill et al., 1995). 

The DSC curves of the samples exhibit that the increase of the Mel amount results in a 

sharper endothermic peak, approaching the melting point of raw Mel. By decreasing the Mel 

amount, the endothermic peaks will be less sharp because of the pre-melting of the higher 
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amount of PVA, which induces the earlier melting of Mel in proportion to the PVA amount. 

The areas of the melting enthalpies already predict the change in the degree of crystallinity of 

Mel. 

 

Figure 14. DSC curves of raw Mel, PVA and different Mel containing milled samples 

In order to determine the degree of crystallinity of Mel, considering the influence of PVA, the 

physical mixtures of the milled samples formed the basis. 

The Figure 15 presents the degree of crystallinity as a function of the Mel amount in the 

sample. By increasing the Mel amount, the crystallinity of the milled products was increased. 

A close correlation (R2= 0.9587) was found between crystallinity and the Mel amount. It can 

be seen that increasing the amount of Mel (> 10%) significantly increased the degree of 

crystallinity of the milled sample (from 21.21% to 48.86%). However, the small amount of 

Mel lowered this value (from 21.21% to 10.28). 
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Figure 15. Relation between the crystallinity of Mel and its amount in the milled samples 

5.2.2.2. XRPD measurements 

To verify the DSC results, the crystallinity of the physical mixtures and the milled samples 

was investigated by XRPD analysis. Figure 16 presents the fingerprints of raw Mel and PVA 

and the milled samples. The characteristic peaks of Mel are at 2Θ value: 13.06º, 14.94º and 

18.61º and PVA has the typical diffraction peak at 2Θ value: 19.9º (Garcia-Cerda et al., 

2007). 

The intensity of the characteristic peaks shows a change in the crystallinity of the milled 

products. The quantitative analysis of the degree of crystallinity also resulted in a close 

correlation (R2= 0.9763) between the degree of crystallinity and the Mel amount (Figure 17). 
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Figure 16. XRPD curves of raw Mel, PVA and different Mel containing milled samples 

 

 

Figure 17. Relation between the crystallinity of Mel and its amount in the milled samples 

5.2.2.3. Correlation between the two analytical methods 

As the result of the correlation calculations, it was found that the degree of crystallinity of 

Mel investigated by DSC and XRPD did not show any significant difference at 95% 

significance level. It can be related to the low degree of crystallinity (<50%). It is known that 
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the advantage of DSC over X-ray diffraction is that high amorphous content can be detected 

(Gombás et al., 2002). It should be noted that recently the characterization of the investigated 

materials (e.g. crystallinity) using DSC as a semi-quantitative conventional method has 

become common in scientific research (Katona et al., 2016, Gieszinger et al., 2017, Bartos et 

al., 2018). It provides a possibility to predict the crystallinity of the examined materials, but to 

verify the accuracy of thermoanalytical measurements, the X-ray powder diffraction test is 

required (Dávid et al., 2000). 

5.3. Results of the solid-state product characterizations 

5.3.1. Particle size measurements 

Different techniques have been used to determine the particle size of Mel for reasons of 

accuracy and comparability. The particle size distribution of the rawMel and nanoMel 

samples was investigated via laser diffraction. A combined wet milling process resulted in a 

200-fold particle size reduction in the case of nanoMel (d(0.50), 130±5 nm) compared to the 

raw drug particle size (d(0.50), 34.26±4.86 µm). The nanoMel product showed a 

monodisperse distribution (d(0.10), 67±1nm; d(0.50), 130 ± 5 nm; d(0.90), 371±12 nm).  

For fluidMel sample, Mel particles adhered to the carrier surface (MCC) was analyzed by 

ImageJ technique and the particle size of Mel in the nanoMel and lyoMel samples was 

compared with dynamic light scattering technique (Malvern nanoZS), too. The results 

demonstrate that the d(0.50) value of the Mel nanoparticles measured on the surface of solid 

phase product (fluidMel) does not show a significant difference regarding the d(0.50) value of 

the nanoMel (Figure 18A). In the case of lyoMel, compared to the Z-average of Mel in 

nanoMel, a significant difference can already be detected which was caused by the 

recrystallization of the Mel (Figure 18B). Both samples have a same polydispersity index 

(nanoMel: 0.273 and lyoMel: 0.287) which also confirms the monodispersity of nanoMel and 

shows the excellent redispersibility of lyoMel. The 6-month storage did not cause any further 

changes in the mean particle size of the products (Figure 18A, 18B). 
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(A) 

 

(B) 

Figure 18. (from left to the right)  

Main particle size of nanoMel (measured by laser diffraction), fluidMel fresh and fluidMel 

stored (6 months) (measured by SEM images) (A) and Z-average of nanoMel, lyoMel fresh, 

and lyoMel stored (6 months) measured by Zeta nano ZS) (B)  
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5.3.2. SEM measurements 

Figure 19A and Figure 19B clearly show the particle size difference between the rawMel and 

nanoMel and the change in the particle habit. The latter particles have smooth surfaces with 

rounded edges and corners. High mechanical impact results in the fracture and abrasion of the 

crystals. 

 

Figure 19. SEM image of rawMel (A), nanoMel (B), fluidMel (C1 and C2) and lyoMel (D1 

and D2) 

During the fluidization process, the nanoparticles are uniformly adhered to the surface of 

MCC (Figure 19C1). Their habit is the same as that of the nanoparticles in the nanoMel 

(Figure 19C2). There is no sign indicating the aggregation of the nanoparticles on the surface 

of MCC. The adhesion of the Mel particles to the carrier surface is also supported by the 

effect of the PVA adhesive property and the rapid evaporation of water. 
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The SEM image of the lyoMel sample (Figure 19D1) shows large, consistent formulas at low 

magnification. The texture at higher magnification contains smaller, larger pores resulting in a 

big surface with honeycombed structure, where the surface area is determined by the size of 

the ice crystals (Kevin, 2018). The SEM picture does not show any trehalose-like crystals in 

the structure (Figure 19D2). 

5.3.3. DSC measurements, crystallinity determination 

The DSC curves of the components and the products are shown in Figure 3. The rawMel has a 

relative high melting point at 268°C, PVA as semi-crystalline material has two endothermic 

peaks at 169°C and at 222°C. MCC shows any characteristic peaks, in contrast the trehalose is 

a crystalline material (Figure 20A).  
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Figure 20. DSC curves of rawMel (black), PVA (red), MCC (blue) and trehalose (purple) 

(A), and nanoMel (orange) fluidMel (green) and lyoMel (yellow) (B) 

The thermograms of the products are shown in Figure 20B. It is clear, that the melting point 

and the enthalpy of Mel in the case of the nanoMel decreased due to the partial 

amorphization.  

The curve of the fluidMel shows the peak of MCC and the decreased melting point of Mel 

(Figure 20B). The first obvious and big endothermic peak of the curve appearing from 30 °C 

to 150 °C is mainly related to the absorbed moisture evaporation (Kian et al., 2017). The 

second endothermic peak is connected to the melting point of Mel (264 °C) and the enthalpy 

was decreased due to the large amount of MCC, which covered the characteristic peak of 

PVA as well, compared to nanoMel. 

The curve of lyoMel represents the peak of PVA (197 °C) and the melting temperature of Mel 

(251 °C) (Figure 20B). According to the literature (Sussich et al, 2008) and our 

measurements, during the process, the total amount of trehalose transformed into an 

amorphous form and the lyophilized trehalose maintains its amorphous form. The big 

endothermic peak of the curve appearing from 30 °C to 150 °C is connected to the absorbed 

water evaporation as well. 
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The crystallinity of Mel in nanoMel and the transformed solid-state products was calculated 

by the enthalpy changes of the drug occurring during the DSC measurement (Table 11). Each 

sample was compared to its own physical mixture. According to the crystallinity of the 

nanoMel (13.43%) sample, the crystallinity of the fluidMel sample did not change (12.98 %), 

for the lyoMel sample partial recrystallization (40.11%) occurred.  

Table 11. Enthalpy and calculated crystallinity values of the characteristic peak of Mel in the 

samples 

Sample Enthalpy 

(J/g) 

Crystallinity of Mel 

(%) 

Crystallinity of Mel 

after 6 months of 

storage (%) 

nanoMel 12.24 13.43 - 

fluidMel 11.83 12.98 13.02 

lyoMel 36.54 40.11 40.16 

 

After 6 months of storage (23 ± 2 °C, 45 ± 5% RH), the degree of crystallinity of solidified 

samples (fluidMel and lyoMel) was determined again. The results did not show a significant 

change (p>0.05) compared to the non-stored, fresh samples (Table 10). There was no sign for 

the recrystallization of trehalose. 

5.3.4. Drug content determination 

The theoretical drug content was 7.50 mg as single dose/oral. For the nanoMel sample this 

amount was 7.12mg and fluidMel showed 6.83 mg of Mel. The latter can be related to the 

yield of the fluidization technique (95.93%). During the lyophilization process the Mel 

content of the sample (lyoMel) was 7.12 mg. 

5.3.5. Solubility testing of MEL in the samples  

The solubility of nanoMel increased significantly (9.4 ± 0.5 µg/ml) in comparison with the 

rawMel (6.5±0.2 µg/ml). The reduced particle size enhanced the wettability of the 

hydrophobic particle when using PVA, therefore increased the thermodynamic solubility of 

Mel. The fluidization process did not affect the solubility of Mel (9.6 ± 0.4 µg/ml). In the case 

of lyoMel, solubility was increased (11.2 ± 0.5 µg/ml) because of the presence of trehalose.  
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5.3.6. In vitro dissolution studies 

The in vitro dissolution extent of the samples was investigated in gastric juice (pH=1.2). Mel 

has a week acidic character, therefore its solubility in this medium is very poor (1.6 ± 0.2 

µg/ml, at 37 °C). Figure 21 clearly demonstrates that the particle size reduction of Mel in the 

nanosuspension (nanoMel) influenced the dissolution rate of Mel, but resulted in only 40% of 

drug release in 5 minutes, and then the curve took a stagnant profile. The initial rapid drug 

release can be associated with the nanoscale Mel and its amorphous structure. The 2-hour test 

did not result in any more favorable results. Although the distribution of the nanoparticles of 

Mel in the nanosuspension is suitable, a large volume of acidic medium (900 ml) may 

increase the aggregation of the nanoparticles. In this case, the protective effect of the polymer 

(PVA) is unsatisfactory. 

 

Figure 21. In vitro dissolution of Mel from investigated samples. Medium: artificial gastric 

juice (pH: 1.2) 

 

For fluidMel and lyoMel samples, a rapid initial phase is observed (about 60% of the drug is 

dissolved in 15 minutes), followed by a slowing but rising profile. About 75% of Mel was 

dissolved within 2 hours. In the case of the solid-state forms, carriers (MCC and trehalose) 

help to uniformly distribute the nanoparticles of Mel, thereby maintaining the uniqueness of 

the nanoparticles. 
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5.3.7. In vivo studies 

The plasma concentration of the samples in rats is shown in Figure 22. The calculated plasma 

concentration of Mel at zero min (C0min) was 10,607 nM, and then the plasma concentration 

decreased exponentially. A very small amount of Mel was absorbed from nanoMel sample, 

regardless of the particle size of the drug. The plasma concentration of Mel was constant in 

the investigated time period. The results show that the nanosuspension (nanoMel) has not got 

advantageous properties. 

 

Figure 22. Plasma levels of MEL after the administration of different samples in rats. The 

preparations were administered orally (nanoMel, fluidMel and lyoMel) or intravenously (IV) 

as a single dose of 300 μg/kg. 

The initial blood levels of the fluidMel and lyoMel samples show a big difference. At 15 

minutes, the lyoMel sample (5,712.98 nM) shows more than twice the value of fluidMel 

(Table 11). In practice, this value is similar as the maximum plasma level for the lyophilized 

product (C30min 5,814 nM). The peak blood concentration of fluidMel, is about 6,000.00 nM at 

50 minutes that is comparable with the blood concentration reached by IV injection at 5 min. 

This result also confirms that the solid products contained Mel in an adequate amount, and 

that the total amount thereof dissolved and absorbed. 
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 The plasma curves of the different samples containing Mel show a very slow elimination 

after the distribution phases. That can be explained by the very high (99%) plasma binding 

property of Mel in rat, and this ratio is the same in human (Busch et al., 1998). It seems that 

the eliminated portion of Mel is replenished from the protein bounded fraction for a quite long 

period of time. Our measuring time was only 3 hours, longer detection period can provide 

appropriate information about the whole elimination process. The peak MEL concentrations 

of from lyoMel and fluidMel preparations have reached the similar level that of IV formula 

(Figure 22). The lyoMel sample resulted in higher plasma concentrations in 15 minutes as 

compared with nanoMEL preparation. The solidified samples had nearly five-fold higher 

bioavailability than that of nanoMel (Table 12). 

Table 12. Plasma concentrations of Mel in time and its relative bioavailability in rats after IV 

and per os administration of Mel samples. Relative bioavailabilities were compared to 

nanoMel preparation 

Sample C15min 

(nM) 

C120min 

(nM) 

AUCblood 

(min·ng/ml) 

Relative 

bioavailability 

(%) 

nanoMel 1,090.02 1,123.31 190,584.52 100.00 

fluidMel 2,338.44 5,811.33 945,834.99 496.28 

lyoMel 5,712.98 5,219.52 923,117.95 484.36 

IV injection C5min 6,059.07 2,607.80 377,528.01 - 

 

5.3.8. IVIV correlation 

Comparative studies according to AUC values have shown that there are significant 

differences between the nanosuspension and the samples (fluidMel and lyoMel) within in 

vitro and in vivo groups. However, there is no significant difference between two solid 

samples either in vitro or in vivo (Figure 23). The basis of the IVIVC calculation was the 

comparison of the AUC values of the samples in the in vitro and in vivo groups. By our 

calculations, the Pearson’s correlation coefficient value between the two studies is 0.99695. 

The t value of the independent t-test of the two dissolution study series was 0.0145, the 
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calculated p value was 0.9889 and the difference is not significant at a confidence level of 

95%. As the zero hypothesis of the independent t-test, the calculation is not significant if the 

averages of the two series are equal. It can be concluded that in this system, in vitro 

dissolution studies are applicable to predict the dissolution rate-limited differences in the case 

of in vivo studies. 

 

Figure 23. IVIV correlation of Mel containing samples. Notes: Values are presented as mean 

± SD. Statistically significant differences are: ***p<0.001, compared to nanoMel separately 

in in vitro and in vivo groups; # p<0.05 compared to the indicated columns 

6. CONCLUSION 

i) The PhD work reports a wet milling process, where the planetary ball mill was combined 

with pearl milling technology to produce nano-size meloxicam (Mel) (d(0.9) < 500 nm). Mel 

as a water-insoluble highly potent NSAID was milled in the presence of the PVA, in aqueous 

solution any other stabilizer agent as surfactant.  The critical process parameters (ratio of pre-

dispersion and pearls, milling time and rotation speed of the steel jar) were optimized by 

factorial design on the particle size distribution and crystallinity of the Mel were investigated.  

It was found that the ratio of pre-dispersion and pearls 1:1 (w/w) resulted in the most effective 

grinding system without any pre-milled process (200-fold particle size reduction in one step) 

with 437 rpm and 43 min as optimized parameters.  

ii) The amount of PVA were also a critical parameter because it affected the milling 

effectiveness, the particle size distribution and the crystallinity of Mel. The different 
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concentrations of PVA in the aqueous dispersion influenced the viscosity and the electro-

kinetic property of the particle, and the stability of the dispersions. It was found that the 

milling effectiveness of low concentration of PVA (< 4%) was not satisfactory, because the 

crushing / breaking effect of the pearls could less prevail.  High concentration of PVA (˃ 5%) 

also resulted in unsatisfactory milling effectiveness, because of the formation of polymer 

layer on surface of particles which protects the particles from the fragmentation. Considering 

the effectiveness of milling, 5% PVA was proved to be an optimal quantity to meet the 

expected value (d(0.9) < 500 nm). Finally, the sample (diluted dispersion) containing 1% 

Mel and 0.5% PVA produced by the optimized wet milling procedure fulfilled the 

requirements for the nanosuspension with respect to particle size distribution (d(0.1) 

0.067µm, d(0.5) 0.130µm, d(0.9) 0.371 µm). The intermediate product showed a stable 

system with 2 weeks of holding time.  

iii) In vitro dissolution tests have shown that the particle size of the Mel and its degree of 

crystallinity are interdependent critical parameters, which plays an important role in the fast 

drug release. The human Caco-2 cell culture studies justified that the penetration of Mel from 

different PVA-containing products was significantly increased as compared to Mel suspension 

without toxic effects. From all the tested samples, the Papp value of Mel was the highest in the 

investigated sample containing 0.05% PVA, which belongs to the optimized nanosuspension. 

iv) The further aim of this work was to discover the robustness of combined wet milling 

process to determine the interval of the Mel amount and to predict the degree of crystallinity 

of the milled samples as critical parameter using DSC and XRPD measurements. The samples 

had the PVA as the stabilizing agent. By increasing the amount of the Mel, its crystallinity 

increased, and close correlation was found between the degree of crystallinity and the Mel 

amount. To achieve the desired particle size (< 500 nm), the Mel amount should be changed 

between 10.0 and 17.5% (w/w) and a PVA concentration should be used between 5.0 and 

4.58% (w/w). In this specified range, the degree of crystallinity of Mel will be changed 

between 20 and 45%. The crystallinity of Mel investigated by DSC and XRPD did not show 

any significant difference at 95% significance level. 

v) Mel containing (1%) nanoMel sample produced by wet milling process using optimized 

amount of PVA (0.5%) resulted in 130±5 nm as mean particle size and a significant reduction 

in the degree of crystallinity (13.43%) of Mel. The fluidization technique using 

microcrystalline cellulose (MCC) as carrier resulted a quick conversion no significant change 

in the critical product parameters. Process of lyophilization required a longer operation time, 
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which resulted in the amorphization of the crystalline carrier (trehalose) and the 

recrystallization of Mel increased its particle size and crystallinity. In accordance with this, 

the particle size (Z-average: from 284 nm to 374 nm) and the degree of crystallinity of Mel (to 

36.54%) were also changed. The 6-month storage did not cause any further changes in the 

products. 

vi) To justify applicability of surfactant-free samples containing nanonized Mel in vivo studies 

was performed. The nanonized Mel in solidified products (fluidMel, lyoMel) resulted in rapid 

absorption through the gastric membrane by passive transcellular transport. It was found that 

these products contained Mel in an adequate amount, and that the total amount thereof 

dissolved and absorbed. The fluidMel and lyoMel samples had nearly five-fold higher relative 

bioavailability than nanoMel application by oral administration. The correlation between in 

vitro and in vivo studies showed that the fixed Mel nanoparticles on the surface of solid 

carriers (MCC, trehalose) in both the artificial gastric juice and the stomach of the animals 

rapidly reached saturation concentration leading to faster dissolution and rapid absorption. 

 

New findings of this work: 

Combined wet milling is considered to be a suitable process for nanonization of active 

ingredients, since it produces a desired particle size product in a single step without using pre-

milling and surfactant (innovative technology). The novelty of the research results is the 

determination and optimization of critical process and product parameters, which is well 

demonstrated by the production of Mel containing nanosuspension (nanoMel). 

To discover the robustness of the milling process, it should also be considered that the amount 

of grinding media can be reduced by increasing the amount of the active ingredient and the 

crystallinity of the drug can be regulated. In this case, the DSC method can be suggested for 

the quantification of the degree of crystallinity because it can be used safely with high 

amorphous content. 

The solidification of the nanosuspension not only increases the stability of the nanoparticles 

(particle size, crystallinity degree), but also allowes the preparation of surfactant-free solid 

compositions (powder, tablet, capsule) with excellent bioavailability, which may be an 

important consideration for certain groups of patients to achieve rapid analgesia. Further 

experiments are necessary to prove the therapeutic relevance of these formulations 

(innovative product). 
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Abstract: This article reports on the effects of a new combined wet milling technique on the
physicochemical properties of meloxicam (MEL). The influence of milling time on the particle
size, the crystallinity, the morphology and the dissolution rate of MEL has been studied in the
presence and absence of polyvinyl alcohol (PVA) as a stabilizer agent. Micronized MEL particles
were produced in aqueous medium which did not contain additive after milling for 10 min. For
nanonization an additive and longer milling time were required. After particle size determination
the structural and morphological characterization of the wet milled, dried products containing MEL
were studied. X-ray powder diffractometry (XRPD) and differential scanning calorimetry (DSC)
examinations revealed the change in the crystallinity of MEL. Scanning electron microscopy (SEM)
images showed that aggregates of nanosized MEL particles were formed, regardless of the presence
of PVA. The nanonized MEL crystals (D50 = 126 nm) exhibited a regular shape and a smooth surface.
The increased specific surface area resulted in a high dissolution rate and concentration of free MEL.
According to the results, the produced samples could be applied as a basic material (micronized MEL)
and intermediate product (micronized and nanonized MEL with PVA) for the design of dosage forms.

Keywords: wet milling; micronization; nanonization; physical structure; crystallinity; in vitro dissolution

1. Introduction

One of the major current challenges of the pharmaceutical industry is related to strategies that
improve the water solubility of drugs because over 40% of new drug candidates are water-insoluble
compounds [1]. Poorly water-soluble drug properties can impede the effective delivery of these drugs
into humans, and affect their dissolution rate and subsequent absorption at the site of activity [2].

Poorly soluble molecules have been successfully formulated by employing a variety of
techniques to modify the physico-chemical and biopharmaceutical properties of drugs [3,4] such as:
(i) solubilization in surfactant solutions; (ii) use of co-solvents [5], salt formation [6], complexation
with cyclodextrins [7], crystallization [8], amorphization [9], milling [10], etc.

Milling is a technique commonly applied to produce micro- or nanosized drug crystals in order to
increase the dissolution rate and absorption, and hence the bioavailability of poorly-soluble materials.
According to the Noyes-Whitney equation, the reduction of the particle sizes of drug crystals increases
the specific surface area, which can improve the rate of dissolution of the drug [11]. There are many
different well-known types of milling techniques with both advantages and disadvantages; dry and
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wet milling can be distinguished [12,13]. Wet milling requires less energy and time than dry milling.
Thanks to the environmentally isolated system, it is a dust free process and the material is less heated
up [14]. However, wet milling has some disadvantages as well, e.g., increased wear of the grinding
medium, corrosion hazards, etc. To overcome the limitations of the conventional particle size reduction
technologies for poorly-soluble drugs, new combinational methods have been developed for the
production of ultra-fine suspensions. These technologies are a relatively new approach to improve
the effectiveness of particle size reduction and to reduce the time of processes. In general, they can
be described as a combination of a bottom-up process (the building-up of particles) [15–17] followed
by a top-down technology (disintegration) [18,19]. This method involves two particle size reduction
steps. There is also a possibility for the combination of dry- and wet milling in one step, but literature
data relating to the application of this combined method are lacking. Retsch GmbH (Haan, Germany)
has recommended the combination of planetary ball milling, as dry milling, and pearl milling, as wet
milling [20] techniques.

In wet micro- and nanonization, the application of additives is required in order to retain
the individuality of the particles. Different additives are used to stabilize these particles:
poly(vinylpyrrolidone) (PVP), Poloxamer® (Poloxamer 188 = poly(ethylene)–poly(propylene glycol),
polysorbate (Tween 80® = poly(oxyethylenesorbitan monooleate)), Solutol® (Solutol HS 15 =
poly(ethylene glycol 15-hydroxystearate)), PVA (poly(vinyl alcohol)), etc. [21].

Milling and the presence of additives during milling have the ability to decrease the crystallinity
of active materials [22,23]. The amorphous phase transition usually results in improved dissolution
rates, thereby increasing the bioavailability, with the improvement being directly related to the extent
of amorphization [24]. However, physical and chemical instability of amorphous material could
be expected.

Meloxicam (MEL) is a non-steroidal anti-inflammatory drug (NSAID) with anti-inflammatory,
analgesic and antipyretic effects. MEL was chosen as a model crystalline drug because of its poor
aqueous solubility (4.4 µg/mL) [25] and relatively high melting point (270 ˝C) [26].

This research investigates the applicability of a wet milling method combining planetary ball
and pearl milling. We set out to utilize particle size reduction to the micro- or nanometre range. The
effects of milling time and the presence or absence of stabilizer (PVA) in reducing the particle size were
investigated. The changes in crystallinity and morphology of MEL during milling have been studied.
The effects of particle size reduction and amorphization on the dissolution rate were determined.

2. Results and Discussion

2.1. Effects of Milling Time on Particle size Distribution (PSD) and Specific Surface Area (SSA)

During our work, a combined wet milling technique (planetary ball mill and pearls, as milling
media) was investigated. Analysis of the laser diffraction results revealed that the milling in the case
of samples containing water as a dispersant medium resulted in a roughly 85% decrease in average
MEL particle size. The D10, D50 and D90 values and the SSA are reported in Table 1.

After 10 min milling, micronized MEL was observed. However, further milling led to an increase
in particle size, because MEL particles aggregated without the presence of PVA. The smallest average
particle size (3.55 µm) and the highest SSA (1.89 m2/g) were obtained during the first 10 min of
milling. During milling heat production was observed and the temperature of the samples increased
up to 40–45 ˝C. The aqueous solubility of MEL (4.4 µg/mL, 25 ˝C) increased due to the elevated
temperature (40 µg/mL, 37 ˝C), but it was not remarkable in our investigation (at about 0.04 w/v%),
and 0.8 mg MEL could be dissolved in our dispersant medium (water) of the presence 2 g of active
agent. The recrystallization of the small amount of dissolved MEL was irrelevant in terms of any
particle size increase.
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Table 1. MEL PSD and SSA in pre-dispersions containing water as dispersant.

Milling Time (min) D10 (µm) D50 (µm) D90 (µm) SSA (m2/g)

raw MEL 11.40 34.26 73.59 0.332
10 1.76 3.55 8.69 1.89
20 2.63 5.74 14.21 1.22
30 2.62 5.99 18.97 1.18
40 2.77 6.84 24.54 1.07
50 2.72 6.13 19.56 1.15
60 2.57 6.12 20.87 1.18
70 2.77 7.13 26.26 1.05
80 2.58 5.94 22.54 1.19
90 2.51 5.55 18.88 1.25

In the case of PVA-solution as a dispersant, after 10 min micronized, and after 50 min nanonized
particles were noted, with monodisperse PSD (Table 2). The average particle size decreased efficiently,
from approximately 35 µm to 126 nm, up to 50 min of milling. The SSA of MEL rose 150-fold compared
to the raw MEL. Further milling led to only a slight decrease in particle size. PVA, used as a coating
polymer helped the particles to separate from each other. Aggregation was also prevented, therefore
the stability of the system could be improved.

Table 2. MEL PSD and SSA in pre-dispersions containing PVA-solution as dispersant.

Milling Time (min) D10 (µm) D50 (µm) D90 (µm) SSA (m2/g)

raw MEL 11.40 34.26 73.59 0.332
10 0.24 2.96 29.40 7.71
20 0.084 0.169 2.863 34.6
30 0.090 0.337 4.180 27.2
40 0.074 0.134 1.358 46
50 0.074 0.126 0.253 49.5
60 0.072 0.122 0.219 52
70 0.070 0.121 0.225 52.6
80 0.072 0.119 0.209 53.2
90 0.064 0.116 0.219 57.9

2.2. Characterization of the Dried Products

2.2.1. Physical Structure (XRPD and DSC)

For determination the effect of milling on the crystallinity of MEL pre-dispersions, samples milled
for 10 min in water as a dispersant, and for 10 and 50 in PVA-solution as a dispersant were dried
and characterized.

The XRPD diffractogram of raw MEL and of MEL in the physical mixture of MEL-PVA
demonstrated its crystalline structure, as expected. The characteristic peaks are located at the following
2θ values: 13.22˝, 15.06˝ and 26.46˝. Ten min of milling in the water-containing sample caused the
loss of the crystalline structure of the drug, and only 3% of the drug remained crystalline (Table 3).
The intensities of the characteristic peaks were decreased in the case of the treated product (Figure 1).
During the further milling aggregation was observed, because of the lack of PVA. At the end of milling
(90 min), 9% of MEL remained crystalline.

In the PVA-solution containing sample in the course of milling, a decrease in crystallinity was
perceptible. After milling for 10 min, ~47% of the drug remained crystalline. After 90 min milling
amorphization was detected, the degree of crystallinity was 2% (Table 3). The intensities of the
characteristic peaks decreased due to the milling (Figure 2).
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DSC was employed to investigate the melting of MEL in the raw form, the physical mixture and
in the milled dried products (Figure 3). The DSC curves of the raw MEL and of MEL in the physical
mixture of MEL-PVA revealed a sharp endothermic peak at 259.1 and 255.9 ˝C, reflecting its melting
point and confirming its crystalline structure. In case of water-containing samples the most significant
decrease of crystallinity was observed after 10 min milling (peak: 227.0 ˝C). Increasing the milling
time, aggregation was detected. Using PVA-solution as dispersant, DSC curves exhibited a broad
endothermic peak for MEL, indicating that the crystallinity of the drug was decreased (Table 4). The
residual MEL crystals in the products melted at a lower temperature than the crystals of raw MEL due
to the smaller particle size and the increased degree of amorphization which was directly proportional
to the duration of milling. This process was promoted by PVA, which was softened at 43 ˝C as glass
transition temperature (Tg) value.
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Table 4. Thermoanalytical evaluation of MEL_raw, MEL_PVA_pm and dried milled products.

Parameters Raw MEL pm Dried MEL_W Samples Dried MEL_W_PVA Samples

Milling time (min) - - 10 50 60 90 10 50 60 90
∆H * (J/g) ´148.5 ´29.9 ´7.5 ´40.1 ´64.4 ´40.8 ´60.3 ´70.9 ´32.4 ´46.4

Onset (˝C) 258.4 235.9 217.9 233.5 248.5 247.1 231.6 232.9 207.1 206.2
Peak (˝C) 259.1 255.9 227.0 238.7 250.7 250.2 239.8 240.1 216.7 217.4

Endset (˝C) 261.0 255.9 230.0 240.4 250.8 251.6 243.1 243.2 222.3 222.3

* ∆H: normalized integral.

It can be concluded that combined milling resulted in partial amorphization of MEL which could
results in a higher dissolution rate compared to the raw drug and its physical mixtures.

2.2.2. Particle Shape and Size

In the following SEM images (Figure 4) the morphology of the modified particles is demonstrated.
Dried products produced by milled pre-dispersion in water for 10 min and MEL micronized and
nanonized in the presence of PVA (10 and 50 min) were investigated. How the surface and shape



Molecules 2016, 21, 507 6 of 11

changed after the milling process, compared with raw MEL, was checked. After taking samples after
10 min of milling in the case of water as a dispersant and 10 and 50 min of milling in the case of
PVA-solution as the medium, the suspensions were dried and characterized. The raw MEL consisted
mainly of angular, prismatic crystals with a broad size distribution. In the case of the water-containing
samples, it was shown that micro-sized aggregates consisting of nanonized particles were formed.
In the case of PVA-solution-containing sample, 10 min of milling resulted in irregular particle shapes,
with the approximately 3 µm D50 value. MEL crystals could be detected between the amorphous
PVA particles. After 50 min, nanonized MEL crystals (at about 120 nm) embedded in the PVA-film,
with regular shape and smooth surface were perceived. The particle endurance during the treatment
accounts for the smooth surfaces of the particles.
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2.2.3. In Vitro Dissolution Tests

The in vitro dissolution test was performed at pH 7.4, which could represent the media of the
intestinal system where the absorption of MEL could be totally achieved. At pH 7.4 the conditions
of the lung, nasal and skin epithelia could also be imitated. The in vitro dissolution showed the poor
solubility and slow dissolution of MEL (D50 = 34.26 µm), and after 60 min approximately 10%, and
after 2 h around 22% of the drug was liberated. Application of PVA (in the reference sample, where
the size of the MEL did not decreased significantly) as hydrophilic wetting agent, could improve
the dissolution rate by 2-fold. The micronization of the drug without PVA (D50 = 3.55 µm) could
influence the dissolution rate 3-fold. Producing individual micronized (D50 = 2.96 µm) and nanonized
(D50 = 0.126 µm) MEL drug particles in the presence of PVA, the extent of dissolution was enhanced
significantly by the increased specific surface area. The amorphous character and the submicron range
of the drug resulted in a very fast dissolution, with more than 70% of MEL liberated after the first
5 min (Figure 5).
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3. Experimental Section

3.1. Materials

Meloxicam (4-hydroxy-2-methyl-N-(5-methyl-2-thiazolyl)-2H-benzothiazine-3-carboxamide-1,1-
dioxide) was obtained from EGIS Ltd. (Budapest, Hungary). The grinding additive, PVA (polyvinyl
alcohol), was purchased from Gedeon Richter Plc. (Budapest, Hungary).

3.2. Methods

3.2.1. Combined Milling

A wet milling technique (a combination of planetary ball and pearl milling) was employed.
The drug (2 g) was first suspended in the dispersant medium (18 g), consisting of water and
aqueous solution of PVA (the use of lower concentrations of PVA led to extensive aggregation of
the MEL particles because of the lesser effectiveness in overcoming the cohesive forces). The resulting
suspensions (10% drug content) were wet milled at 400 rpm in the milling chamber (50 mL) of a
planetary ball mill (PM 100 MA, Retsch GmbH, Haan, Germany). The milling balls were 0.3 mm ZrO2

beads. As a preliminary experiment, the effects of different pearl weights (10, 20, 50 and 150 g) on
the particle size reduction were investigated, and milling was also carried out without pearls as a
benchmark. The most effective milling was observed when 20 g of pearls was applied. Increasing
the weight of pearls did not result in further particle size reduction, therefore 20 g of beads were
used for further experiments. The milled suspensions were separated with a 150 µm mesh size sieve.
Suspension sampling was carried out at milling times of 10, 20, 30, 40, 50, 60, 70, 80 and 90 (end of
milling) min to perform the particle size analysis.

3.2.2. Determination of Particle Size Distribution and Specific Surface Area by a Laser Diffraction Method

The volume based particle size distribution (PSD) of the raw MEL was measured by laser
diffraction (Mastersizer 2000, Malvern Instruments Ltd., Worcestershire, UK) with the following
parameters: 300RF lens; small volume dispersion unit (2500 rpm); refractive index for dispersed
particles 1.720; refractive index for dispersion medium 1.330. The Dynamic Laser Light Scattering
method was used to determine the PSD. The particle size of the MEL was determined directly on
the initial suspension in water in which PVA was dissolved. The size analysis was repeated three
times. Water was used as dispersant medium and the obscuration was in the range 11%–16% for
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all measurements. In all cases, the volume weighted particle size distributions, D10, D50, and D90

(where for example D50 is the maximum particle diameter below which 50% of the sample volume
exists–also known as the median particle size by volume) were determined and evaluated. The specific
surface area was derived from the particle size distribution data. The assumption was made that all
the measured particles were spherical.

3.2.3. Preparation of Solid Products for Physical-Chemical Investigations of Products

After the particle size determination, the selected pre-dispersions were dried in a vacuum dryer
(Binder GmbH, Tuttlingen, Germany) at 40 ˝C in order to obtain solid products for physicochemical
investigations. The abbreviations of solid state samples are summarized in Table 5.

Table 5. Sample abbreviations.

Sample Name MEL (%) PVA (%) Description

MEL_raw 100 - untreated MEL
MEL_PVA_pm 80 20 physical mixture of MEL and PVA
MEL_W 10 min 100 - dried MEL, milled for 10 min in water
MEL_W 50 min 100 - dried MEL, milled for 50 min in water
MEL_W 60 min 100 - dried MEL, milled for 60 min in water
MEL_W 90 min 100 - dried MEL, milled for 90 min in water

MEL_W_PVA 10 min 80 20 dried product of milling for 10 min in PVA-solution
MEL_W_PVA 50 min 80 20 dried product of milling for 50 min in PVA-solution
MEL_W_PVA 60 min 80 20 dried product of milling for 60 min in PVA-solution
MEL_W_PVA 90 min 80 20 dried product of milling for 90 min in PVA-solution

3.2.4. Further Investigations of the Products

Structural Analysis

The physical state of the MEL in the samples was evaluated by XRPD. XRPD patterns were
produced with a Bruker D8 Advance diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) system
with Cu K λI radiation (λ = 1.5406 Å). The samples were scanned at 40 kV and 40 mA from 3˝ to
40˝ 2θ, at a scanning speed of 0.05˝/s and a step size of 0.010˝. The crystallinity (Xc) of the MEL
in dried pre-dispersions, milled for 10, 50, 60 and 90 min was determined semi-quantitatively in
case of both dispersant medium via the mean of the decrease of the total area beneath the curve of
3 characteristic peaks (Acrystalline) compared to the raw MEL and MEL–poly(vinyl alcohol) physical
mixture (MEL_PVA_pm) (Acrystalline + Aamorphous):

Xc “
Acrystalline

Acrystalline ` Aamorphous
ˆ 100 (1)

DSC measurements were carried out with a Mettler Toledo DSC 821e thermal analysis system
equipped with the STARe thermal analysis program V9.0 (Mettler Inc., Schwerzenbach, Switzerland).
Approximately 2–5 mg of pure drug or product was examined in the temperature range between 25 ˝C
and 300 ˝C. The heating rate was 5 ˝C¨ min´1. Argon was used as carrier gas at a flow rate of 10 L¨ h´1

during the DSC investigations.

Image Analysis (SEM)

The shape and surface characteristics of the samples were visualized by using a scanning electron
microscope (Hitachi S4700, Hitachi Scientific Ltd., Tokyo, Japan). The samples were sputter-coated
with gold–palladium under an argon atmosphere, using a gold sputter module in a high-vacuum
evaporator and the samples were examined at 15 kV and 10 µA. The air pressure was 1.3–13 MPa.
The milling-produced suspensions were dried in order to obtain solid products for SEM analyses.
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In Vitro Release

The paddle method with the USP dissolution apparatus (USP dissolution apparatus, type II
Pharma Test, Heinburg, Germany) was used to examine MEL (1.67 mg), MEL_PVA_pm and the
products (2.0875 mg). The medium was 100 mL of phosphate buffer of pH 7.4 ˘ 0.1. The basket was
rotated at 100 rpm and sampling was performed up to 120 min. After filtration (filtration pore size
0.22 µm; applying a Millex-HV syringe-driven filter unit, Millipore Corporation, Bedford, MA, USA)
and dilution, the MEL contents of the samples were determined by spectrophotometry (ATI-UNICAM
UV/VIS Spectrophotometer, Cambridge, UK) at 362 nm.

4. Conclusions

A combination of planetary ball and pearl milling (using pearls as milling media) can be applied
as a wet milling procedure to decrease the particle size and change the crystal morphology of MEL.
Wet milling in aqueous medium adheres to green technology principles as the product does not contain
organic solvent residues. Besides several advantages of wet milling, it is necessary to calculate the
wear of pearls during milling.

During our work at constant rotation rate in the presence and absence of a stabilizer, the effects
of milling time on the particle size reduction was determined (Table 6). Without additive, in the case
of water-containing samples micronization could be achieved (D50 = 3.55 µm). In the presence of
PVA, depending on the milling time, the particle size of the drug could be reduced to the micro-(after
10 min), (D50 = 2.96 µm) or nanometre range (after 50 min, D50 = 126 nm). The effect of milling on
the crystallinity of MEL was investigated. XRPD and DSC examinations revealed a decrease in the
crystallinity of MEL. In the case of water-containing samples (without PVA) aggregation occurred
during the course of milling. In the PVA-containing samples amorphization was determined (the
degree of MEL crystallinity was 2% at the end of the milling at 90 min). SEM images revealed the
aggregation of nanosized particles in water-containing samples. In the presence of additive milling
for 10 min resulted in irregularly shaped particles. The nanonized MEL crystals exhibited a regular
shape and smooth surface. The in vitro dissolution tests showed that the reduction of the particle size
of MEL, the increased SSA and the structural transformation of drug resulted in a rapid dissolution in
case of nanonized MEL-containing product. The amorphous form of the drug does not require lattice
energy to break the bonds during the dissolution process as in the crystalline state case.

Table 6. Summarized information about the determined properties of the samples.

Sample D50 (µm) Crystallinity (%) Dissolved MEL at 30 min (%)

MEL_raw 34.26 100 8.53
MEL_PVA_pm 20.15 80 29.22
MEL_W 10 min 3.55 3 37.82

MEL_W_PVA 10 min 2.96 48 64.73
MEL_W_PVA 50 min 0.126 12 82.16

The combined wet milling technology was suitable for preparation of micronized MEL without
the use of stabilizer and, depending on the milling time, of micronized and nanonized drug
particles-containing pre-dispersions in the presence of PVA. Milling in the presence of additive could be
the first step of pre-formulation and further formulation procedures. Decreased particle size (especially
accessing the nanosize range) and the amorphization of drug could ensure higher dissolution rate
and better bioavailability of poorly-water soluble drugs, though instability problems could occur in
the case of amorphous forms of materials. To check the stability of the systems further investigations
are needed.
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Because of the low need for dispersant medium, the combined method can be used for efficient
milling, and it is also suggested for the preparation of the pre-dispersions with micro- and nanosized
particles, and recommended for the development of particle size-controlled therapeutic systems.
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Abstract: The paper reports a wet milling process, where the planetary ball mill was combined 

with pearl milling technology to produce nanosize meloxicam (Mel). Mel as a water-insoluble 

highly potent nonsteroidal anti-inflammatory drug was milled in the presence of different 

amounts of the stabilizer agent, poly(vinyl alcohol) (PVA), in aqueous solution. The pearl 

amount, the milling time, and the rotation speed of the jar were optimized to reach the particle 

size range of 100–500 nm. The novelty of this study is the optimization of PVA amount in order 

to reach the required particle size distribution of Mel (milling efficiency) and the investigation 

of the effect of PVA concentration on the physicochemical properties of the milled dispersion 

(viscosity, zeta potential) to predict the stability of the nanosuspensions. It was found that 

the ratio of predispersion and pearls 1:1 (w/w) resulted in the most effective grinding system 

(200-fold particle size reduction in 1 step) with optimized process parameters, 437 rpm and 

43 min. Nanosuspension (1% Mel and 0.5% PVA) as an intermediate product showed a stable 

system with 2 weeks of holding time. This optimized nanosuspension enhanced the penetration 

of Mel across cultured intestinal epithelial cell layers without toxic effects. The dissolution 

rate of Mel from the PVA-stabilized nanosuspension justified its applicability in the design of 

innovative per oral dosage form (capsule) in order to ensure/give a rapid analgesia.

Keywords: nanonization, meloxicam, milled dispersion, milling efficiency, zeta potential, 

intermediate product

Introduction
The planetary ball milling belongs to the group of high-energy milling methods. The 

process is mainly used in laboratory-scale research work. It is a common technique 

for dry milling,1,2 nevertheless it is also suitable for wet grind.3–5 Dry milling with this 

technique is usually used for micronization with a particle size range of 1–2,000 µm.6 

In general, additives are not required for micronization, but for dry nanonization, 

application of them and a long milling time (2–4 h) can be necessary. Additives 

decrease the cohesion between the nanosize particles and the collision energy during 

the milling process; thereby, the risk of the decomposition of the active agent can 

be reduced.7

Wet milling is a top–down process, where the raw material is broken down via 

mechanical forces. In this method, a sufficiently concentrated dispersion of drug 

particles in an aqueous or nonaqueous liquid medium is treated. Increased mill 

capacity, lower energy consumption, and easier handling of materials can be perceived 

as advantages of the process. However, it must be said, in the course of the milling 

process, increased wear of the milling medium and corrosion can occur, and the 
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instability of the active agent must be taken into account. 

Wet milling is applicable for micronization in the particle 

size range of 1–50 µm, in this case, colloid mill, toothed 

high-shear inline mixers, and cone mill can be used,8 but 

for nanonization, high-pressure homogenization (1–20 µm) 

and pearl milling technique (20–200 nm)9–11 can be applied. 

It should be noted that in case of high-pressure homog-

enization and pearl milling techniques, the preparation of 

pretreated dispersions (particle size reduction to 1–10 µm) 

is required to reach the nanosize range.

The pearl milling process has been proven to be a robust 

technique for the production of nanoparticle suspension of 

poorly water-soluble drugs.12 With this method, nanosuspen-

sions are produced through the use of high-shear media or 

pearl mills. Pearl milling is a continuous process wherein the 

drug suspension is pumped through the milling chamber in 

order to reduce the particle size of the suspended material. 

The milling medium consists of glass, zirconia, or highly 

cross-linked polystyrene resin.13 The physical characteris-

tics of the resulting nanocrystals depend on the number and 

size of the milling pearls, the amount of the drug, and the 

stabilizer(s).14,15

Thanks to the high efficiency of a smaller pearl size16 

and the high mechanical forces of the planetary mill, Retsch 

GmbH (Haan, Germany) recommends the combination of the 

planetary ball and pearl milling as a novel milling technique 

in order to prepare drug nanodispersions.17 In the literature, 

there are few articles about the combinative method, where 

various active agents were co-milled. In the presence of 

d-tocopherol polyethylene glycol 1000 succinate as a stabi-

lizer agent, nanoparticle range was achieved; however, the 

production efficiency was very low.18,19

Our team uses different milling techniques (dry and wet) 

in order to nanonize different water-insoluble drugs, eg, 

meloxicam (Mel), to provide a faster dissolution, a higher 

saturated concentration, a faster absorption, and, in this 

context, a better bioavailability. Mel as a nonsteroidal anti-

inflammatory agent is often used in malignant and nonma-

lignant pain therapy, but its bioavailability is unsatisfactory 

thanks to its poor solubility in the gastrointestinal tract. One 

strategy to address these problems is the particle size reduc-

tion (eg, nanonization), which increases the dissolution rate 

of the poorly soluble drug resulting in faster absorption and 

faster action in pain therapy.

In our earlier studies, we investigated the applicability of 

the combined wet milling technique,20–23 and these prelimi-

nary studies showed that for the nanonization of Mel, PVA 

as a stabilizer agent and an increased milling time (.50 min) 

were required. The influence of milling time was also studied 

on the particle size distribution, crystallinity, and dissolution 

rate of Mel.

During the use of the combined wet milling technique, 

the type and amount of PVA are very important because it 

has a dual role. On the one hand, it promotes the grinding 

efficiency in the concentrated predispersion, and on the other 

hand, it stabilizes the milled dispersion and later the final 

nanosuspension in a diluted medium.

PVA is a nonionic polymer with very different molecular 

weights. It is frequently used as a stabilizer agent.20 Polymer 

adsorption on the solid–liquid interface can be influenced 

by the various conformations of the polymer chains and the 

interaction of the polymer segments with the solvent and the 

surface of the solid as well. PVA with low molecular weight 

(about 20,000 g/mol) is adsorbed on the colloid particles and 

thus stabilizes the colloid suspension (coating the particles 

and providing the repulsion among them), whereas PVA with 

high molecular weight (about 1,000,000 g/mol) flocculates 

the dispersed systems.24

The prediction of permeability features of drug candi-

dates across biological barriers is of great importance in the 

early phase of drug development.25 Oral drug formulations 

are the most widespread in human therapy, and therefore 

intestinal drug absorption is the most studied in pharma-

ceutical research. The human Caco-2 cell line, presenting 

many of the structural and functional aspects of the epithe-

lium of small intestine, is a routinely used culture model of 

intestinal drug penetration showing good correlation with 

in vivo data.26

The aim of this work was to optimize the process param-

eters (pearl amount, milling time, and rotation speed) of the 

combined wet milling technique (planetary ball and pearl 

milling), using Mel as an active agent and PVA as a stabiliz-

ing agent in the predispersion. We basically investigated the 

influence of the amount of low molecular weight PVA on 

the grinding efficiency in concentrated predispersion. Our 

aim was also to get to know the effect of mechanical forces 

on polymer viscosity and drug–polymer interaction as well. 

To describe the stability of nanosuspensions, their particle 

size was monitored for 2 weeks. Furthermore, the optimized 

Mel formulations were tested on the cell culture model of 

intestinal epithelium.

The novelty of this study is the application of PVA and 

the combined wet milling process and optimization of the 

amount of the additive and the process parameters in order 

to produce Mel nanosuspension (particle size range of 

100–500 nm) without any pretreating procedure.
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Materials and methods
Materials
Mel was obtained from EGIS Ltd. (Budapest, Hungary). 

PVA-Mowiol 4-98 (M
w
 ~27,000) (Sigma-Aldrich Co. LLC, 

St Louis, MO, USA) was used as a stabilizing agent. Reagents 

were purchased also from Sigma-Aldrich. Zirconium oxide 

(ZrO
2
) beds with a diameter of 0.3 mm were obtained from 

Netsch (Netsch GmbH, Selb, Germany). All reagents were 

purchased from Sigma-Aldrich, Ltd. (Budapest, Hungary) 

for the in vitro cell culture experiments, unless otherwise 

indicated.

Methods
Combined wet media milling
Optimization of process parameters
The samples were milled with the steel jar with 50 mL 

volume of the Retsch PM 100 planetary ball mill (Retsch 

PM 100 MA, Retsch GmbH) combined with 0.3 mm ZrO
2
 

beads as the grinding media. The concentrated (10% w/w) 

predispersions (2 g of Mel suspended in 18 g of dispersant 

medium containing PVA) were added to the ZrO
2
 beads. 

In the first step, the effect of different amount of ZnO
2
 pearls 

on the particle size reduction was investigated. The ratio of 

the amount of predispersion and pearls (w/w) was 1:0.5, 1:1, 

1:2, and 1:4; and the milling times were 10, 30, and 50 min. 

In these cases, the concentration of PVA solution was 2.5% 

(w/w), and the rotation speed was 400 rpm. In the second 

step, design and analysis of experiments with 3 levels were 

used to optimize the milling time (10, 30, and 50 min) and 

the rotation speed (200, 350, and 500 rpm) as independent 

variables. The amount of the pearls was chosen on the basis 

of the optimization study. The temperature of the samples 

was measured immediately after milling. This value did not 

exceed 39°C.

Optimization of PVA concentration
Various amounts of PVA (2.5%–7.5%) were applied to pre-

pare the concentrated predispersions. The concentration of 

the PVA solutions was increased in the half percent range. 

Mel content was 10% (w/w), and the optimized process 

parameters were used during the milling. The degree of 

particle size reduction and particle size distribution were the 

main factors for the optimization of the PVA concentration 

(Figure 1).

The concentrated milled dispersions were filtered by a 

sieve with 150 μm mesh size in order to remove the pearls. 

For the washing of the pearls, 180 g of distilled water was 

used. In all cases, the milled dispersions were 10-fold diluted 

products with 1% of Mel (w/w) content. The samples were 

selected on the basis of the particle size range (100–500 nm) 

and the holding time (2 weeks).

Investigation of the samples
Particle size measurement
The volume-based particle size distribution was measured by 

laser diffraction (Mastersizer S 2000, Malvern Instruments 

Ltd, Worcestershire, UK) with the following parameters: 

300RF lens; small volume dispersion unit (1,000 rpm); 

refractive index for dispersed particles 1.596; and refractive 

index for dispersion medium 1.330. Water was used as a 

dispersant, and the obscuration was in the range of 11%–16% 

for all measurements. In all cases, the particle size distribu-

tions were characterized by the d(0.1), d(0.5), and d(0.9) 

(where, eg, d(0.5) is the maximum particle diameter below 

which 50% of the sample volume exists), and the Span values 

were calculated according to equation. A high Span value 

(.1) denotes a broad particle size distribution.27

	
Span

(0.9) (0.1)

(0.5)
=

d d

d

−

�

Rheological measurement
To investigate the viscosity changes during the milling 

process, the initial and milled PVA solutions and the con-

centrated milled dispersions were used. Rheological measure-

ments were carried out with Physica MCR101 rheometer 

Figure 1 Protocol of sample preparation for the optimization of PVA content.
Abbreviations: Mel, meloxicam; PVA, poly(vinyl alcohol).
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(Anton Paar, Graz, Austria). A concentric cylinder measuring 

device with a diameter of 17 mm was used. The flow curves 

of the samples were determined at 25°C, where the shear rate 

was increased from 0.1 to 100 L/s. The shearing time was 

300 sec. In this paper, viscosity values were given at 100 L/s 

shear rate. Two parallel measurements were run.

Zeta potential
The zeta potential of the dispersions was measured using 

a Malvern Zeta Nano ZS (Malvern Instruments Ltd). For 

the zeta potential determination, Malvern DTS 1070 folded 

capillary cell was used. The diluted milled dispersions were 

further diluted with water (25-fold) for the measurements.

Raman spectroscopy
For the investigation of Mel degradation as a function of 

the pearl amount and milling time in the dispersion, Raman 

spectra were acquired with a Thermo Fisher DXR Dispersive 

Raman (Thermo Fisher Scientific Inc., Waltham, MA, USA) 

equipped with a CCD camera and a diode laser operating 

at a wavelength of 532 nm. Raman measurements were 

carried out with a laser power of 4 and 8 mW at 25-µm slit 

aperture size on a 2 µm spot size. The spectra of the indi-

vidual substances as Mel and PVA were collected using a 

2-sec exposure time, a total of 48 scanning in the spectral 

range of 3,300–200 cm–1 with cosmic ray and fluorescence 

corrections.

Morphology of the particles (scanning electron 
microscopy)
For the investigation of the morphology of the particles, 

the diluted milled dispersions were dried in a vacuum dryer 

(Binder GmbH, Tuttlingen, Germany) at 40°C in order to 

obtain solid products for physicochemical investigations. 

After drying, the shape and surface characteristics of the 

samples were visualized using a scanning electron micro-

scope (Hitachi S4700, Hitachi Scientific Ltd., Tokyo, Japan). 

The samples were sputter-coated with gold–palladium under 

an argon atmosphere, using a gold sputter module in a high-

vacuum evaporator, and the samples were examined at 10 kV 

and 10 mA. The air pressure was 1.3–13 MPa.

Differential scanning calorimetry (DSC)
DSC measurements were carried out with a Mettler Toledo 

DSC 821e thermal analysis system with the STARe thermal 

analysis software V9.0 (Mettler Inc., Schwerzenbach, 

Switzerland). Approximately 2–5 mg of pure Mel and PVA 

as well as dried samples were examined in the temperature 

range of 25°C–270°C. The heating rate was 10°C/min in the 

presence of argon as a carrier gas with a flow rate of 10 L/h.

X-ray powder diffraction analysis (XRPD)
The crystallinity state of Mel in the dried samples was evalu-

ated by XRPD. XRPD patterns were produced by a Bruker 

D8 Advance diffractometer (Bruker AXS GmbH, Karlsruhe, 

Germany) system with Cu K λI radiation (λ=1.5406 Å). 

The samples were scanned at 40 kV and 40 mA from 3 to 

40 2θ, at a step time of 0.1 sec, and a step size of 0.010°. 

The instrument was calibrated by using SI standard. 

The semiquantitative determination of Mel crystallinity 

(Cryst. %) was performed using the total area under the 

curve of 3 characteristic peaks (13.06, 14.94, and 18.61 

2θ) of Mel. The area under the curve value of the peak of 

raw material without milling (rawMel) and the dried milled 

dispersions (MelD) was calculated and compared according 

the following formula:

	
Cryst. % =

AUCMelD

AUCrawMel
100×

�

Drug content determination
The loss of weight of Mel was controlled in the milled 

suspension. Seventy-five milligram of the liquid products 

with 0.75 mg of theoretical Mel was dissolved in 100 mL of 

phosphate buffer pH 7.4±0.1. The sample was stirred with a 

magnetic stirrer at 25°C for 24 h and then filtered (0.1 μm, Fil-

terBio PES Syringe Filter) (Labex Ltd., Budapest, Hungary), 

and the concentration of the dissolved Mel was analyzed 

spectrophotometrically (Unicam UV/VIS) (Thermo Fisher 

Scientific Inc.) at 364 nm wavelength. The investigations 

were repeated 3 times.

In vitro dissolution test
To determine the dissolution extent of Mel from disper-

sions, the paddle method (USP dissolution apparatus, type II 

Pharma Test, Heinburg, Germany) was used. About 750 mg 

of the dispersion with 7.5 mg of Mel (therapeutic dose) was 

filled into hard gelatin capsules within 5 sec and put promptly 

into the medium. The medium contained 900 mL of artificial 

gastric fluid at pH 1.2±0.1 and intestinal fluid (pH 6.8±0.1). 

The paddle was rotated at 100 rpm, and sampling was 

performed up to 60 min. The Mel contents of the samples 

were determined using a spectrophotometer (ATI-UNICAM 

UV/VIS Spectrophotometer) at 362 nm (gastric juice) and 

364 nm (enteric fluid). The number of parallel runs was 3.
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In vitro cell culture studies
Human Caco-2 intestinal epithelial cell line
Caco-2 intestinal epithelial cell line was purchased from 

ATCC (Manassas, VA, USA) (cat. no HTB-37) and used 

until passage 60 for the experiments. The cells were grown 

in DMEM (Gibco, Life Technologies, Carlsbad, CA, USA) 

and supplemented with 10% fetal bovine serum (Pan-Biotech 

GmbH, Aidenbach, Germany) and 50 μg/mL gentamycin 

in a humidified incubator with 5% CO
2
 at 37°C. All plastic 

surfaces were coated with 0.05% rat tail collagen in sterile 

distilled water before cell seeding in culture dishes and the 

medium was changed every 2 days. The stock solutions for 

cell culture experiments were the following: Mel, 100 mg/

mL; PVA, 5% (w/w), and 3 products containing 100 mg/mL 

Mel with various amounts of PVA (2.5%, 5%, or 7.5%). The 

working solutions were diluted in the cell culture medium 

or Ringer–Hepes buffer and contained 1 mg/mL of Mel for 

the Mel and formulation groups. The final concentrations of 

PVA were 0.025%, 0.05%, and 0.075% (w/w).

Cell viability measurement by impedance
Impedance was measured at 10 kHz using the RTCA-SP 

instrument (RTCA-SP instrument, ACEA Biosciences, San 

Diego, CA, USA). This method is label-free, noninvasive 

and follows cell adherence, growth, number, and viability 

real time. We have successfully tested the cellular effects 

of peptides and pharmaceutical excipients by impedance 

kinetics.28–30 For background measurements, a 50 μL cell 

culture medium was added to the wells; then, cells were 

seeded at a density of 6×103 cells/well to 96-well plate with 

gold electrodes (E-plate 96, ACEA Biosciences) coated with 

collagen. Cells were cultured for 5 days in a CO
2
 incubator 

at 37°C and monitored every 10 min until the end of experi-

ments. At the beginning, plateau phase of growth cells were 

treated with Mel, PVA, and Mel+PVA samples diluted in a 

cell culture medium, and the effects were followed for 8 h. 

Triton X-100 detergent (1 mg/mL) was used as a reference 

compound to induce cell toxicity. Cell index was defined 

as R
n
-R

b
 at each time point of measurement, where R

n
 is 

the cell–electrode impedance of the well when it contains 

cells and R
b
 is the background impedance of the well with 

the medium alone.

Permeability study on cell culture model
Transepithelial electrical resistance (TEER) reflects the tight-

ness of the intercellular junctions closing the paracellular 

cleft, and therefore reflects the overall tightness of cell lay-

ers of biological barriers. TEER was measured every 2 days 

to check the barrier integrity by an EVOM volt-ohmmeter 

(World Precision Instruments, Sarasota, FL, USA) combined 

with STX-2 electrodes and was expressed relative to the 

surface area of the monolayers as Ω×cm2.

Caco-2 cells were seeded onto Transwell inserts (polycar-

bonate membrane, 0.4 µm pore size, 1.12 cm2 surface area; 

Corning Life Sciences, Tewksbury, MA, USA) and cultured 

for 3 weeks.31,32 The culture medium was changed and TEER 

was checked every second day.

For the permeability experiment, inserts were transferred 

to 12-well plates containing 1.5 mL Ringer–Hepes buffer 

in the lower (basal) compartments. In the upper (apical) 

compartments, the culture medium was replaced by 0.5 mL 

buffer containing treatment solutions of Mel, PVA, and Mel 

formulation groups for 1 h. Permeability marker molecules 

fluorescein (10 μg/mL; M
w
: 376 Da) and albumin (10 mg/mL; 

M
w
: 65 kDa) labeled with Evans blue (167.5 μg/mL) were 

used for verifying the cell layer integrity. Treatment solu-

tions from both compartments were collected and the Mel 

level was detected using a Thermo Spectronic Helios Alpha 

UV-Vis spectrophotometer (Thermo Fisher Scientific Inc.).

The concentrations of the permeability marker molecules 

of collected samples were determined by a fluorescence 

multi-well plate reader (Fluostar Optima, BMG Labtech, 

Offenburg, Germany; for fluorescein: excitation wavelength, 

485 nm; emission wavelength, 535 nm and for Evans blue-

labeled albumin: excitation wavelength, 584 nm; emission 

wavelength, 680 nm).

The apparent permeability coefficients (P
app

) were calcu-

lated as described previously.28 Briefly, the cleared volume was 

calculated from the concentration difference of the tracer in 

the lower/basal compartment (Δ[C]
B
) after 30 min and upper/

apical compartments at 0 h ([C]
A
), the volume of the lower/

basal compartment (V
B
, 1.5 mL) and the surface area available 

for permeability (A, 1.1 cm2) using the following equation:

	

P
C V

A C tapp
A A

L

(cm/s)
[ ]

=
∆ ×
× × ∆[ ]

�

Determination of holding time
Since the diluted dispersions are intermediate products, it 

was necessary to specify the “holding time” of the sample 

through the particle size distribution. The products were 

stored in sealed glass bottles at room temperature (25°C±1°C) 

for 2 weeks. The particle size distribution of the Mel in the 

samples was analyzed on the day of production (day 0) and 

after 14 days of storage.
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Statistical analyses
Data were expressed as mean±SD, and groups were com-

pared by using Student’s t-test. For the evaluation of cell 

culture results, GraphPad Prism 5.0 software (GraphPad 

Software Inc., San Diego, CA, USA) was used. All cul-

ture data presented are mean±SD; values were compared 

using analysis of variance followed by Bonferroni post-

test. Differences were considered statistically significant 

when p,0.05.

Results and discussion
Optimization of process parameters (pearl 
amount, milling time, and rotation speed)
The effect of pearl amount and milling time on particle size 

of d(0.5) was investigated. This study was performed using 

2.5% PVA solution.23 The ratio of the concentrated predisper-

sion (2.0 g of Mel+18.0 g of PVA aqueous solution) and pearl 

amount was different: 1:0.5, 1:1, 1:2, and 1:4 (w/w). It can be 

established that the pearl amount and the milling time have 

a great effect of on the d(0.5) value (Table 1). The milling 

efficiency was not satisfactory in case of ratio 1:0.5, but it 

increased linearly on increasing the amount of the milling 

media and the milling time except in case of ratio 1:4. It was 

found that the increase of the amount of the milling media 

(up to 1:2 w/w or more) causes gray coloring because of the 

high friction between the pearls and the wall of the steel jar. 

Therefore, the pearl milling amount was optimized at the 

ratio of 1:1 (20 g of concentrated predispersion and 20 g of 

pearls), and the milling time was investigated as an indepen-

dent variable in the factorial experimental design. Another 

advantage of the small amount of the grinding media may 

be the reduction of the product loss.

During the factorial experimental design, the influence 

of the milling time and the rotation speed on the particle size 

reduction was investigated. The ratio of the predispersion 

and the pearls was also 1:1 (w/w). Figure 2 shows that the 

efficiency of the particle size reduction was improved by 

increasing the milling time and the rotation speed. Based on 

the results, 437 rpm and 43 min are the optimal parameters 

of the milling process.

Optimization of PVA concentration
Influence of PVA amount on the milling effectiveness
Concentrated predispersions with different PVA amounts 

(2.5%–7.5%) were milled with optimized parameters 

(2 g of Mel+18 g of PVA aqueous solution, 20 g pearls, 

437 rpm, 43 min). The results show (Figure 3) that the lower 

Table 1 Particle size of Mel (d[0.5]) in milled dispersion as a func
tion of different pearl amounts and milling time (d[0.5] of raw Mel 
was 34.260±4.860 µm)

 Ratio of predispersion and pearl amount (w/w)

1:0.5 1:1 1:2 1:4

Particle size (µm)

10 min 4.015±0.06 2.426±0.029 2.383±0.016 0.149±0.03
30 min 0.293±0.008 0.145±0.007 0.190±0.003 0.137±0.006
50 min 0.202±0.003 0.140±0.004 0.140±0.002 0.130±0.004

Abbreviations: Mel, meloxicam; d(0.5), the maximum particle diameter below 
which 50% of the sample volume exists; w/w, weight/weight (concentration).

Figure 2 Three-dimensional illustration of the particle size changes during the 
second factorial experimental design.

Figure 3 Particle size reduction effectiveness according to PVA concentrations and 
the Span values for the demonstration of particle size distribution (d[0.1] values are 
not shown).
Abbreviations: PVA, poly(vinyl alcohol); Span, calculated value for a broad particle 
size distribution; d(0.1), d(0.5), d(0.9), the maximum particle diameter below which 
10%, 50%, and 90% of the sample volume exists.
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concentration of PVA (from 2.5% to 3.5%) was not suitable 

to reach the nanosize range (100–500 nm). A higher concen-

tration of PVA (6.0%–6.5%) also resulted in unsatisfactory 

milling effectiveness. Over 6.5% a robust protecting layer 

was probably formed on the solid particles, and nanoniza-

tion was not possible. The curve of the Span follows the 

different particle size distribution of the samples. The best 

particle size distribution was measured in the range of 4.0% 

and 5.5% of PVA. Based on the results, the concentrated 

milled dispersion containing 5.0% of PVA was selected as 

the optimized PVA amount.

Influence of PVA amount on the physicochemical 
properties of milled dispersions
After the optimization of the wet milling process and the PVA 

amount, in order to understand the influence of the amount of 

PVA on the physicochemical properties of the samples, the 

milled dispersions with 3 different concentrations of PVA 

were investigated. These were the following: 2.5%, 5.0% 

(as optimized), and 7.5% of PVA.

Viscosity changes during the milling
In order to exclude the viscosity changes because of the high 

mechanical forces during the milling, the viscosity of 3 raw 

PVA solutions (2.5%, 5%, and 7.5%) was investigated before 

the milling process, after the process (437 rpm, 43 min), and 

after the milling in addition with Mel. The polymer solutions 

showed Newtonian flow behavior as their shear viscosity 

was independent of the applied shear rate. The viscosity of 

the polymer solutions increased with increasing the polymer 

concentration (Table 2). There were no remarkable differ-

ences between the viscosity of the polymer solution before 

and after the milling procedure, which may indicate there 

are no changes in the polymer structure. 10% Mel amount 

in the dispersions increased the viscosity of the systems and 

did not change the flow behavior – they remained Newtonian. 

Adding Mel to the polymer solutions, the smallest shift in the 

viscosity could be detected in case of the highest polymer 

concentration. This can be explained by the more consider-

able viscosity changing effect of the polymer concentration 

than that of the Mel particles. It can be concluded that the 

mechanical influence did not change the viscosity of the 

polymer solutions, and therefore, the structure of the PVA 

chains did not change.

Zeta potential changes
To determine the electrokinetic changes of the diluted dis-

persions, the zeta potential of the samples was measured. 

The results show that the increase of the PVA amount 

decreases the zeta potential in comparison to the sample 

without PVA (Table 3). The main reason for the zeta potential 

reduction can be linked to the nonionic polymer adsorption 

on the surface of the solid particles, which causes a decrease 

of the diffuse layer charge. A greater zeta potential-lowering 

effect can be observed between 0% and 0.25% of PVA than 

between 0.25% and 0.50. At 0.50% of PVA, the surface of 

particles is saturated by the PVA chain; therefore, the change 

of zeta potential is smaller. In case of a higher concentration 

of PVA (.0.50%), the steric hindrance stabilizes the system 

but hampers the disintegration/abrasion of the particles.

Investigation of the diluted dispersions to select 
nanosuspension as an intermediate product
Raman investigation
Raman spectrograms and chemical maps of raw materials 

and products are presented in Figures 4 and 5. The individual 

spectrum of Mel (A) shows that the absorption peaks are con-

centrated in the region from 1,600 to 1,000 cm-1 (fingerprint 

region), whereas the individual spectra of PVA (B and C) 

Table 2 Viscosity values (η) of the raw PVA solutions before 
milling (PVA %) and after milling (PVA % milled), and the PVA 
solutions after milling in addition with Mel (Mel PVA % milled)

 η, mPa*s SD ±, mPa*s

PVA 2.5% 3.14 0.02
PVA 5.0% 7.38 0.02
PVA 7.5% 20.55 0.07
PVA 2.5% milled 3.12 0.27
PVA 5.0% milled 7.09 0.02
PVA 7.5% milled 20.05 0.07
Mel PVA 2.5% milled 4.42 0.07
Mel PVA 5.0% milled 8.46 0.01
Mel PVA 7.5% milled 21.65 0.07

Abbreviations: Mel, meloxicam; PVA, poly(vinyl alcohol); η, viscosity.

Table 3 Zeta potential values of the diluted dispersions as a 
function of the PVA concentration and particle size distribution 
of Mel (±SD)

Samples Particle size distribution Zeta 
potential 
(mV)

d(0.1) d(0.5) d(0.9)

Particle size (μm)

Mel PVA 0% 2.508±1.100 5.762±2.700 135.640±12.900 -30.7
Mel PVA 0.25% 0.070±0.001 0.150±0.009 1.478±0.0400 -20.9
Mel PVA 0.50% 0.067±0.001 0.130±0.005 0.371±0.010 -16.1
Mel PVA 0.75% 1.235±0.006 2.611±0.018 5.560±0.070 -15.7

Abbreviations: Mel, meloxicam; PVA, poly(vinyl alcohol); d(0.1), d(0.5), d(0.9), the 
maximum particle diameter below which 10%, 50%, and 90% of the sample volume 
exists.
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show just 1 characteristic and extended peak from 3,000 to 

2,800 cm-1. This is the CH stretching vibration region that 

results a medium-to-strong intensity in Raman spectra. The 

spectrograms of diluted dispersions (D, E, and F) show 

the same characteristic region with the spectra of Mel – there 

are no detectable differences among them. Two peaks (one 

more characteristic in 2,437 cm-1 and another smaller one 

in 482 cm-1) appear in the spectra of PVA-containing dis-

persions and in spectra of aqueous Mel dispersion as well. 

The chemical mapping of dried dispersions profiled to this 

peak in 2,437 cm-1 shows that this peak cannot detected 

in this map. This peak can show a dissociated -OH group 

of Enol which is presented when Mel is in an aqueous 

medium, but it is disappeared in dried form, so the change 

is reversible. The chemical map of dispersion profiled to 

Mel spectrogram shows homogenous distribution of Mel. 

It can be summarized that there is no chemical degradation 

or interaction in dispersion which could be detectable with 

Raman technique.

Morphology of particles (scanning electron microscopy)
In order to investigate the effect of milling and PVA amount 

on the morphology of milled Mel, the water was evaporated 

from dispersion and the dried samples were characterized.

Figure 4 Investigation with Raman spectroscopy: (A) (a) spectrum of raw Mel, (b) spectrum of raw PVA, (c) spectrum of raw PVA (0.50%) containing solution.  
(B) Comparison study of raw materials (Mel and PVA) and the dispersions, (d) spectrum of dispersion containing 1% Mel and 0.25% PVA, (e) spectrum of dispersion 
containing 1% Mel and 0.50% PVA, (f) spectrum of dispersion containing 1% Mel and 0.75% PVA.
Abbreviations: Mel, meloxicam; PVA, poly(vinyl alcohol).

Figure 5 Investigation with Raman spectroscopy: (A) Comparing raw Mel and aqueous dispersion of Mel- and PVA-containing dispersions, (a) spectrum of raw Mel, 
(d) spectrum of dispersion containing 1% Mel and 0.25% PVA, (e) spectrum of dispersion containing 1% Mel and 0.50% PVA, (f) spectrum of dispersion containing 1% Mel and 
0.75% PVA, (g) spectrum of aqueous 1% Mel-containing dispersion without PVA. (B) Chemical mapping of Mel-containing dispersion (1% Mel and 0.50% PVA) and chemical 
mapping of its dried form profiled to peak in 2,437 cm-1.
Abbreviations: Mel, meloxicam; PVA, poly(vinyl alcohol).
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Figure 6 shows the raw Mel in physical mixture (Mel 

PVA 0.50% PM) which has an irregular shape with 

34.260±4.860 µm as average particle size. In this PM, the 

PVA particles with size ,6 µm are located on the surface of 

Mel crystals. While the aqueous dispersions had a different 

amount of PVA in solution form and after drying the polymer 

formed think film in the system, therefore the dried samples 

present only the Mel particles. In case of 0.25% contain-

ing PVA (Mel PVA 0.25%), the particle size of Mel has 

decreased, but aggregation of the fragmented particles can 

be observed. Mel particles are in homogeneous disperse dis-

tribution in sample (Mel PVA 0.50%), resulting in ,500 nm 

(average particle size: 0.130±0.005 µm). High concentration 

of PVA (Mel PVA 0.75%) helped the recrystallization of 

Mel (nanocrystals with smooth surface) thanks to increased 

solubility of Mel in aqueous PVA solution. Otherwise, the 

sample shows heterogeneous disperse system with nano- and 

microparticles.

Crystallinity characterization of Mel in the dried 
dispersions (DSC and XRPD)
DSC was used to investigate the melting of raw Mel and raw 

PVA and the dried samples (Figure 7). The DSC curve of 

the raw Mel revealed a sharp endothermic peak at 268.66°C, 

reflecting its melting point and an instantly following exo-

thermic peak at 278.09°C can be observed. The DSC curve 

of raw PVA as a semi-crystalline polymer has 2 endothermic 

peaks at 169.51°C and at 222.74°C. The first peak of PVA 

signifies a particular decrystallization of PVA and the second 

peak is the melting temperature.33 The DSC curves of the 

dried products exhibited lower melting points of Mel than 

that of raw Mel. It is connected to the premelting of PVA, 

which induces the earlier melting of Mel in proportion to 

the amount of PVA and decreases the crystallinity degree of 

Mel. Therefore, the XRPD investigation was used to check 

the amorphization of the active agent.

The XRPD investigations justified the change of crystal-

linity degree of Mel in the dispersions with different PVA 

amounts. Figure 8 shows the fingerprints of raw materials 

(Mel and PVA) and the dried dispersions. The samples show 

the characteristic peaks of Mel at 2θ values: 13.06°, 14.94°, 

and 18.61°. It was found that the PVA content of the samples 

fundamentally influenced the decrease of the crystallinity 

degree of Mel. As it was established earlier in this study, 

low (2.5%) and high (7.5%) concentrations of PVA in the 

milled dispersion did not result in suitable milling efficiency. 

In this case, the crystallinity degree of Mel was 75.82% at 

low PVA content (2.5%), and it decreased to 51.44% at high 

concentration of PVA (7.5%). These results are connected 

to the milling effectiveness. In this study, the 5.0% PVA-

containing milled dispersions showed smaller crystallinity 

(13.43%) and the highest milling efficiency.

Drug content determination
The spectrophotometrically measured drug content of the sam-

ples was less than the theoretical value (7.5 mg Mel). The drug 

Figure 6 SEM pictures of physical mixture (Mel PVA 0.25% PM) and different PVA concentrations containing dried dispersions.
Abbreviations: SEM, scanning electron microscopy; Mel, meloxicam; PVA, poly(vinyl alcohol); PM, physical mixture.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2018:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

10

Bartos et al

contents, converted to 750 mg dispersion quantity, are 

as follows: 7.36 mg for aqueous sample (without PVA), 

7.19 mg for 0.25% PVA, 7.12 mg for 0.50% PVA, and 

7.23 mg for 0.75%. It can be stated that the washing method 

of the pearls resulted in greater loss of Mel in PVA-containing 

dispersion (3.60%–5.06%) than in case of the aqueous sample 

without PVA (1.80%). The amount of PVA did not signifi-

cantly affect the loss of weight of Mel.

In vitro dissolution study
In case of each sample, the liberation from the hard gela-

tin capsules occurred within 2 sec. Mel has a weak acidic 

character (pK
a
 4.8), and therefore, its solubility in gastric 

juice (pH=1.2) is very poor (1.6±0.2 mg/L, at 37°C). In this 

medium, the greatest dissolved amount of Mel with 0.25% 

and 0.50% PVA content was maximum, 37%, within 20 min 

(Figure 9A). This result is due to the wetting effect of PVA 

(0.25% and 0.50%), which could increase the solubility 

of Mel, and the reduction of the particle size of Mel in the 

dispersions. In contrast, a higher amount of PVA (0.75%) 

hinders the dissolution because a thicker polymer layer is 

formed on the Mel particles.

In intestinal fluid (pH=6.8), the dissolved amount was 

higher in all cases because of the better solubility of Mel 

(0.272±0.001 mg/mL, at 37°C). Figure 9B shows that the 

concentration of PVA influences the amount of dissolved 

θ

Figure 8 XRPD diffractograms of the Mel, PVA, and the dried dispersion.
Abbreviations: XRPD, X-ray powder diffraction; Mel, meloxicam; PVA, poly(vinyl 
alcohol).

°

Figure 7 DSC curves of raw Mel and PVA and dried dispersions with different PVA concentrations.
Abbreviations: DSC, differential scanning calorimetry; Mel, meloxicam; PVA, poly(vinyl alcohol).
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Mel as in the case of gastric juice, but its extent is bigger. 

In this study, the dispersion containing 0.50% of PVA had 

the most satisfying dissolution behavior from among the 

4 samples. It is followed by the dispersions containing 0.25% 

and 0.75% of PVA, and finally the dispersion without PVA. 

The results justify the need of the polymer (PVA) and the 

correct choice of its quantity.

Cell viability assay
Impedance measurement, as a sensitive method to detect 

cellular effects, did not show significant cell damage after 

treatments with Mel, PVA, and Mel formulation groups, as 

reflected by unchanged cell index values (Figure 10). As a 

comparison, cells treated with the detergent Triton X-100 

were lysed and a 100% toxicity was measured. The curves 

show the kinetics of the cellular effects of treatment solu-

tions (Figure 10A), whereas the columns show the effect 

of Mel, PVA and Mel formulations at the 8-h time point 

(Figure 10B).

Permeability study on intestinal barrier model
Caco-2 monolayers showed high TEER values (2,660±181 

Ω×cm2, n=20) before permeability experiments, indicating 

tight barrier properties. The average apparent permeability 

coefficients of marker molecules were also low (fluores-

cein: 0.81±0.13×10-6 cm/s; albumin: 0.08±0.03×10-6 cm/s), 

Figure 9 In vitro dissolution curves of Mel in artificial gastric juice (A) and intestinal juice (B).
Abbreviations: Mel, meloxicam; PVA, poly(vinyl alcohol).

Figure 10 Cell viability kinetics (A) and results 8 h after treatment (B) in Caco-2 intestinal epithelial cells with Mel, PVA, and formulations measured by impedance.
Notes: Values are presented as mean±SD, n=6–12. Statistical analysis: ANOVA followed by Dunett’s test. Statistically significant differences are: *p,0.05, compared to 
control group.
Abbreviations: Mel, meloxicam; PVA, poly(vinyl alcohol); TX-100, Triton X-100; ANOVA, analysis of variance.
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in agreement with the TEER values and the formation of 

tight cell layers.

The permeability of Mel suspension and Mel formulations 

was significantly higher than that of marker molecules. The 

penetration of Mel from the 3 investigated products across 

cell layers was significantly increased as compared to Mel 

suspension. From all the tested samples, the P
app

 value of 

Mel was the highest in the formulation containing 0.05% 

PVA (Figure 11).

Holding time determination
Since the investigated dispersions are intermediate products, 

the change of particle size distribution and the crystallinity 

index are very important during storage. In general, the time 

period before the dispersion used for the preparation of differ-

ent dosage forms is 1 or 2 h, or possibly longer. The measure-

ments have proven that 0.50% of PVA-containing dispersion 

had no significant changes in the particle size, particle 

size distribution, and crystallinity up to 2 weeks (Table 4).

Conclusion
Based on our results, it can be stated that the combination 

of planetary ball mill and the pearl milling technology is 

a new possibility to nanonize the Mel as a nonsteroidal 

anti-inflammatory agent to reach the particle size range of 

100–500  nm. This combinative wet technology resulted 

in significant particle size reduction without premilling 

(pretreatment of raw agent). In addition to the process 

parameters (the pearl amount, the milling time, and the 

rotation speed of jar), the amount of PVA was also a critical 

parameter because it affected the milling effectiveness, the 

particle size distribution, and the crystallinity of Mel. The 

different concentrations of PVA in the aqueous dispersion 

also influenced the viscosity and the electrokinetic property 

of the particle, according the DLVO theory,34 and thus, the 

stability of the dispersions.

It was found that the milling effectiveness of low con-

centration of PVA (,4%) was not satisfactory, because the 

crushing/breaking effect of the pearls could less prevail. High 

concentration of PVA (.5%) also resulted in unsatisfactory 

milling effectiveness because of the formation of polymer 

layer on surface of particles, which protects the particles from 

the fragmentation. In connection with this, the crystallinity 

of Mel decreased with the increase of milling effectiveness, 

which plays an important role in the fast drug release.

In this work, the combined wet milling process was also 

used successfully to prepare Mel-containing nanosuspen-

sion as an intermediate product to design the final dosage 

form(s) for per oral administration. The optimized process 

parameters (1:1 ratio of predispersion and pearls, 437 rpm, 

and 43 min) resulted in 200-fold particle size reduction 

of Mel. Considering the effectiveness of milling, 5% PVA 

was proved to be an optimal quantity to meet the expected 

value (100–500 nm). The optimized nanosuspension (1% 

Mel and 0.50% PVA) as an intermediate product showed a 

stable system with 2 weeks of holding time.

The human Caco-2 cell culture studies justified that the 

penetration of Mel from different PVA-containing products 

was significantly increased as compared to Mel suspension 

without toxic effects. From all the tested samples, the P
app

 

value of Mel was the highest in the investigated sample 

containing 0.05% PVA, which belongs to the optimized 

nanosuspension.

Based on the above results, the milling process and the 

composition of the nanosuspension can be recommended 

to produce innovative dosage forms (eg, capsule) with fast 

dissolution rate of Mel. During the development of dosage 

form(s), the stabilization of the amorphous Mel particle may 

Table 4 Particle size distribution changes (µm) during the stability 
testing

 Day 0 2 weeks

d(0.1) d(0.5) d(0.9) d(0.1) d(0.5) d(0.9)

Mel PVA 0.25% 0.070 0.150 1.478 0.080 0.152 2.073
Mel PVA 0.50% 0.067 0.136 0.371 0.068 0.140 0.427
Mel PVA 0.75% 1.207 2.232 5.224 0.244 2.611 5.560

Abbreviations: Mel, meloxicam; PVA, poly(vinyl alcohol); d(0.1), d(0.5), d(0.9), 
the maximum particle diameter below which 10%, 50%, and 90% of the sample 
volume exists.

Figure 11 Evaluation of permeability of Mel across Caco-2 epithelial cell layers 
treated with Mel and optimized Mel PVA formulations for 1 h.
Notes: Values are presented as mean±SD, n=4. Statistical analysis: ANOVA followed 
by Bonferroni posttest. Statistically significant differences are: ***p,0.01, compared 
to control group; ###p,0.01 compared to the indicated columns.
Abbreviations: Mel, meloxicam; PVA, poly(vinyl alcohol); Papp, apparent permeability 
coefficients.
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also be an important viewpoint to ensure the dissolution 

profile of the active ingredient.
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Abstract
The aim of this work was to discover the robustness of combined wet milling process to determine the interval of the Mel

(meloxicam) amount and to predict the degree of crystallinity of the milled samples using DSC and XRPD measurements.

The samples had the poly(vinyl alcohol) (PVA) as the stabilizing agent. By increasing the amount of the Mel, its

crystallinity increased and close correlation was found between the degree of crystallinity and the Mel amount. To achieve

the desired particle size range (100–500 nm), the Mel amount should be changed between 10.0 and 17.5% (w/w) and a

PVA concentration should be used between 5.0 and 4.58% (w/w). In this specified range, the degree of crystallinity of Mel

will be changed between 20 and 45%. The crystallinity of Mel investigated by DSC and XRPD did not show any significant

difference at 95% significance level. During the milling process to predict the amorphous content of the active agent, the

DSC method can be suggested for the fast quantification of the degree of crystallinity.

Keywords Crystallinity � Meloxicam � Nanoparticles � Poly(vinyl alcohol) � Wet milling

Introduction

Dry and wet milling technologies as disintegration methods

are conventionally and commonly used in the pharmaceu-

tical industry [1, 2]. Drugs which belong to Class II of BCS

(Biopharmaceutical Classification System) have low water

solubility and high permeability; therefore, their bioavail-

ability can increase with the decrease in particle size to the

nanosize range, resulting in a high specific surface and a

fast dissolution rate. During milling, amorphization of

active agent can occur due to the high energy impact [3, 4].

Amorphization is also a well-known possibility to enhance

the dissolution rate of drugs with low water solubility. Due

to the lack of crystalline structure and the crystal lattice

breaking force, less energy is needed for solubilization.

Nevertheless, additional stabilization is needed for the

preservation of the amorphous form from recrystallization

[5–7].

Our main research topic is the nanonization of different

active agents using a wet milling process, where the

planetary ball mill is combined with pearl milling tech-

nology [8, 9]. In our previous research to reach a

nanoparticle size range (100–500 nm), the process

parameters (milling time, rotation speed, amount of pearl

and the ratio of drug to excipient) were optimized. The

samples were produced with the addition of the aqueous

solution of poly(vinyl alcohol) (PVA) as the stabilizing

agent. The main purpose of this work was to increase the

dissolution rate and extent of poorly water-soluble

meloxicam (Mel) as a nonsteroidal anti-inflammatory drug.

In this system, the Mel amount was 10% (w/w) and 5% (w/

w) of PVA proved to be an optimal quantity to meet the

expected particle size range. During the milling, a high

level of amorphization was detected with DSC and XRPD

examinations [10]. In this milling system, the ratio of the

started pre-suspension and pearls 1:1 (w/w) resulted in

about 200-fold particle size reduction in one step. In con-

nection with this result, questions arose: (1) whether the

amount of the active ingredient has a milling effect and (2)

whether the particle size distribution and the degree of

crystallinity can be designed by varying the amount of the

& Piroska Szabó-Révész
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active ingredient. These questions are important for the

robustness of the process and the extent of scale-up [11].

Based on the above, the aim of the present work was to

discover the robustness of our optimized combined wet

milling process to determine the interval of the Mel amount

which can be successfully nanonized (100–500 nm) and in

this connection to predict the crystallinity degree of the

milled samples using DSC as a fast analyzing method and

to verify it with XRPD measurements.

Experimental

Materials

Meloxicam (raw Mel) was obtained from EGIS Ltd. (Bu-

dapest, Hungary). PVA-Mowiol 4-98 (Mw * 27,000)

(Sigma-Aldrich Co. LLC, St Louis, MO, USA) was used as

a stabilizing agent. Zirconium oxide (ZrO2) beds with a

diameter of 0.3 mm were obtained from Netzsch (Netzsch

GmbH, Selb, Germany). All reagents were purchased from

Sigma-Aldrich Ltd. (Budapest, Hungary).

Design of the sample series

Eight samples were prepared from 2.5 to 20.0% of Mel

with 2.5% increment per sample. As the stabilizing agent,

5.0% of PVA aqueous solution as initial concentration was

added up to 20.0 g to each sample, which was selected on

the basis of our previous experiments [10]. Thus, the PVA

concentration with 0.14% increment per sample was

between 4.44 and 5.42%. The Mel and PVA concentrations

of the samples are shown in Table 1. For the DSC and

XRPD investigations, the samples were desiccated in a

vacuum desiccator at 40 �C to constant mass.

Combined wet media milling

The samples were ball-milled in a 50-mL steel jar (Retsch

PM 100 MA, Retsch GmbH, Haan, Germany) with 0.3-mm

ZrO2 beads as the grinding media. The process parameters

optimized in our pervious work were as follows: 437 rpm,

43 min and 20 g of milling media which was used for

every process (dispersion to grinding media ratio 1:1) [10].

The temperature of the samples, measured immediately

after milling, did not exceed 39 �C.

Particle size measurement

The volume-based particle size distribution was measured by

laser diffraction (Mastersizer S 2000, Malvern Instruments

Ltd., Worcestershire, UK). The refractive index for Mel was

1.596. Water was used as a dispersant with a refractive index

of 1.330. In all cases, the particle size distributions were

characterized by d(0.1), d(0.5) and d(0.9) (where, for

example, d(0.5) is the maximum particle diameter below

which 50% of the sample volume exists). Span values were

calculated according to Eq. 1. A high span value ([1)

denotes a broad particle size distribution [12].

Span ¼ dð0:9Þ � dð0:1Þ
dð0:5Þ : ð1Þ

Differential scanning calorimetry

Differential scanning calorimetry (DSC) was performed

with a Mettler–Toledo DSC 821e (Mettler–Toledo GmbH,

Switzerland) instrument. DSC curves were evaluated with

STARe Software. The starting and final temperatures were

25 �C and 300 �C with 10 �C min-1 heating rate. Argon

atmosphere of 100 mL min-1 was used in all cases as an

inert gas. Eight physical mixtures equal to the treated

samples were examined as a reference scale. The calcula-

tions of Mel crystallinity (Cryst%) were performed using

the total area under the curve (AUC) of the melting

enthalpy of the milled samples (AUCMelM) and the

physical mixtures (AUCMelPM). The values were com-

pared using Eq. 2:

Cryst% ¼ AUCMelM

AUCMelPM
� 100: ð2Þ

Thermogravimetric analysis—water content
determination

To monitor the water content of the sample after desicca-

tion, TG measurements were performed. The water content

determination was conducted based on the mass loss of the

sample during heating in the interval of 25–120 �C.

Table 1 Mel and PVA concentrations in the samples

Sample name Mel%/w/w PVA%/w/w

Mel_0.5 g 2.50 5.42

Mel_1.0 g 5.00 5.28

Mel_1.5 g 7.50 5.14

Mel_2.0ga 10.00 5.00

Mel_2.5 g 12.50 4.86

Mel_3.0 g 15.00 4.72

Mel_3.5 g 17.50 4.58

Mel_4.0 g 20.00 4.44

aOptimized sample
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Thermogravimetric analysis was carried out with a Met-

tler–Toledo TGA/DSC1 (Mettler–Toledo GmbH, Switzer-

land) instrument. Curves were evaluated with STARe

Software. The starting and final temperatures were 25 �C
and 300 �C with 10 �C min-1 heating rate. Sample mass

varied between 10 and 12 mg.

X-ray powder diffractometry (XRPD)

The X-ray powder diffraction patterns (XRPDs) were

obtained with Bruker D8 Advance (Bruker AXS, Germany)

equipped with a Sycos H-Hot (Ansyco GmbH, Karlsruhe,

Germany) programmable plate holder. Results were

detected with a Våntec-1 detector. The patterns were

recorded at a tube voltage of 40 kV and tube current of

40 mA, applying a step size of 0.01 Å 2 h in the angular

range of 3–40 Å 2 h. Eight physical mixtures equal to the

treated samples were examined as a reference scale. The

determination of Mel crystallinity (Cryst%) was also per-

formed using the total area under the curve (AUC) of three

characteristic peaks (13.06�, 14.94� and 18.61� 2H) of the

milled samples and the physical mixtures. The calculation

was the same as in the case of DSC measurements.

Results and discussion

Particle size measurements

Using the optimized process parameters, based on the

change in the amount of Mel, the particle size distribution

is one of the critical parameters. In this respect, the com-

parison is based on the particle size of the optimized

sample ‘‘Mel_2.0 g’’, which had 10% of MEL and 5% of

PVA (Table 2).

After milling, the different Mel amounts containing

nanosuspensions showed same d(0.5) value, which means

that the maximum particle diameter of 50% of the sample

volume is less than 150 nm. By contrast, the d(0.9) values,

in the case of smaller and higher amounts of Mel, were

already outside the upper range of the desired value

(500 nm). It can be assumed that the smaller amount of

Mel (\ 10%) decreased the number of successful collisions

of Mel and the milling media. The larger amount of Mel

([ 17.5%), however, increased the density of the sample

and reduced milling efficiency. Span values, which contain

the d(0.1) values, confirm the suitability of particle size

distribution in the range of 10% (Mel_2.0 g) and 17.5% of

Mel (Mel_3.5 g).

TG measurements

PVA is a hygroscopic agent; therefore, its residual water

content was controlled. This is a semicrystalline polymer

with a well-defined glass transition temperature at

45–50 �C in the case of less than 1.5% water content.

Higher water content of PVA can drastically decrease the

glass transition temperature (up to 20 �C), which can

influence the thermal behavior of PVA-containing com-

positions [13]. Mel has a hydrophobic character; its water

content is less than 0.01%. TG curves between 25 and

160 �C showed fast and then slow mass loss, which is

connected to the PVA amount. The samples with smaller

Mel and higher PVA concentration showed more water

content. It can be stated that the polymer amount has a

significant role in the residual water content of the samples

and, consequently, the glass transition temperature (Fig. 1).

DSC analysis

For the crystallinity characterization of Mel, first raw Mel

and PVA were investigated (Fig. 2). The DSC curve of raw

Mel has a sharp characteristic melting peak at 268.66 �C
(onset 266.83, endset 273.27 �C), and an instantly fol-

lowing exothermic peak can be observed at 279.09 �C.

PVA has two endothermic peaks at 169.51 �C andTable 2 Results of the particle size measurements

Sample name d(0.5)/lm d(0.9)/lm Span

Mel_raw 34.26 ± 4.86 73.59 ± 27.11 1.815

Mel_0.5 g 0.138 ± 0.027 1.273 ± 0.134 8.662

Mel_1.0 g 0.142 ± 0.023 1.949 ± 0.117 10.207

Mel_1.5 g 0.141 ± 0.018 0.87 ± 0.076 5.676

Mel_2.0ga 0.136 ± 0.003 0.371 ± 0.043 2.240

Mel_2.5 g 0.139 ± 0.006 0.413 ± 0.037 2.655

Mel_3.0 g 0.145 ± 0.008 0.436 ± 0.045 2.956

Mel_3.5 g 0.141 ± 0.013 0.448 ± 0.050 2.700

Mel_4.0 g 0.140 ± 0.021 0.974 ± 0.072 6.448

aOptimized sample
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222.74 �C. Since PVA is a mixture of crystalline and

amorphous fractions, it is assumed that the first endothermic

peak shows a structural change in part of the crystalline

fraction and the second one presents the melting point of

PVA. It should be noted that PVA has deacetylation in the

temperature range 160–400 �C and the total degradation

corresponds to the degradation of vinyl acetate and

vinylpyrrolidone at 396 �C and 484 �C, respectively [14].

The DSC curves of the samples exhibit that the increase

in the Mel amount ([10.0%) results in a sharper

endothermic peak, approaching the melting point of raw

Mel. In accordance with this, the signs of PVA are weak-

ened, which can be associated with its reduced amount

(\ 5.0%). By decreasing the Mel amount (\ 10.0%), the

endothermic peaks will be less sharp and the signs of PVA

are strengthened. It is connected to the higher amount of

PVA ([5.0%). The areas of the melting enthalpies already

predict the change in the degree of crystallinity of Mel.

In order to determine the degree of crystallinity of Mel,

taking into account the influence of PVA, the physical

mixtures of the milled samples formed the basis.

Figure 3 presents the degree of crystallinity measured

by DSC as a function of the Mel amount in the sample. By

increasing the Mel amount, the crystallinity of the milled

products was increased. A close correlation (R2 = 0.9587)

was found between crystallinity and the Mel amount. It can

be seen that increasing the amount of Mel ([ 10%) sig-

nificantly increased the degree of crystallinity of the milled

sample (from 21.21 to 48.86%). However, the small

amount of Mel lowered this value (from 21.21 to 10.28).

XRPD measurements

To verify the DSC results, the crystallinity of the physical

mixtures and the milled samples was investigated by XRPD

analysis. Figure 4 presents the fingerprints of raw Mel and

PVA and the milled samples. The characteristic peaks of

Mel are at 2H value: 13.06�, 14.94� and 18.61�, and PVA

has the typical diffraction peak at 2H value: 19.9� [15].
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The intensity of the characteristic peaks shows a change

in the crystallinity of the milled products. The quantitative

analysis of the degree of crystallinity also resulted in a

close correlation (R2 = 0.9763) between the degree of

crystallinity and the Mel amount (Fig. 5).

Conclusions

In this work, the interval of the Mel amount which can be

successfully nanonized (100–500 nm) was determined by

the optimized wet milling process, where the planetary ball

mill was combined with pearl milling technology. To dis-

cover the robustness of the optimized process, the influence

of the amount of Mel was investigated on the particle size

distribution and the degree of crystallinity.

The comparison was based on the 10% of Mel (w/w)

and 5% of PVA (w/w) containing sample (Mel_2.0 g)

milled by using the following process parameters: 1:1 ratio

of pre-suspension and pearls, 437 rpm and 43 min. The

milled sample resulted in the expected particle size range,

and the degree of crystallinity of Mel was decreased to

20%.

Based on our current results, it can be stated that the

increase in the Mel amount ([ 10%) helped milling effi-

ciency without increasing the amount of milling media

(pearls), and the smaller concentration of Mel (\10%) did

not provide the desired particle size distribution. In the first

case, the invested mechanical energy was transferred to

reduce the particle size, while in the second case to break

the crystal structure.

The presence of PVA also affected the degree of particle

size reduction. It was found that the milling effectiveness

of a lower concentration of PVA (\ 5.0%) provided suf-

ficient protective effect against the aggregation of

nanoparticles in the case of samples with 10.0–17.5% of

Mel concentration. This protective effect was not satis-

factory (aggregation was observed) for higher Mel content

(20.0%) and lower PVA concentration (4.44%). A high

concentration of PVA ([5%) also resulted in unsatisfactory

milling effectiveness because a polymer layer was formed

on the surface of the particles, protecting them from

fragmentation.
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The degree of crystallinity was basically influenced by

the Mel amount, but the PVA content also affected it. By

increasing the Mel amount, the crystallinity of the milled

product was increased measured by the DSC and XRPD

techniques and a close correlation was found between

crystallinity and the Mel amount by both of them.

It should be noted that recently the characterization of

the investigated materials (e.g., crystallinity) using DSC as

a semiquantitative conventional method has become com-

mon in scientific research [7–9]. It provides a possibility to

predict the crystallinity of the examined materials, but to

verify the accuracy of thermoanalytical measurements, the

X-ray powder diffraction test is required [10, 11]. In our

work, it was found that the degree of crystallinity of Mel

investigated by DSC and XRPD did not show any signifi-

cant difference at 95% significance level. It can be related

to the low degree of crystallinity (\ 50%). It is known that

the advantage of DSC over X-ray diffraction is that high

amorphous content can be detected [16].

In this system, for the required particle size range, the

Mel amount should be changed between 10.0 and 17.5%

(w/w) and a PVA amount should be used between 5.0 and

4.58% (w/w). For product stability, it is recommended to

keep the PVA amount below 5.0% and at the same time the

critical water content below 1.5%. In this specified range,

the amount of Mel can be changed to design the degree of

crystallinity of Mel between 20 and 45% in the final pro-

duct as well.

To discover the robustness of the milling process, it

should also be considered that the amount of grinding

media can be reduced by increasing the amount of the

active ingredient. It is an important viewpoint because of

the reduction in product loss (removing pearls). The DSC

method can be suggested for the quantification of the

degree of crystallinity because it can be used safely with

high amorphous content.
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Purpose: The aim of this work was to study the influence of solidification of meloxicam (Mel) 2 

containing nanosuspension (nanoMel) on the physical stability and drug bioavailability of the 3 

products. The nanoMel sample had poly(vinyl alcohol) (PVA) as a protective polymer, but no 4 

surfactant as a further stabilizing agent because the final aim was to produce a surfactant-free 5 

solid phase products as well. 6 

Methods: The solidified samples produced by fluidization and lyophilization (fluidMel, lyoMel) 7 

were examined for particle size, crystallinity, and in vitro release of Mel compared to similar 8 

parameters of nanoMel. The products were subjected to an animal experiment using per oral 9 

administration to verify their bioavailability. 10 

Results: Mel containing (1%) nanoMel sample was produced by wet milling process using 11 

optimized amount of PVA (0.5%) which resulted in 130 nm as mean particle size and a significant 12 

reduction in the degree of crystallinity (13.43%) of Mel. The fluidization technique using 13 

microcrystalline cellulose (MCC) as carrier resulted a quick conversion no significant change in 14 

the critical product parameters. Process of lyophilization required a longer operation time, which 15 

resulted in the amorphization of the crystalline carrier (trehalose) and the recrystallization of Mel 16 

increased its particle size and crystallinity. The fluidMel and lyoMel samples had nearly five-fold 17 

higher relative bioavailability than nanoMel application by oral administration. The correlation 18 

between in vitro and in vivo studies showed that the fixed Mel nanoparticles on the surface of 19 

solid carriers (MCC, trehalose) in both the artificial gastric juice and the stomach of the animals 20 

rapidly reached saturation concentration leading to faster dissolution and rapid absorption. 21 

Conclusion: TThe solidification of the nanosuspension not only increased the stability of the Mel 22 

nanoparticles, but also allowed the preparation of surfactant-free compositions with excellent 23 

bioavailability which may be an important consideration for certain groups of patients to achieve 24 

rapid analgesia.  25 

Keywords: solidification, fluidization, lyophilization, surfactant-free product, rapid drug 26 

absorption, IVIV correlation 27 
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Introduction 1 

Nanosuspensions can be defined as colloidal dispersions of nanosized drug particles (< 500 nm) 2 

that are produced by different nanonization processes and stabilized by various excipients.1 3 

Nanonization of drugs with different top-down methods (wet-bead milling, high-pressure 4 

homogenization and microfluidization) is a proven effective strategy to decrease the particle size 5 

by mechanical processes and to enhance the dissolution rate, saturation solubility and 6 

bioavailability of poorly water-soluble active ingredients, such as BCS class II (poorly soluble and 7 

high permeable) and Class IV (poorly soluble and permeable).2,3 Nanosuspensions produced by 8 

milling are generally unstable, therefore stabilizing agents (polymers, surfactants) and its 9 

transformation to the  solid state have an important role in the formulations with long-term 10 

stability.4,5 Water-soluble polymers, such as 2.4 -19.6 % of cellulose ethers,6 30 % of poly(vinyl 11 

pyrrolidone),7,8 and 50 % of poly(vinyl alcohol)9, 10 , are mainly used in wet milling.The most 12 

commonly used surfactants and their amount in relation to the amount of active ingredient are as 13 

follows: CremophorR (100%),11 Poloxamer 188 (60%),12 Poloxamine 908 (20%),13 Tyloxapol (20 14 

%),14 sodium lauryl sulfate (0.15%),15  and Polysorbate 80 (1%).16,17 In the absence of stabilizers, 15 

the high surface energy of nanosized drug particles can induce aggregation/agglomeration in the 16 

system.18 The main functions of a stabilizers in nanosuspensions are to wet drug particles during 17 

the milling process, and to prevent Ostwald’s ripening (crystal growth in colloidal suspensions)19 18 

and agglomeration in order to yield a physically stable formulation by providing steric or ionic 19 

barriers. Different concentrations of stabilizer agents (e.g. polymers) can also influence the 20 

viscosity and the electro-kinetic property of the particles, according to the DLVO theory,20 and 21 

thus the stability of the nanosuspension as well. Surfactants help to wet the particles and thus 22 

reduce their aggregation tendency. In addition to the advantages of surfactants, they have the 23 

biggest disadvantage of increasing the speed/energy of motion of the milling balls during wet 24 

milling, which can lead to the degradation of the active ingredient. When used as an external 25 

surfactant to solidify the nanosuspension, its solubility-enhancing effect may be emphasized, 26 

thereby increasing the degree of crystallinity of active agent in the solid product and reducing its 27 

dissolution rate.21 Conventional formulations contain these excipients in common, but the new 28 
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tendency is to ignore the surfactants and look for other options to stabilize the nanoparticles in 1 

the products and achieve the desired biological effect.22-24 2 

Crystalline state is one of the most important parameters affecting drug stability, 3 

dissolution extent, and efficacy. The high energy wet milling techniques tend to create a partially 4 

amorphous active agent. The high energy amorphous particles are unstable, especially in the 5 

presence of crystalline particles, and inclined to convert to low energy crystalline state over time. 6 

The saturation solubility between amorphous and crystalline nanoparticles is different, therefore 7 

the diffusion process will be similar to Oswald’s ripening, leading to a rapid conversion of 8 

amorphous nanoparticles to crystalline state.25 9 

Of course, the nanosuspensions can be applied as final liquid dosage forms using further 10 

different excipients (viscosity enhancer, flavoring, preservative agents, etc.), however, their 11 

stabilization is a major challenge.26 It is well known that, despite the stabilization, 12 

nanosuspensions have a short expiration time, and there are patients who do not prefer this form 13 

or the presence of a surfactant. One way to overcome the instability and surfactant problem is to 14 

design solid nanosuspension produced by spray drying, spray freeze drying and freeze drying 15 

(lyophilization). It is well known that the dry nanosuspensions can cause difficulty in hydration and 16 

redispersibility24,27.  ,Other processes for transforming a nanosuspension into a solid-state forms 17 

(tablets, capsules) are very different: deposition as coatings, incorporation in granules and pellets  18 

and the 3D printing technologies.28  19 

Spray drying and lyophilization (freeze drying) are the commonly used techniques for the 20 

solidification of nanosuspension because of their easy application and industrial acceptability.29 21 

The powders produced by these processes often suffer from poor flowability and high 22 

hygroscopicity, therefore other technologies are applied to transform nanosuspensions into oral 23 

dosage forms as tablets and capsules.30 24 

Layering of nanosuspension onto the surface of granules, pellets, sugar beads, etc. using 25 

a fluidization technique is used as an alternative method for solidification of nanosuspension.30-32 26 

The advantage of this process that may be used various additives in order to achieve the desired 27 

purpose, e.g. i) different polymers stabilize the nanosuspension, and act as a coating materials 28 

resulted in fast dissolution rate, ii) surfactants prevent the aggregation of nanoparticle and can 29 
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modify the drug release.33  In any case, the fluidization technique also provides an opportunity to 1 

stabilize the broken structure of the ground crystals in the nanosuspension by using crystallization 2 

inhibitors.34 3 

Mel, a member of the oxicam family of NSAIDs (non-steroidal anti-inflammatory drugs), 4 

as a moderately selective cyclooxygenase (COX-2) inhibitor can have a role in acute pain therapy 5 

but a basic requirement is rapid absorption through the gastric mucosa. Mel has a weak acidic 6 

character with pKa of 3.43, therefore its solubility in gastric juice (pH=1.2) is very poor but its 7 

logPapp is 2.43 (pH=2.0), which predestines the fast absorption from the stomach.35-37 Since the 8 

solubility of Mel is very poor in gastric juice, the preparation of a nanosuspension with a fast 9 

dissolution rate may be a solution. 10 

 In our previous work we developed a wet milling procedure for the nanonization of Mel, 11 

which was reported in the DDDT in 2018.10 We optimized the critical process parameters by 12 

factorial design (ratio of predispersion and pearls, milling time and rotation speed of the steel jar) 13 

and investigated the PVA amount on the particle size distribution and crystallinity of the Mel. The 14 

optimized process parameters and PVA amount have allowed the use of no surfactant during 15 

milling to prevent aggregation. We had also the surfactant free nanosuspension as intermediate 16 

product showed a stable system for critical product parameters with 2 weeks of holding time. 17 

 18 

The main purpose of the work was to produce a surfactant-free product by solidifying of 19 

Mel containing nanosuspension. Critical product parameters were considered to be the particle 20 

size distribution of the drug (d(0.9) < 500 nm), stabilization of the degree of crystallinity altered 21 

during milling, and enhancement of the bioavailability of the solid product with fast absorption 22 

from the stomach for rapid analgesia. The transformation of the nanosuspension was done by 23 

fluidization and lyophilization. 24 

 25 

 26 

Materials and Methods  27 

Materials 28 
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Mel (rawMel) was obtained from EGIS Ltd. (Budapest, Hungary). PVA-MowiolR 4-98 (Mw ~ 1 

27,000) (Sigma Aldrich Co. LLC, St. Louis MO, USA) was used as a stabilizing agent. Zirconium 2 

oxide (ZrO2) beds with a diameter of 0.30 mm were obtained from Netsch (Netsch GmbH, Selb, 3 

Germany). Microcrystalline cellulose (MCC) (AvicelR PH 101, FMC Biopolymer, Philadelphia 4 

USA) was used as a carrier material for the fluidized product. D-(+)-trehalose dihydrate as a cake-5 

forming agent was purchased from Karl Roth GmbH + Co. KG. (Karlsruhe, Germany). 6 

 7 

Methods 8 

Preparation of nanosuspension (nanoMel) 9 

For the production of the Mel nanosuspension, a planetary ball mill was combined with pearl 10 

milling technology. PVA was used as a stabilizing additive, 1.0 g of PVA was dissolved in 17.0 g 11 

of distilled water as a dispersant medium, in which 2.0 g of Mel was suspended. The milling was 12 

executed using a Retsch PM 100 planetary ball mill (Retsch GmbH, Haan, Germany) at 437 rpm 13 

rotation speed for 43 min in addition with 20.0 g of 0.3 mm ZrO2 beads as a milling medium. After 14 

the milling process, to eliminate the grinding medium from the sample, a 0.150-mm sieve was 15 

used. The nanosuspension was removed from the beads by cleaning with distilled water, while 16 

the milled sample was ten-fold diluted. The yield of the milling process was 94.93%. The final 17 

concentration of the components can be seen in Table 1. 18 

Table 1 Composition of the investigated samples 19 

Sample Mel 

(%) 

PVA 

(%) 

Water 

(%) 

MCC 

(%) 

Trehalose 

(%) 

nanoMel 1.00 0.50 98.50 - - 

fluidMela 1.94 0.97 - 97.09 - 

lyoMelb 15.38 7.70 - - 76.92 

Notes: a,bbased on dry material 20 

Abbreviations: Mel, meloxicam; PVA, poly(vinyl alcohol); MCC, microcrystalline cellulose  21 
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Transformation of nanosuspension into solid state form 1 

In preformulation study, surfactant-free and external surfactant-containing (Polysorbate 80) 2 

samples were produced by fluidization to study the critical parameters of the products. It was 3 

found that the external surfactant used to solidify the nanosuspension (nanoMel) increased the 4 

degree of crystallinity and decreased the dissolution rate of Mel. This change is related to the 5 

solubility-enhancing effect of the surfactant. It was concluded that, in the absence of surfactant, 6 

the critical product parameters can be fulfilled by optimization of process parameters of fluidization 7 

and lyophilization.  8 

 9 

Fluidization (fluidMel) 10 

MCC as the carrier material was used in a Strea-1 (Niro Aeromatic, Bubendorf, Switzerland) fluid 11 

bed chamber. A batch size of 100.0 g was used. The powder was inserted and fluidized in the 12 

preheated chamber for a period of 10 min and at constant air velocity of 2.5 m/s. NanoMel as 13 

liquid dispersion was transported by a peristaltic pump (Roto Consulta, Ebikon/Luzern, Schweiz), 14 

the applied pump speed was 9 rpm. One batch of 200.0 g of nanoMel dispersion was atomized 15 

onto the surface of the material. The process took 50 minutes, the inlet temperature was 55 °C 16 

and the outlet temperature was 38 °C. The final concentration of the components in percentage 17 

is shown in Table 1. The yield of the process was calculated based on the proportion of the mass 18 

of the components before and after operation. 19 

 20 

Lyophilization (lyoMel) 21 

Freeze-drying was performed in Scanvac CoolSafe 100-9 Pro type equipment (LaboGene ApS, 22 

Lynge, Denmark) equipped with a 3-shelf sample holder unit, recessed into the drying chamber. 23 

In each cuvette 750 mg of diluted milled suspension was filled (7.5 mg Mel content in every 24 

cuvette, the unit dose of Mel). As a cake-forming additive, 37.5mg of (5.0%) trehalose was 25 

dissolved in the nanosuspensions. The components of the final product can be seen in Table 1. 26 

The process was controlled by a computer program (Scanlaf CTS16a02), the temperature and 27 

pressure values were recorded continuously. The whole process took 71 hours and 52 minutes. 28 
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The initial temperature was 25 °C. During the freezing period, after 18 hours and 34 minutes, the 1 

sample temperature was decreased to -40 °C. The subsequent drying process was conducted at 2 

0.013 mbar air pressure for 50 hours and 50 minutes, the temperature increased from -40 °C to -3 

7 °C. Finally, the secondary drying session took 2 hours and 28 minutes. The final temperature 4 

of the dried products was 30 °C. 5 

 6 

Characterization of nanosuspension and the solid state forms 7 

Particle size measurements 8 

The investigations on the particle size of rawMel el and nanoMel via laser diffraction were 9 

executed (Malvern Mastersizer S 2000, Malvern Instruments Ltd, Worcestershire, UK) with the 10 

following parameters: 300RF lens; small volume dispersion unit (1,000 rpm); refractive index for 11 

Mel: 1.596; and refractive index for dispersion medium: 1.330. During the measurements, distilled 12 

water was used as a dispersant, and obscuration was in the range of 11%–16% for all 13 

measurements. In both cases, the particle size distributions were qualified by d(0.1), d(0.5), and 14 

d(0.9) (d(0.5) is the particle diameter below which 50% of the sample volume exists). 15 

In the case of the solid state products (fluidMel and lyoMel), the particle size of Mel was 16 

determined by using Scanning Electron Microscopy (SEM) images (Hitachi S4700, Hitachi 17 

Scientific Ltd., Tokyo, Japan). The size of the particles was calculated by ImageJ software for 18 

Windows (Phase GmbH, Lübeck, Germany).38 By specifying the unit length, which is shown in 19 

each image (depending on the magnification this is a different value), the actual particle size can 20 

easily be determined by drawing the diameter of the captured particles. A diameter of a hundred 21 

captured particles was determined in the case of two solid state samples. 22 

For nanoMel and lyoMel samples, the Z-average particle size and the polydispersity index (PDI) 23 

of Mel were measured using a Malvern Zeta Nano ZS (Malvern Instruments Ltd). In case of the 24 

particle size determination, Malvern DTS 1070 folded capillary cell was used. The samples were 25 

further diluted with water (25-fold) for the measurements. 26 

 27 

Morphology of the samples (SEM) 28 
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For SEM investigations, nanoMel samples was dried in a vacuum dryer (Binder GmbH, Tuttlingen, 1 

Germany) at 40 °C in order to obtain solid products and fluidMel and lyoMel were visualized as 2 

well. The samples were sputter-coated with gold–palladium under an argon atmosphere, using a 3 

gold sputter module in a high-vacuum evaporator, and the samples were examined at 10 kV and 4 

10 mA. The air pressure was 1.3–13 MPa. 5 

 6 

Differential scanning calorimetry (DSC) 7 

To investigate the occurring physico-chemical changes and to predict the crystallinity of the solid 8 

state products, DSC measurements were carried out with a Mettler Toledo DSC 821e thermal 9 

analysis system with the STARe thermal analysis software V9.0 (Mettler Inc. Schwerzenbach, 10 

Switzerland). Approximately 2-5 mg of the physical mixtures (PM) and the product samples were 11 

examined in the temperature range of 25-300 °C. The heating rate was 20 °C/min in the presence 12 

of argon as a carrier gas with a flow rate of 10 L/h. The calculations of Mel crystallinity (Cryst %) 13 

were performed using the area under the curve (AUC) of the melting enthalpy of the products 14 

(AUCMel) and the physical mixtures (AUCMelPM).39 The values were compared using the 15 

following formula: 16 

𝐶𝑟𝑦𝑠𝑡 % =  
𝐴𝑈𝐶𝑀𝑒𝑙

𝐴𝑈𝐶𝑀𝑒𝑙𝑃𝑀
∗ 100 17 

 18 

Stability test 19 

The products (fluidMel and lyoMel) were stored in a well-closed container, at room temperature 20 

(23 ± 2 °C, 45 ± 5% RH) for 6 months. The crystallinity of Mel was investigated compared to 21 

freshly measured products. 22 

 23 

Drug content determination  24 

The Mel content of the samples was controlled in the following way. The unit dose of the products 25 

with 0.75 mg of theoretical Mel was dissolved in 100 mL of phosphate buffer pH 7.4 ± 0.1. The 26 

sample was stirred with a magnetic stirrer at 25 °C for 24 h and then filtered (0.1 μm, FilterBio 27 

PES Syringe Filter) (Labex Ltd., Budapest, Hungary), and the concentration of the dissolved Mel 28 
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was analyzed spectrophotometrically (Unicam UV/VIS) (Thermo Fisher Scientific Inc., Waltham, 1 

MA, USA) at 364 nm wavelength. The investigations were repeated three times. 2 

 3 

Solubility testing of MEL in the samples  4 

The solubility of Mel in the samples (nanoMel, fluidMel and lyoMel) was determined. The 5 

dispersions were stirred with a magnetic stirrer at 25 °C for 24 h and then filtered (0.1 μm, FilterBio 6 

PES Syringe Filter) (Labex Ltd., Budapest, Hungary), and the dissolved drug content was 7 

analyzed spectrophotometrically (Unicam UV/VIS) (Thermo Fisher Scientific Inc., Waltham, MA, 8 

USA) at 364 nm wavelength (n = 3). 9 

 10 

In vitro dissolution test 11 

To determine the dissolution extent of Mel from different products, the paddle method (USP 12 

dissolution apparatus, type II Pharma Test, Heinburg, Germany) was used. The medium was 900 13 

ml of artificial gastric fluid at pH 1.2 ± 0.1. The paddle was rotated at 100 rpm and sampling was 14 

performed up to 120 min. The Mel content of the samples was determined with a 15 

spectrophotometer (ATI-UNICAM UV/VIS Spectrophotometer, Cambridge, UK) at 362 nm. The 16 

number of parallels was three. 17 

 18 

Statistical analyses 19 

Data from the above methods were expressed as means ±SD, and groups were compared by 20 

using Student’s t-test. Differences were considered statistically significant when p<0.05. 21 

 22 

In vivo studies  23 

All experiments involving animal subjects were carried out with the approval of the National 24 

Scientific Ethical Committee on Animal Experimentation (permission number: IV/1247/2017). The 25 

animals were treated in accordance with the European Communities Council Directives 26 

(2010/63/EU) and the Hungarian Act for the Protection of Animals in Research (Article 32 of Act 27 

XXVIII). Each sample contained 60 µg/ml of Mel and 30 µg/ml of PVA in distilled water. For per 28 
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os delivery, the different formulations were individually diluted and were given at a single dose of 1 

300 μg/kg of Mel to male Sprague–Dawley rats (8 weeks old, 240-260 g, n = 6) in a volume of 0.5 2 

ml by gastric gavages. All animals fasted 16 hours before the per os administration of drugs. In 3 

order to facilitate the absorption, the solid-state forms were re-dispersed in water immediately 4 

before administration. In a comparison study for intravenous administration, animals were treated 5 

with a 300 µg/kg bolus of Mel via the tail vein. 6 

Intravenous (IV) injection was prepared by the dilution of passable injection with a concentration 7 

of 15 mg/1.5 mL (Meloxicam-Zentiva, Prague, Czech Republic) to reach the final concentration 8 

(0.15 mg/mL). The ingredients of the injection were meglumine, poloxamer 188, glycine, sodium 9 

hydroxide (for pH adjustment), sodium chloride, glycopherol, and water for injection. Blood 10 

samples were collected from the tail vein before and at 15, 30, 60, 75, 90, 120 and 180 minutes 11 

post-dosing. Plasma samples were collected into EDTA containing polyethylene tubes, 12 

centrifuged at 1,500 g for 10 min at 5 °C. Separated plasma samples were stored at -80 °C until 13 

extraction and analysis. 14 

 15 

Determination of Mel from rat plasma  16 

Preparation of plasma samples, calibration standards and quality control samples  17 

To 90 µL of plasma sample, 10 µL of 0.1 % aqueous formic acid and 300 µL of acetonitrile 18 

containing piroxicam (internal standard at 12.5 ng/mL concentration) were added and the mixture 19 

was vortex-mixed for 60 s. The mixture was allowed to rest for 30 min at -20 °C to support protein 20 

precipitation. Supernatant was obtained by the centrifugation of the mixture for 10 min at 10,000 21 

g at 4 °C and 20 µL was diluted with 380 µL of 0.1 % aqueous formic acid. Finally, 5 µL was 22 

injected into the LC–MS/MS system for analysis. 23 

Rat plasma calibration standards of meloxicam were prepared by spiking the working standard 24 

solutions (1–1000 ng/mL) into a pool of drug-free rat plasma and the procedure described above 25 

was followed. Calibration standards consisted of 90 µL of pooled drug-free plasma, 10 µL of 26 

meloxicam standard solution (in 0.1 % aqueous formic acid) and 300 µL of acetonitrile containing 27 

piroxicam (internal standard at 12.5 ng/mL concentration). Solutions containing 6.25 ng/mL and 28 

25 ng/mL of meloxicam were used as QC samples. 20 µL of supernatant was taken out from both 29 
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of the calibration standards and the QC samples, diluted with 380 µL of 0.1 % aqueous formic 1 

acid, and 5 µL was analyzed by LC–MS/MS. 2 

 3 

LC–MS/MS analysis of meloxicam 4 

The quantitative analysis of meloxicam was performed by mass spectrometry after the 5 

chromatographic separation of analytes. An Agilent Liquid Chromatography System series 1100 6 

(Micro Vacuum Degasser, Capillary Pump, µ-WPS autosampler) (Agilent Technologies, 7 

Waldbronn, Germany) was connected to a Q ExactiveTM Plus Orbitrap mass spectrometer 8 

(Thermo Fisher Scientific, San Jose, US) equipped with a heated ESI ion source. Gradient 9 

chromatographic separation was performed at room temperature on a LunaR 5 µm C8(2) Mercury 10 

column (20 mm x 2.0 mm) protected by a C8 guard column (2x2 mm) (Phenomenex, Torrance, 11 

USA) using ammonium formate (15 mM, pH = 3) as Solvent A and acetonitrile as Solvent B (Table 12 

2). The calibration curve was shown to be linear over the concentration range of 1–1000 ng/mL 13 

Table 2 The gradient elution program applied for analysis 14 

t (min) B (%) Flow rate (µL/min) 

0 40 250 

0.5 40 250 

2 70 250 

2.1 90 600 

2.5 90 600 

2.6 40 600 

4.0 40 600 

4.1 40 250 

4.5 40 250 
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Abbreviation: B, solvent (acetonitrile) 1 

The mass spectrometer was used in positive mode with the following parameters of H-2 

ESI source: ion spray voltage at 3.5 kV, capillary temperature at 253 °C and aux gas heater 3 

temperature at 406 °C, sheath gas flow rate at 46 l/h, aux gas flow rate at 11 l/h, sweep gas flow 4 

rate at 2 l/h and S-lens RF level at 50.0 (source auto-defaults). Multiple-reaction-monitoring 5 

(MRM) mode was used for quantification by monitoring the transitions: m/z 352→115 and 6 

352→141 for meloxicam (collision energy 24V) and m/z 332→95 and 332→121 for piroxicam 7 

(collision energy 29V). A divert valve placed after the analytical column was programmed to switch 8 

flow onto MS only when analytes of interest elute from the column (plasma samples: 0.7-2.0 min) 9 

to prevent the excessive contamination of the ion source and ion optics.  10 

Data acquisition and processing were carried out using Xcalibur and Quan Browser (version 11 

4.0.27.19) software (Thermo Fisher Scientific, San Jose, US).  12 

The area under the curve (AUC) of the time (min)-concentration (ng/ml) curves of each 13 

animal and the statistical analysis were performed with Prism 5.0 software (GraphPad Software 14 

Inc., La Jolla, CA, USA). All data presented are means ± SD. The unpaired t-test was used to 15 

determine statistical significance. Changes were considered statistically significant at p < 0.05. 16 

The ratio of AUC value, after the per oral application of the transformed samples (AUCfluidMel, 17 

AUClyoMel) in comparison with the AUC of the peroral application of nanoMel (AUCnanoMel) as 18 

relative bioavailability (rel.BA) was determined according to the formula below.40 19 

 20 

𝑟𝑒𝑙. 𝐵𝐴 𝑓𝑜𝑟 𝑝𝑙𝑎𝑠𝑚𝑎 (%) =  
𝐴𝑈𝐶𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑈𝐶𝑛𝑎𝑛𝑜𝑀𝑒𝑙
∗ 100 21 

 22 

In vitro-in vivo correlation calculation 23 

In vitro–in vivo correlation (IVIVC) is a biopharmaceutical tool for the investigation of the mutual 24 

relationship of the dissolution characteristics of the in vitro and in vivo absorption studies.41 In 25 

our case, the Pearson’s correlation coefficient of the AUC values of the in vitro and in vivo results 26 

was calculated by Microsoft Excel (Microsoft Corporation, Redmond, Washington, U.S.) and 27 

Statistica for Windows (StatSoft GmbH, Hamburg, Germany). The three prepared samples were 28 
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correlated with each other in groups of in vitro and in vivo. To determine statistical significance, 1 

the unpaired t-test was used. 2 

 3 

Results and discussion 4 

Particle size measurements 5 

Different techniques have been used to determine the particle size of Mel for reasons of accuracy 6 

and comparability. The particle size distribution of the rawMel and nanoMel samples was 7 

investigated via laser diffraction. A combined wet milling process resulted in a 200-fold particle 8 

size reduction in the case of nanoMel (d(0.50), 130±5 nm) compared to the raw drug particle size 9 

(d(0.50), 34.26±4.86 µm). The nanoMel product showed a monodisperse distribution (d(0.10), 10 

67±1nm; d(0.50), 130 ± 5 nm; d(0.90), 371±12 nm).  11 

For fluidMel sample, Mel particles adhered to the carrier surface (MCC) was analyzed by 12 

ImageJ technique and the particle size of Mel in the nanoMel and lyoMel samples was compared 13 

with dynamic light scattering technique (Malvern nanoZS), too. The results demonstrate that the 14 

d(0.50) value of the Mel nanoparticles measured on the surface of solid phase product (fluidMel) 15 

does not show a significant difference regarding the d(0.50) value of the nanoMel (Figure 1a). In 16 

the case of lyoMel, compared to the Z-average of Mel in nanoMel, a significant difference can 17 

already be detected which was caused by the recrystallization of the Mel (Figure 1b). Both 18 

samples have a same polydispersity index (nanoMel: 0.273 and lyoMel: 0.287) which also 19 

confirms the monodispersity of nanoMel and shows the excellent redispersibility of lyoMel. The 20 

6-month storage did not cause any further changes in the mean particle size of the products 21 

(Figure 1a, 1b). 22 
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 1 

(A) 2 

3 
(B) 4 

Figure 1 (from left to the right)  5 

Main particle size of nanoMel (measured by laser diffraction), fluidMel fresh and fluidMel stored (6 6 
months) (measured by SEM images) (A) and Z-average of nanoMel, lyoMel fresh, and lyoMel stored (6 7 
months) measured by Zeta nano ZS) (B) 8 

Abbreviations: Mel, meloxicam; SEM, scanning electron microscopy 9 

 10 
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SEM measurements 1 

Figure 2A and Figure 2B clearly show the particle size difference between the rawMel and 2 

nanoMel and the change in the particle habit. The latter particles have smooth surfaces with 3 

rounded edges and corners. High mechanical impact results in the fracture and abrasion of the 4 

crystals. 5 

 6 

 Figure 2 SEM image of rawMel (A), nanoMel (B), fluidMel (C1 and C2) and lyoMel (D1 and D2) 7 

Abbreviations: Mel, meloxicam; SEM, scanning electron microscopy During the fluidization 8 

process, the nanoparticles are uniformly adhered to the surface of MCC (Figure 2C1). Their habit 9 

is the same as that of the nanoparticles in the nanoMel (Figure 2C2). There is no sign indicating 10 

the aggregation of the nanoparticles on the surface of MCC. The adhesion of the Mel particles to 11 
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the carrier surface is also supported by the effect of the PVA adhesive property and the rapid 1 

evaporation of water. 2 

The SEM image of the lyoMel sample (Figure 2D1) shows large, consistent formulas at 3 

low magnification. The texture at higher magnification contains smaller, larger pores resulting in 4 

a big surface with honeycombed structure, where the surface area is determined by the size of 5 

the ice crystals.42 The SEM picture does not show any trehalose-like crystals in the structure 6 

(Figure 2D2). 7 

 8 

DSC measurements, crystallinity determination 9 

The DSC curves of the components and the products are shown in Figure 3. The rawMel has a 10 

relative high melting point at 268°C, PVA as semi-crystalline material has two endothermic peak 11 

at 169°C and at 222°C. MCC shows any characteristic peak, in contrast the trehalose is a 12 

crystalline material (Figure 3a).  13 

 14 

(A) 15 
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 1 

(B) 2 

Figure 3 DSC curves of rawMel (black), PVA (red), MCC (blue) and trehalose (purple) (A), and nanoMel 3 
(orange) fluidMel (green) and lyoMel (yellow) (B) 4 

Abbreviations: DSC, differencial scanning calorimetry; Mel, meloxicam; PVA, poly(vinyl 5 

alcohol)The thermograms of the products are shown in Figure 3b. It is clear, that the melting point 6 

and the enthalpy of Mel in the case of the nanoMel decreased due to the partial amorphization.  7 

The curve of the fluidMel shows the peak of MCC and the decreased melting point of Mel (Figure 8 

3B). The first obvious and big endothermic peak of the curve appearing from 30 °C to 150 °C is 9 

mainly related to the absorbed moisture evaporation.43 The second endothermic peak is 10 

connected to the melting point of Mel (264 °C) and the enthalpy was decreased due to the large 11 

amount of MCC, which covered the characteristic peak of PVA as well, compared to nanoMel. 12 

The curve of lyoMel represents the peak of PVA (197 °C) and the melting temperature of Mel (251 13 

°C) (Figure 3B). According to the literature44 and our measurements, during the process, the total 14 

amount of trehalose transformed into an amorphous form and the lyophilized trehalose maintains 15 

its amorphous form. The big endothermic peak of the curve appearing from 30 °C to 150 °C is 16 

connected to the absorbed water evaporation as well. 17 

The crystallinity of Mel in nanoMel and the transformed solid-state products was 18 

calculated by the enthalpy changes of the drug occurring during the DSC measurement (Table 19 

3). Each sample was compared to its own physical mixture. According to the crystallinity of the 20 
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nanoMel (13.43%) sample, the crystallinity of the fluidMel sample did not change (12.98 %), for 1 

the lyoMel sample partial recrystallization (40.11%) occurred.  2 

Table 3 Enthalpy and calculated crystallinity values of the characteristic peak of Mel in the samples 3 

Sample Enthalpy 

(J/g) 

Crystallinity of Mel 

(%) 

Crystallinity of Mel 

after 6 months of storage 

(%) 

nanoMel 12.24 13.43 - 

fluidMel 11.83 12.98 13.02 

lyoMel 36.54 40.11 40.16 

Abbreviation: Mel, meloxicam 4 

After 6 months of storage (23 ± 2 °C, 45 ± 5% RH), the degree of crystallinity of solidified 5 

samples (fluidMel and lyoMel) was determined again. The results did not show a significant 6 

change (p>0.05) compared to the non-stored, fresh samples (Table 3). There was no sign for the 7 

recrystallization of trehalose. 8 

 9 

Drug content determination 10 

The theoretical drug content was 7.50 mg as single dose/oral. For the nanoMel sample this 11 

amount was 7.12mg and fluidMel showed 6.83 mg of Mel. The latter can be related to the yield 12 

of the fluidization technique (95.93%). During the lyophilization process the Mel content of the 13 

sample (lyoMel) was 7.12 mg. 14 

 15 

Solubility testing of MEL in the samples  16 

The solubility of nanoMel increased significantly (9.4 ± 0.5 µg/ml) in comparison with the rawMel 17 

(6.5±0.2 µg/ml). The reduced particle size enhanced the wettability of the hydrophobic particle 18 

when using PVA, therefore increased the thermodynamic solubility of Mel. The fluidization 19 
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process did not affect the solubility of Mel (9.6 ± 0.4 µg/ml). In the case of lyoMel, solubility was 1 

increased (11.2 ± 0.5 µg/ml) because of the presence of trehalose.  2 

 3 

In vitro dissolution studies 4 

The in vitro dissolution extent of the samples was investigated in gastric juice (pH=1.2). Mel has 5 

a week acidic character, therefore its solubility in this medium is very poor (1.6 ± 0.2 µg/ml, at 37 6 

°C). Figure 4 clearly demonstrates that the particle size reduction of Mel in the nanosuspension 7 

(nanoMel) influenced the dissolution rate of Mel, but resulted in only 40% of drug release in 5 8 

minutes, and then the curve took a stagnant profile. The initial rapid drug release can be 9 

associated with the nanoscale Mel and its amorphous structure. The 2-hour test did not result in 10 

any more favorable results. Although the distribution of the nanoparticles of Mel in the 11 

nanosuspension is suitable, a large volume of acidic medium (900 ml) may increase the 12 

aggregation of the nanoparticles. In this case, the protective effect of the polymer (PVA) is 13 

unsatisfactory. 14 

 15 

Figure 4 In vitro dissolution of Mel from investigated samples. Medium: artificial gastric juice (pH: 1.2) 16 

Abbreviations: Mel, meloxicam 17 

For fluidMel and lyoMel samples, a rapid initial phase is observed (about 60% of the drug 18 

is dissolved in 15 minutes), followed by a slowing but rising profile. About 75% of Mel was 19 



21 
 

dissolved within 2 hours. In the case of the solid state forms, carriers (MCC and trehalose) help 1 

to uniformly distribute the nanoparticles of Mel, thereby maintaining the uniqueness of the 2 

nanoparticles. 3 

 4 

In vivo studies 5 

The plasma concentration of the samples in rats is shown in Figure 5. The calculated plasma 6 

concentration of Mel at zero min (C0min) was 10,607 nM, and then the plasma concentration 7 

decreased exponentially. A very small amount of Mel was absorbed from nanoMel sample, 8 

regardless of the particle size of the drug. The plasma concentration of Mel was constant in the 9 

investigated time period. The results show that the nanosuspension (nanoMel) has not got 10 

advantageous properties. 11 

 12 

Figure 5 Plasma levels of MEL after the administration of different samples in rats. The preparations 13 
were administered orally (nanoMel, fluidMel and lyoMel) or intravenously (IV) as a single dose of 300 14 
μg/kg 15 

Abbreviations: Mel, meloxicam 16 

The initial blood levels of the fluidMel and lyoMel samples show a big difference. At 15 17 

minutes, the lyoMel sample (5,712.98 nM) shows more than twice the value of fluidMel (Table 4). 18 
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In practice, this value is similar as the maximum plasma level for the lyophilized product (C30min 1 

5,814 nM). The peak blood concentration of fluidMel, is about 6,000.00 nM at 50 minutes that is 2 

comparable with the blood concentration reached by IV injection at 5 min. This result also confirms 3 

that the solid products contained Mel in an adequate amount, and that the total amount thereof 4 

dissolved and absorbed. 5 

 The plasma curves of the different samples containing Mel show a very slow elimination 6 

after the distribution phases. That can be explained by the very high (99%) plasma binding 7 

property of Mel in rat, and this ratio is the same in human.45 It seems that the eliminated portion 8 

of Mel is replenished from the protein bounded fraction for a quite long period of time. Our 9 

measuring time was only 3 hours, longer detection period can provide appropriate information 10 

about the whole elimination process. The peak MEL concentrations of from lyoMel and fluidMel 11 

preparations have reached the similar level that of IV formula (Figure 5). The lyoMel sample 12 

resulted in higher plasma concentrations in 15 minutes as compared with nanoMEL preparation. 13 

The solidified samples had nearly five-fold higher bioavailability than that of nanoMel (Table 4). 14 

 15 

Table 4 Plasma concentrations of Mel in time and its relative bioavailability in rats after IV and per os 16 

administration of Mel samples. Relative bioavailabilities were compared to nanoMel preparation. 17 

Sample C15min 

(nM) 

C120min 

(nM) 

AUCblood 

(min·ng/ml) 

Relative 

bioavailability (%) 

nanoMel 1,090.02±13.11 1,123.31±14.24 190,584.52 100.00 

fluidMel 2,338.44±17.25 5,811.33±18.34 945,834.99 496.28 

lyoMel 5,712.98±28.36 5,219.52±20.86 923,117.95 484.36 

IV injection C5min 

6,059.07±15.76 

2,607.80±19.52 377,528.01 - 

Abbreviations: Mel, meloxicam; C15min, C120min, plasma concentrations of Mel in time; AUCblood, area under 18 

the time-concentration curve AUC interval is t0min-t180 min 19 
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IVIV correlation 1 

Comparative studies according to AUC values have shown that there are significant differences 2 

between the nanosuspension and the samples (fluidMel and lyoMel) within in vitro and in vivo 3 

groups. However, there is no significant difference between two solid samples either in vitro or in 4 

vivo (Figure 6). The basis of the IVIVC calculation was the comparison of the AUC values of the 5 

samples in the in vitro and in vivo groups. By our calculations, the Pearson’s correlation coefficient 6 

value between the two studies is 0.99695. The t value of the independent t-test of the two 7 

dissolution study series was 0.0145, the calculated p value was 0.9889 and the difference is not 8 

significant at a confidence level of 95%. As the zero hypothesis of the independent t-test, the 9 

calculation is not significant if the averages of the two series are equal. It can be concluded that 10 

in this system, in vitro dissolution studies are applicable to predict the dissolution rate-limited 11 

differences in the case of in vivo studies. 12 

 13 

Figure 6 IVIV correlation of Mel containing samples. Notes: Values are presented as mean ± SD. 14 
Statistically significant differences are:  ***p<0.001, compared to nanoMel separately in in vitro and in 15 
vivo groups; # p<0.05 compared to the indicated columns 16 

Abbreviations: Mel, meloxicam; AUC, area under the time-concentration curve; IVIV correlation, in 17 
vitro-in vivo correlation; SD, standard deviation 18 

 19 

Conclusion 20 
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Mel-containing surfactant-free nanosuspension (nanoMel) as intermediate product was produced 1 

by wet milling process (planetary ball mill was combined with pearl milling technology). The 2 

energy invested in the milling decreased the mean particle size of Mel (130 nm) and broke the 3 

crystal structure of the nanoparticles (crystallinity index: 13.43%). This can be considered a labile 4 

system, so stabilizing a suspension as a final dosage form without a surfactant does not work, 5 

therefore the solidification of the nanoMel produced by fluidization and lyophilization was chosen 6 

to ensure the critical product parameters (particle size, degree of crystallinity). We studied also 7 

the influence of solidification of nanoMel on the physical stability and drug bioavailability of the 8 

products. The nanoMel product had an optimized amount of PVA (0.5%) as a protective polymer, 9 

but no surfactant as a further stabilizing agent because the final aim was to produce a surfactant-10 

free solid phase products as well. 11 

The solidification studies showed that the critical product parameters of the intermediate 12 

product (nanoMel) were primarily provided by the fluidization technique which resulted no 13 

significant change in mean particle size and crystallinity degree of Mel compared to the nanoMel. 14 

It is connected to the short operation time (50 min), the large surface area of the MCC which fixed 15 

the nanoparticles with the sticking effect of the PVA and the crystallization inhibitory property of 16 

the fibers.34 The lyophilization required a longer operation time (72 hours), which resulted in the 17 

amorphization of the crystalline carrier (trehalose)46 and the recrystallization of Mel with an 18 

increased particle size and crystallinity degree. Finally it was found that the physical stability of 19 

the solid phase products (fluidMel, lyoMel) was no change in particle size and crystallinity at 6 20 

months of storage at room temperature (23 ± 2 ° C, 45 ± 5% RH) compared to freshly measured 21 

products. 22 

In our pervious work (DDDT, 2018)10, there was performed a human Caco-2 intestinal 23 

epithel cell line viability assay. Impedance measurement did not show significant cell damage 24 

after treatments with Mel, PVA-Mel formulations, as reflected by unchanged cell index values. 25 

The epithelial electrical resistance studies predicted the rapid penetration of nanonized Mel. In 26 

vivo studies justified the predicted data. The nanonized Mel in solidified products (fluidMel, lyoMel) 27 

resulted in rapid absorption through the gastric membrane by passive transcellular transport. It 28 

was found that the solid products contained Mel in an adequate amount, and that the total amount 29 
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thereof dissolved and absorbed. It has to be noted that the Mel shows a very slow elimination 1 

because of very high plasma binding (99%) in rat, and its replenishing time is quite long period. 2 

MEL blood concentrations of lyoMel and fluidMel were similar as level of IV form. 3 

The solidified samples had nearly five-fold higher relative bioavailability than nanoMel 4 

application by oral administration and IVIV correlation was found between the in vitro and in vivo 5 

studies. The correlation between in vitro and in vivo studies showed that Mel nanoparticles fixed 6 

on solid carrier (MCC, trehalose) in both the artificial gastric juice and the stomach of the animals 7 

rapidly reach saturation concentration leading to rapid absorption. These products show about 5 8 

times greater bioavailability than the nanosuspension, in which the Mel nanoparticles can be 9 

aggregated in the stomach.  10 

It can be stated that in the present study the solidification of the nanosuspension 11 

(nanoMel) not only increased the stability of the nanoparticles, but also allowed the preparation 12 

of surfactant-free solid compositions (powder, tablet, capsule), which may be an important 13 

consideration for certain groups of patients to achieve rapid analgesia. Further experiments are 14 

necessary to prove the therapeutic relevance of these innovative formulations.  15 
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