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Abstract

This study aimed to investigate the health benefits related to chemical com-
pounds found in buckwheat cultivars. Factors influencing the presence of
bioactive compounds with assumed health effects were examined. Two spe-
cies of buckwheat, Fagopyrum esculentum (common buckwheat) and Fag-
opyrum Tartaricum (tartary buckwheat) were evaluated. The selection of
species was based on the comprehensive documented effects of these as
well as their long-raging use as therapeutics in traditional medicine. Buck-
wheat can be considered an optimal cultivar in sustainable food farming
since it has a strong adaptability to harsh environment, making it a versatile

crop which can be cultivated worldwide without using pesticides.

Both buckwheat species have in previous studies been shown to contain
high amounts of carbohydrates and proteins, rich in vitamins and minerals.
Besides, they contain high quantities of phenolic compounds and phytoster-
ols with pharmacological properties and potential to prevent the develop-
ment of some chronic diseases. Additionally, buckwheat has a unique, bal-
anced macro and micro nutritional composition and is free of gluten and re-
lated prolamins, making it prospective as a functional food, suitable for peo-
ple with coeliac disease. Crude protein has all essential amino acids and are
observed to reduce serum cholesterol and cell proliferation. Extracted pro-
tein could be used to develop plant-based protein products with low envi-

ronmental impact.

Phenols, compounds with high antioxidant activity, have been found ubiqui-
tous in buckwheat and were suggested to be responsible for various health

modulating effects. Hence, the emphasis in this study was to determine the



plant material that contained the highest amount of phenols and other com-

pounds with biological activity.

The result demonstrated that the highest total phenolic content was found in
F. Tartaricum (tartary buckwheat). The content was particularly high in the
bran followed by the hull and the flour (9.49, 7.71, 3.06, 1.26 GA/g-1 DW,
respectively). In F. esculentum the total phenolic content ranged from 0,05
(*‘Novosadska’) to 0.3 g (Bosha 1 and 2) GA/g-1 DW. The concentrations
obtained varied significantly in the same species depending on location and
environment of cultivation. Tartary buckwheat also had a significantly higher
content of free phenols compared to common buckwheat, with a co-herently
higher antioxidant activity. P-hydroxybenzoic, ferulic and proto-catechuic
acids were the dominant phenolic acids in tartary buckwheat, and accounted
for 83-88% of the total phenolic acid content while ferulic, vanil-lic, p-
coumaric and syringic acids were estimated as the major individual phenolic

acids in common buckwheat.

Among the flavonoids, the most abundant compounds were catechin
(monomeric flavan-3-ols), rutin, orientin, vitexin and quercetin. Rutin was
the major phenol in common buckwheat seeds (90,5 % of the total phenolic

content).

Processing of raw buckwheat somewhat altered the profile of bioactive
compounds compared to the raw material. Soaking activates enzymes such
as rutin 3-glucosidase which hydrolyses the glycoside rutin to quercetin.
Heat treatment increases the fraction of free phenolic compounds but de-
creases the ester, glycoside, and ester-bound fractions. This may enhance the

antioxidant activity.

Regarding absorption and bioavailability, phenols are absorbed differently

depending on the chemical composition. Phenolic glycosides, polymers and



esters needs to be hydrolyzed by intestinal enzyme or degraded by microbes
in the colon before absorption. Quercetin glycosides, including rutin, can be
transported by SGLT1. This proposes guerecetin glycosides as inhibitors of
glucose uptake. Many flavonoids are however rapidly metabolized in the liver

into methoxy derivatives or conjugated derivatives before excretion.

To conclude, buckwheat has a great potential both as a functional food and
as a carrier of pharmacological compounds. It can prevent and treat diseases
with high mortality rate in both first, second and third world countries. It can
also be an option for drugs that is more economically, environmentally and

socially sustainable.

Keywords: Buckwheat, Fagopyrum esculentum, Fagopyrum tartari-
cum, rutin, quercetin, total phenolic content, gluten-free, functional

foods, antioxidants
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1 Introduction

1.1 Background

The Fagopyrum genus belongs to the Polygonaceae family and are composed of
15 species, of which Fagopyrum esculentum Moench (common buckwheat) and
Fagopyrum tataricum Gaertn.(tartary buckwheat) are the most important and
abundantly studied species. Due to a long tradition of use as food and in Chinese
and Korean medicine, a considerable amount of research has been conducted to in-

vestigate health effects of these species.

Traditionally, both seeds and roots have been used to treat chronic diseases such as
rheumatic disorders, as well as cancers, hypoglycemia, hyperlipidemia and diabe-
tes. The pharmaceutical and nutraceutical application of both species are currently

widely investigated, showing a great potential (Zhang et al., 2018).

F. esculentum and F. tataricum are both cultivated worldwide and are resilient
crops with a low presence of pests and require no or minimal use of plant protec-
tion. The need for pollination additionally contributes to recognition of buckwheat
as a suitable crop to enhance biodiversity in the agricultural landscape and makes
it an optimal constituent in ecological and sustainable food farming (Wieslander et
al., 2011).



Buckwheat is a pseudocereal which does not contain gluten. This makes it applica-

ble as dietary component for coeliacs.

For patients with Coeliac disease, a lifelong elimination of gluten-containing
grains (including wheat, rye, barley) is currently the only effective treatment. In-
gestion of gluten or related prolamins results in mucosal damage causing malab-
sorption, malnutrition and maldigestion. Consequently, it contributes to gastroin-
testinal symptoms and symptoms related to nutrient deficiency, such as anemia

and osteoporosis (Alvarez-Jubete et al., 2009).

Nevertheless, symptomatic and histological recovery are both generally observed
in patients with pathological abnormalities when put on a gluten-free diet, indicat-

ing the importance of gluten-free products on the market.

Nevertheless, nutrient deficiencies in both coeliacs and non-diseased following a
gluten-free diet have been demonstrated in several studies, indicating an insuffi-

cient nutrient supply in gluten-free products (Krupa-Kozak and Drabinska, 2016).

A dietary survey done in the United states which assessed the nutrient intake on a
gluten-free diet, reported a lower nutrient quality in gluten-free products and inad-
equate intake of iron, calcium and fiber in the studied participants (Krupa-Kozak
and Drabinska, 2016). In cohesion, a review by Vici et al (2016) assessed a gluten
free diet as particularly low in zinc, magnesium, iron, vitamins B and D, calcium,

folate and dietary fibers.

The unique chemical composition of buckwheat argues for further development of
new buckwheat-based food products. Various products (such as teas, pasta, cook-
ies, breads etc.) are widely consumed in Asian countries, Italy, Slovenia and north-
ern Europe where buckwheat is used in many traditional dishes. Buckwheat is also
used as an ingredient in functional foods with therapeutic potential for coeliacs as

wells as people with metabolic diseases.



1.2 Nutritional Composition

1.2.1 Starch and dietary fibre

Chemical analysis reported starch to be the major component (>50 % of dry mat-
ter, DM), with a high percentage of that being dietary fiber (insoluble and soluble),
for example resistant starch (RS). Dietary fiber, including RS, have been associ-
ated with positive health effects including a decreased risk of developing diabetes
mellitus type 2 and cardiovascular diseases by improving tissue insulin sensitivity,
hepatic insulin clearance and fatty acid metabolism (Robertson et al., 2003).

Starch also improves postprandial plasma glucose and insulin.

1.2.2 D-chiro inositol

D-chiro inositol (DCI), an inositol phosphoglycan (IPG) is also present in both
buckwheat species. It is regarded as an insulin sensitizer since IPG mediators im-
proves glucose metabolism through several cellular mechanisms. DCI deficiency
have been demonstrated to cause insulin resistance (IR), partly because of DCI’s
role as second messenger in the phosphorylation signaling pathways activated by
insulin and resulting in the activation of protein phosphatases in the insulin signal-
ing pathway. It was also shown that DCI had a regulatory effect on cytochrome
P450 (CYP); specifically on the steroidogenic enzyme genes CYP19A1.The mod-
ulation was observed to be beneficial in treating conditions related to IR, for ex-

ample polycystic ovary syndrome (PCOS) (Sacchi et al., 2016).

1.2.3 Protein

A compliance of published data has demonstrated a high protein content in buck-
wheat (10.6 and 10.3 g/100 g of DW in common and tartary buckwheat, respec-

tively) with high biological value and a balanced amino acid profile. Buckwheat is



particularly rich in leucine and lysine (6.92, 5.84, and 7.11, 6.18g/100g protein in
common and tartary buckwheat). Buckwheat is considered as a complete protein
source and contain more arginine, aspartic acid and tryptophan than cereal pro-
teins. However, it has relatively low true digestibility (values between 79.9% and
78.8% have been obtained in previous studies) compared to cereal grains, mainly
due to crude fiber (e.g. reduced susceptibility for the proteolytic enzymes to the

protein fractions) and high tannin content.

Additionally, buckwheat protein products (BWP) have also been associated with
preventative nutrition. A prepared buckwheat protein product was in a study able
to reduce serum cholesterol levels and the lithogenic index in rats. Both reductions
were associated with enhanced excretion of fecal neutral sterols and fecal bile

acid, respectively (Tomotake et al., 2007).

BWP significantly reduced cell proliferation in colonic epithelial cells in rats by
suppressing induced colon carcinogenesis. Rats fed with BWP showed a 47% re-
duction in colon adenocarcinoma occurrence compared to those fed with casein
(Liu et al., 2001). The effects observed from experimental studies, including anti-
obesity, hypocholesterolemic, anti-carcinogenic effects of BWP are estimated to
be due to its low digestibility, thus being similar in physiological effect as dietary
fiber (Liu et al., 2001).

1.2.4 Micronutrients

Buckwheat possesses a higher level of minerals and trace elements compared to
cereals. The levels of Mg, P and K are especially high whereas Zn, Cu and Mn are
the most abundant trace elements. The levels of Mg in 100 g of buckwheat (267

mg) are comparable with an RDI for women (280 mg).

However, Mg, Zn, K, P and Co are bound to phytic acid and hydrolysis is required

prior absorption so that minerals can pass intestinal walls. Vitamin B3 (niacin), B5



(pantothenic acid), C (ascorbic acid) and E5 (tocopherols) are also present in con-
siderable amounts. Both ascorbic acid and a-tocopherol are potent antioxidants.
Germination has been reported to increase the vitamin B1 (thiamin), vitamin B6

(pyridoxine) and ascorbic acid content.

1.2.5 Phenolic compounds

The comprehensive array of health benefits related to buckwheat consumption has
specifically been connected to its extensive phenolic profile, specifically flavo-
noids. Tartary buckwheat has been of special interest since it has previously been
shown to contain the highest amount of phenols and possess the highest antioxi-

dant activity when compared to common cereals (Kalinova et al., 2019).

The phenolic profile of buckwheat is complex due to phenolic compounds being

ubiquitous in plants.

Dominant phenols in buckwheat are quercetin and its glycosides rutin, isoquer-
citrin, quercitrin and hyperoside. Other abundant compounds with health effects
are chlorogenic acid (administration of 40 mg/kg of CGA decreased the histologi-
cal severity of pancreatitis (Ohkawara et al., 2017)), catechin, epicatechin, epicate-
chin gallate (the supplementation of EG reduced the oxidative stress and apoptosis
in the brain of flies (Siddique et al., 2014)), orientin, isoorientin, isovitexin, vi-

texin, procyanidin B2 and procatechuinic acid.

Degradation and modification of these compounds are common during food pro-
cessing and later at the level of absorption. This makes it difficult to predict bioa-
vailability and bioactivity of the compounds in humans. Nevertheless, rutin has in
multiple studies been demonstrated as the most potent antioxidant in buckwheat

due to its exceptionally high concentration.

A significant amount of in vitro and animal studies has observed protective and in-

hibitory effects on multiple cellular functions by phenolic compounds related to
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their antioxidant activity. Antioxidants prevent reactions induced by oxidative
stress. Oxidative stress, e. g an excessive production of free radicals and reactive
oxygen or nitrogen species (ROS, NOS) from oxidases (for example NADPH,
lipoxygenases, cytochrome p450, uncoupling of mitochondrial respiratory chain
and endothelial nitric oxide synthase), is the result of toxicity, stress or disruption
of homeostasis by either xenobiotics, inflammation or radiation. Reactive radicals
readily attack critical biological molecules (lipids, DNA and essential cellular pro-
teins) which alters the “normal” cell and tissue physiology and activates or accel-
erates pathologies. As quenchers of radicals and radicals chain reactions, phenols
can protect cells and tissues from oxidative stress. Among others, a study on proto-
catechuic (one of the main polyphenol metabolites) by Guan et al (2011) observed
it highly potent on reducing oxidative stress-induced neurotoxicity (by for exam-
ple inhibiting oxygen radical induced caspases) in PC12 cells. The result proposes
protocatechuic as a possible drug to promote brain recovery in neurodegenerative
diseases (Guan et al., 2011). Flavonoids, the main source of phenols in buckwheat,
have been suggested to have therapeutic potential against diabetes, metabolic syn-

drome and cancer.

There are limited number of epidemiology studies, as well as randomized control
trials and cohort studies which makes it uncertain if the observed in vitro effects

can be translated into in vivo situation.

A double blinded randomized crossover trial was done by Wieslander et.al (2011)
in Uppsala, Sweden, which assessed the effect of rutin on serum cholesterol and
lung capacity. A reduced total serum cholesterol, HDL-cholesterol and improved
lung-capacity were observed in 62 healthy female day-care Centre staffs after con-
sumption of 4 buckwheat cookies a day for 4 weeks (Wieslander et al., 2011). The
subjects were divided (randomized) into two groups, one group ate cookies con-
taining Tartary buckwheat (360 mg rutin equivalents/day) whilst the other ate
cookies containing common buckwheat (17 mg rutin equivalents/day. After two
weeks, the two groups switched their type of cookie. The study was done to inves-
tigate the hypothesis of rutin having a positive impact on selected biomarkers re-
lated to cardiovascular disease (CVD), lower airway inflammation, lung function
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and dyspnea. Selected biomarkers for CVD were levels of total cholesterol, HDL
cholesterol and secretory phospholipase A2 (SPLA2 group I1A), high sensitivity C
reactive protein (HSCRP), eosinophilic cationic protein, myeloperoxidase (MPO),
nitric oxide (NO) in exhaled breath for lower airway inflammation. Biomarkers for
lung function and dyspnea were FVC (forced vital capacity), FEV1 (forced expira-
tory volume in 1 second), FEV, % (FEV1/FVC), PEF (peak expiratory flow). FVC

increased with 109 %, demonstrating a significant improvement in lung function.

Rutin is a secretory phospholipase A2 (sSPLA2) inhibitor and the suppression of
(sPLAZ2 ) is seen to attenuate endotoxin induced airway contraction. SPLA?2 is in-
volved in the rate-limiting step in eicosanoid biosynthesis by releasing arachio-
donic acid from the sn-2 position (the middle position) of membrane phospholip-
ids. AA can generate a wide variety of eicosanoids, including leukotrienes and
prostaglandins which play important, complex roles in airway pathogenesis. Leu-
kotrienes generally promotes asthma development. Cysteinyl-leukotrienes for ex-
ample are broncho constrictors. While no reductions in sSPLA, were obtained in
this study, previous studies have assessed both quercetin and rutin as SPLA2 inhib-
itors(Lindahl and Tagesson, 1997).

Rutin significantly decreased the subjects MPO levels. MPO is released from neu-
trophil granulocytes as one of the first inflammation responses. Rutin can inhibit
LDL-oxidation caused by increased MPO levels and may due to this have an anti-
inflammatory effect (Wieslander et al., 2011).

Total serum cholesterol and HDL-cholesterol were significantly reduced but not
correlated to type of cookie consumed and thus not related to rutin intake. The
cholesterol lowering effect can reduce the risk for cardiovascular disease. The
mechanism responsible for this reduction needs more investigation as well as the

possible effect on LDL-cholesterol and serum triglycerides.
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SGLT1, a sodium coupled co-transporter of glucose, is located in the apical mem-
brane in the proximal part of the small intestine (duodenum and proximal jeju-
num). Binding of glucose moieties at the c-terminus enables it to transport phe-
nolic glucosides into the epithelial cells. The high affinity characteristic of SGLT1
makes phenolic glucosides potential inhibitors of the glucose transport. Blocking
the transport of glucose by SGLT1 can be beneficial in patients with postprandial
hypertension caused by DMT2 and IR. The degree of inhibition by phenols varies
since the binding affinity is strongly related to the degree and position of the hy-
droxyl, hydrogen and glyosidic groups (Manach et al., 2004).

More experimental human studies are needed to evaluate the effect buckwheat and
its phenolic compounds have on human health. The mechanisms responsible for
the observed effects and the pharmacokinetics and bioavailability of phenolic

compounds present in buckwheat also needs to be further investigated.

1.3 Objectives

1.3.1 Aim

This study was conducted to further investigate the potential of Fagopyrum escu-
lentum moench and Fagopyrum esculentum tartar as therapeutic agents and their
effect on human health. The emphasis was put on suitability of buckwheat and its
components as dietary ingredient for persons diagnosed with coeliac disease, and
the nutraceutical and pharmacological properties (i.e. compounds with biological
activity and therapeutic potential to treat diabetes, metabolic syndrome and related
pathologies). The effect of processing on the bioactive compounds as well as on

bioavailability and absorption rate were also investigated.

13



1.3.2 Research questions

Questions aimed to be answered were:

What is the phenolic profile of Buckwheat? Which compounds have been proven

to be beneficial to human health?

How does processing affect the chemical composition of common buckwheat and

tartary buckwheat?

What is the therapeutic potential of common buckwheat and tartary buckwheat?

14



2 Methods

Relevant data and information was obtained using databases, primarily PubMed,
Sciencedirect, Springerlink and AGRIS. Peer reviewed studies were carefully
studied and evaluated. Year of publication and other relevant aspects were consid-

ered.

2.1 Phenolic profile

For the phenolic profile the studies with a similar analytical technique, including
extraction, isolation and quantification of the used plant material were selected. .
This was done since the result can vary depending on analytical assay, chromato-
graphic technique and the selected plant material. For instance, a qualitative ex-
traction is crucial to assure that the bioactive components are not lost or degraded
during the process. By careful drying, freeze-drying and grinding for a homoge-
nous sample, the kinetics as well as the solvent system-sample surface are intrinsi-
cally improved. Solvent system depends on the chemical structure of the extracted
compounds. The phenolic compounds were in all chosen studies extracted with

methanol, acetone or ethyl acetate.
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Terpinc et al., (2016) investigated the phenolic content in malted and raw Darja’
and ‘Pyra’ cultivars of common buckwheat (F. esculentum) supplied from Slove-
nia. Soaking and germination increased the phenolic content. Kilning slightly de-

creased the phenols in both cultivars which indicate that they are sensitive to heat.

Guo et al. (2012) compared the phenolic content in the hull, bran and flour of Tar-
tary buckwheat, provided by Xichang HangFei Bitter Buckwheat Exploitation
Center in China. They identified and quantified the free and bound phenolic com-
pounds in hulls, brans and flours of ten buckwheat cultivars (three varieties com-
mon buckwheat and seven varieties tartary buckwheat,). Tartary buckwheat had
the highest content of both total and free phenols. The content was highest in the

bran followed by the hull and flour.

Kiprovski et al., (2015) analyzed the phenolic profile in seeds of different F.escu-
lentum cultivars from Serbia (‘Novosadska’), Slovenia (‘Darja’, ‘Prekmurska’ and
‘Cebelica’), Bosnia and Herzegovina (‘Bosna 1’ and ‘Bosna 2’), Montenegro
(*Godijevo’ and ‘Lokve’), Austria (‘Bamby’), Czech Republic (‘Ceska’), France
(‘La Harpe”), Slovakia (‘Spacinska 1’). There was a significant difference in the
TPC in the cultivars. Bosna 1 and 2 obtained the highest TPC but it was still sig-

nificantly lower than the TPC in tartary buckwheat.

Guo et al. (2011) analyzed two F.tartaricum samples (Xingku No.2 and Diging)
grown at three locations for free, bound and total phenolic content as well as anti-
oxidant properties. They obtained a noticeable difference in the TPC depending on
the location of growth.

The total phenolic content (TPC) in all studies was determined by the Folin-Cio-
calteau colourimetric method (expressed as gallic acid equivalents (GAE)) and the
antioxidant activity were measured using the same DPPH free radical scavenging
assay. Quantification and determination of the individual phenolic compounds

were done using a HPLC-MS system with a coupled UV detector.

16



3 Literature review

3.1 Phenolic profile

3.1.1 Determination of total content of phenolic compounds

As demonstrated in Table. 1, the total phenolic content (TPC) was the highest in
the bran and the hulls compared to the flour (FB, fine bran>CB, coarse
bran>hull>LF, light flour) in both F. tartaricum and F. esculentum (Guo et al.,
2012).

Tartary buckwheat coarse bran (7.71 g gallic acid eq./100 g DW) and fine bran
(9.49 g gallic acid eq./100 g DW) had a higher TPC than other studied cereals,
pseudo cereals and fruits, including rice (0.25-0.27 g gallic acid eq./100 g DW),
wheat (0.48-0.53 g gallic acid eq./100 g DW) and oat (0.05 g gal-

lic acid eq./100 g DW) (Guo et al., 2011).

Total flavonoid content in fine bran (14.07 g rutin eq./100 g DW), coarse bran
(9.65 g rutin eq./100 g DW) and hull (4.22 g rutin eq./100 g DW) were also 6-, 4-
and 1-fold higher than those of light flour (1.91 g rutin eq./100 g DW), respec-
tively. This is consistent with results from previous studies where the outer layers
of Tartary buckwheat have had a higher TPC levels and higher flavonoid lev-

elsthan inner layers.
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Terpinc et al. (2016) found that the TPC in F.esculentum seeds ranged from 0,05
(*“Novosadska’) to 0.3 g (Bosna 1 and 2) GA/g-1 DW when comparing different
varieties (Table.1). ‘“Novosadska’ were significantly richer in phenolic acids, pro-
anthocyanidins, flavonols and some of the flavones. In contrast, Bosna 1 and 2 had
the highest total flavonoid contents (0.37 and 0.38 m GA/g-1 DW) as well as the

highest rutin contents.

In agreement with these studies, Guo et al. (2012) found a higher average TPC in
tartary buckwheat hulls (2.38 g GA/g-1 DW) compared to common buckwheat
hulls (1.8 g GA/g-1 DW). This was also the case in common and tartary buck-
wheat bran and flour (Table. 1)

Interestingly, Guo et al. (2011) which studied two Tartary buckwheat cultivars at
three locations, observed that Xingku No.2 from Sichuan had the highest phenolic
content, followed by Diging from Gansu. The phenolic content of the Qiging vari-
ety from Gansu was almost two times higher than that of the Xingku No.2 variety
from Gansu. As previous studies have indicated, these results may be due to an in-
teraction between the cultivar and the environmental conditions. Phenols also pos-
sesses anti-microbial properties and as secondary metabolites they protect plants
from pathogens. Vegetables produced by organic or sustainable agriculture have
generally a much higher phenolic content since they have been subjected to more
stress. (Manach et al., 2004)

Additionally, Terpinc et al (2016) which examined the TPC in two common buck-
wheat varieties (Pyra’ and ‘Darja’) at different stages in the malting process,
demonstrated an 122% and 106% increase in TPC, respectively, after a 64 h ger-
mination (Terpinc et al., 2016). This increase was explained by a de novo synthe-
sis of phenolic compounds to promote structural growth and for environmental
protection. Since other studies have reported different results, the attitude of in-
crease was suggested to be both specie specific and related to the applied soaking,

germination and extraction method.
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Table 1. Total phenolic content (TPC) and flavonoids obtained from three different studies

Reference TPC (g of gallic acid eq./100 Flavonoid content (g of rutin Plant material
g DW) €q./100 g DW)
Guo et al., 2012 9.49 14.07 Tartary buckwheat, fine bran
Guo et al., 2012 7.71 9.65 Tartary buckwheat, coarse
bran
Guo et al., 2012 3.06 4.22 Tartary buckwheat, hull
Guo et al., 2012 1.02 1.91 Tartary buckwheat, light flour
Guo et al., 2011 1.80 NA Common buckwheat, hull
Guo et al., 2011 2.38 NA Tartary buckwheat, hull
Guo et al., 2011 1.26 NA Common buckwheat bran
Guo et al., 2011 2.49 NA Tartary buckwheat, bran
Guo et al., 2011 0.97 NA Common buckwheat, flour
Guo et al., 2011 1.38 NA Tartary buckwheat, flour
Kiprovski et al., 2015 0,05 0.05 Common buckwheat ‘Novo-
Kiprovski et al., 2015 0.3 0.38 sadska’

Common buckwheat Bosna 2

3.1.2 Free and bound phenolic compounds

Phenolic compounds in plants are present in both free and bound form. As bound
they are either esterified or etherified and form cross-bridges with carbohydrates
or proteins of the cell wall. Phenols and particularly flavonoids often occur as gly-
cosides in plants. The sugar moiety increases the polarity and enables the phenols
to be stored in the vacuole. Flavonoids are often in B-glycosylated form, either as
O- or C-glycosides, with predominantly glucose or rhamnose as main sugars, but
galactose, arabinose, xylose and glucuronic are also common (Martin, 2009). Posi-

tion of the glyosidic linkage can affect the absorption since it makes flavonoids

19



less lipophilic and decreases the ability for them to passively diffuse across the ep-
ithelial membrane (Manach et al., 2004). Free phenols have highest antioxidant
and radical scavenging activity (more in section 3.1.4). The antioxidant activity is
partly related to the stability of the fenoxyradical and is affected by number and
position of the hydroxyl groups on the aromatic ring (the ArOH group).

Tartary buckwheat had a significantly higher content of free phenols compared to
common buckwheat; however, the exact content varied widely between species
due to effects of environment and location factors. Hence, Guo et al. (2011)
demonstrated that free phenolic content ranged from 76% (Diging variety from Si-

chuan and Ningxia) to 95% (Xingku No.2 from Ningxia) of the total content.

Moreover, it was suggested that 79.7, 92.9, 94.1%, of the phenolic compounds in
the hull, bran and flour respectively were in free form (Guo et al., 2012, 2011).
Guo et al (2011) also concluded that the free part accounted for 94% to 99% of the
occurring phenols in Tartary buckwheat. The phenolic acid and flavonoid concen-
trations were also significantly higher in the free phenolic extracts than in the
bound, indicating that more bioactive compounds were obtained in the free “frac-
tion”. Interestingly, flavonoids in wheat, rice, corn and oat have been shown to be
majorly in bound form (Guo et al. 2011). The free phenolic content of Tartary
buckwheat was 23-45, 25-50, 2-13, and 3-6-fold higher than that of corn, wheat,

cranberry and apple, respectively.

Comparing different milling parts of common buckwheat and tartary buckwheat,
tartary had a higher content of free phenols in all parts except the hulls (Table. 2).
Free phenols were absolute highest in buckwheat brans (about 92.89%) and flours
(about 94.07%). This suggests that the free phenols are predominantly located in
the outer layer of the buckwheat seed but can be enhanced by milling and further

refinement.
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Table 2. Free and bound phenolic content obtained from two different studies

Reference

Free phenolic content (g of
gallic acid eq./100 g DW)

Bound phenolic content (g of
gallic acid eq./100 g DW)

Plant material

Guo et al., 2012
Guo et al., 2012

Guo et al., 2012
Guo et al., 2012
Guo et al., 2011
Guo et al., 2011
Guo et al., 2011
Guo et al., 2011
Guo et al., 2011
Guo et al., 2011

9.31
7.49

2.57
0.98
2.02
1.38
1.16
231
0.90
1.30

0.18
0.23

0.49
0.04
0.32
0.39
0.10
0.17
0.06
0.07

Tartary buckwheat, fine bran

Tartary buckwheat, coarse
bran

Tartary buckwheat, hull
Tartary buckwheat, light flour
Common buckwheat, hull
Tartary buckwheat, hull
Common buckwheat bran
Tartary buckwheat, bran
Common buckwheat, flour
Tartary buckwheat, flour

3.1.3 Quantification of major phenols

The two main classes of phenols in buckwheat are flavonoids and phenolic acids.

Common buckwheat is also rich in tannins, especially condensed tannins (proan-

thocyanidins, e.g procyanidin B2). Phenolic acids can be divided into groups of

hydroxybenzoic acid derivatives and hydroxycinnamic acid derivatives. Flavo-

noids are the most important group of phenols and include a variety of different

classes of compounds- flavonols, flavonoids and flavones. Rutin, isoquercitrin,

quercitrin, hyperoside. catechin, epicatechin, epicatechin gallate, orientin,

isoorientin, isovitexin, vitexin have been quantified in both common and tartary

buckwheat in relevant concentrations in multiple studies.

Guo et al. (2011) demonstrated that p-hydroxybenzoic, ferulic and protocatechuic

acids were the prominent phenolic acids in tartary buckwheat, and accounted for

83-88% of the total phenolic acid content. Another abundant phenolic acids were

gallic, vannilic and syringic acids, p-coumaric, caffeic, chlorogenic and ferulic ac-
ids (Guo et al., 2011).
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P-hydroxybenzoic acid was the most abundant phenolic acid in the fine bran
(360.24 £ 9.58 mg/100 g DW), coarse bran (306.93 + 3.81 mg/100 g DW) and
light flour (38.75 + mg/100 g DW) in tartary buckwheat.

In contrast, ferulic, vanillic, p-coumaric and syringic acids were estimated as the

main individual phenolic acids in common buckwheat (Kiprovski et al., 2015)

Among the flavonoids, the most abundant compounds were catechin (monomeric
flavan-3-ols), rutin, orientin, vitexin and quercetin. Kiprovski et al (2015) found
that rutin was the major phenol in F.esculentum seeds (90.5 % of the total content)

with the highest antioxidant activity due to its high concentration.

However, rutin content in buckwheat varieties may range majorly in seeds depend-
ing on the location and growing season. Two varieties of common buckwheat,
Bosna 1 and 2, which had the greatest quercetin-3-rutinoside ie. rutin, content had
114.6 and 151.4 mg 100 g ! DW, respectively (Kiprovski et al., 2015)

In comparison, the rutin content in Tartary buckwheat seeds was estimated to
range between 1447.87 and 518.54 mg 100 g ' DW. Rutin has been quantified in
both the inner and outer layer of buckwheat. The highest rutin levels were found in
fine bran (7431.40 £ 2.14 mg/100 g DW) and the lowest in the light flour

(287.86 £ 8.16 mg/100 g DW),. 74-99% of rutin also existed in the free form. Ru-
tin is rapidly metabolized into quercetin in contact with hydrolyzing enzymes.
Quercetin also forms other glucosides, which makes it difficult to measure its con-
centration accurately. Guo et al. (2011) found a variation in quercetin from 425.65
to 857.62 mg 100 g~! DW in tartary buckwheat.

3.1.4 Antioxidant activity

In addition to having a significantly higher phenolic content than oats or barley,
buckwheat has phenols with a 2-7 higher antioxidant activity in the hulls and bran.
Antioxidant activity can be defined as 1Cso (ng/mL) which is the concentration

needed for lowering the DPPH free radical concentration by 50%. Hence, a lower
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ICso corresponds to a higher antioxidant activity (less concentration to obtain re-
duction). The antioxidant activity is often used as a qualitative indicator of the ef-
fect and modification of phenols when comparing raw and processed material.
Guo et al. (2011) considered free phenols as the major contributors of the total rad-
ical scavenging capacity since the levels of free phenols were strongly related to
the antioxidant activity. The data in that study demonstrated that the antioxidant
activity of free phenols in tartary buckwheat was comparable to, or even higher
than certain fruits and grains, including oats, corn, barley, apples and blueberries.
Interestingly, the concentration of free phenols in the study was lower than that of
fruits and grains (Guo et al., 2011). Phenols in buckwheat probably have a favora-

ble chemical structure that makes them more potent antioxidants.

3.2 Processing

3.3.1 TPC and individual phenols

Costantini et al (2014) performed a study on quantification and comparison of the
TPC and flavonoid content in tartary and common buckwheat flour and bread.
Tartary and common buckwheat flour had a TPC and flavonoid content of 2.93
and 7.28 g of gallic acid equivalent (GAE)/100 g DW as well as 0.1 and 2.2 g of
rutin eq./100 g DW, respectively. This was in agreement with the values in Ta-
ble.1. Interestingly, the bread samples in the same study only demonstrated a slight
decrease in both TPC and flavonoid content, and the final concentrations were still
relatively high. Tartary buckwheat bread had a TPC of 5.3 g of GAE100 g DW
and a flavonoid content of 1.68 g of rutin eq/100 g DW whereas common buck-
wheat had 1.65 g of gallic acid eq/100 g DW and 0.06 g of rutin eq/100 g DW
(Costantini et al., 2014).

Wieslander et al. (2011) measured the concentrations of rutin and quercetin in
cookies made of tartary and common buckwheat flour. Tartary buckwheat cookies

had a rutin and quercetin content of 2,530 and 1,620 mg/kg DW, respectively
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compared to the common buckwheat cookies that had 270 mg/kg DW and 0 (be-

low the limit of quantification), respectively (Wieslander et al., 2011).

The result was supported by Terpinc et al., (2016). In that study, the authors
investigated the effect of malting (soaking, germination and kilning) on the TPC
and individual phenols in Tartary buckwheat (Terpinc et al., 2016). The rutin lev-
els were observed to be relatively constant throughout the whole malting process
(it did however show a 4-fold increase for the ‘Pyra’ variety and a 3-fold increase
for “‘Darja’), while for the orientin, vitexin, and isovitexin contents, much greater
increases were observed. Soaking (8h at 20 degrees) of the buckwheat had no sta-
tistically significant effect on the TPC. Previous studies have reported a negative
impact with significant reductions possibly related to leakage into the soaking wa-
ter or chemical modifications such as formation of insoluble complexes with pro-
teins or polymerization with other LMW phenolic compounds. A similar study (Li
et al., 2013) which examined changes in phenols during tea preparation proce-
dures, observed a 50 % decrease in rutin content after soaking for 12-14 at 40 de-
grees. It is likely that rutin was hydrolyzed to quercetin during processing; querce-
tin concentrations increased from 0.53 to 15.16 mg/g DW. Hydrolysis of rutin is
mediated by the enzyme rutin 3-glucosidase, a flavonol 3-glucosidase which cata-
lyzes the hydrolysis of the 3-glucoside of flavonols such as rutin or isoquercitrin.
The concentrations of these compounds were consequently affected by the activity
of this enzyme and its location in the seed. Soaking at a higher temperature acti-
vates the enzyme in rutin-rich compartments of the grain, resulting in a decrease in

rutin and an increase in quercetin (Li et al., 2013).

In the same study, steaming increased the rutin to its initial concentrations, as well
as reduced the quercetin and isoguercitin. It was hypothesized to be due to the acti-
vation of enzymes converting quercetin and isoquercitin into rutin by 3-glycosyla-
tion and rhamnosylation. Roasting (120-150 °C) only slightly decreased the rutin,
isoquercitin and quercetin content, indicating that these compounds are relatively
heat sensitive (Qin et al., 2013).
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Kilning at 80 °C resulted in a lower TPC content compared to heat treatment at

60 °C (Terpinc et al., 2016). Vitexin, and isovitexin slightly decreased during the
Kilning process, indicating higher heat resistant of these compounds. Rutin de-
creased significantly during Kilning at both 60 degrees and 80 degrees compared to
after 88 h germination. However, the total concentration was still higher than in
the raw seed. This result is not in agreement with a report that rutin in buckwheat
groats is more stable to heat than vitexin, isovitexin, and orientin during roasting at
160 °C for 30 min (Terpinc et al., 2016).

Aglycones are however known to be highly resistant to heat and differences in the
obtained results may be due to other factors. The sum of the losses is correlated to
the effect the processing method has on vacuoles and apoplasts, i.e. the cellular
structures where the phenols are stored. Steaming and frying create less losses than
boiling. Boiling may cause leaching of polyphenols from destruction of the cellu-
lar matrix (Martin, 2009).

Furthermore, the TPC and the antioxidant activity was the highest in soaked buck-
wheat seeds. Steaming, drying, roasting and de-hulling (may for example cause

oxidative browning) decreased the TPC and antioxidant activity.

3.2.2 Other phytochemicals and nutrients

The chemical composition differs in different parts of the buckwheat kernel. The
seed consist of a hull (pericarp), bran (auerlone layer, inner and outer pericarp,

testa and hyaline layer), endosperm and germ (including embryo).

The dehulled achene (dried fruit) is called groats. Hulls are high in fiber but are
otherwise poor in nutrients. Accordingly, dehulled buckwheat is lower in fiber
compared to hulled. Phenolic compounds are mostly present in the bran (i.e the al-
euronic and embryonic tissues) which is also richest in macronutrients and dietary
fiber.
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Bonafaccia et al. (2003) examined the nutritional content in different buckwheat
flours and found that the protein content was above 21%, and lipid content approx-
imately 7% in the bran of common buckwheat (Bonafaccia et al., 2003). For tar-
tary buckwheat the protein content of the bran was approximately 25%. In the
flour, the values were 10% for protein and 2% for the lipid content. In the same
study the samples contained high levels of vitamins B1, B2 and B6. Thiamin (vita-
min B1) in tartary buckwheat flour (200 g) satisfy the daily requirement for a diet
of 2000 kcal. The highest vitamin content was observed in the tartary buckwheat
bran. Dietary analysis also showed excellent content of dietary fiber in both com-
mon and tartary flour with most of that being insoluble. This suggests that (espe-
cially) the tartary buckwheat bran has a great potential to be used as an ingredient

when developing new functional food products.

Bread enriched with husked common buckwheat flour had twice as high protein
content compared to regular wheat bread (Lin et al., 2009). Vojtiskova et al.
(2014) also noticed that all amino acids could still be quantified in processed buck-
wheat pasta, therefore making it a complete protein source and a qualitative substi-
tute for wheat, rice or corn pasta (VojtiSkova et al., 2014). An additional study in-
dicated that steaming decreased the protein and crude fat in buckwheat while an-
other saw that cooking increased the protein content in buckwheat-enriched spa-
ghetti as well as increased its bioavailability and digestibility (Nosworthy et al.,
2017). The exact effect of processing on the protein content still needs to be evalu-
ated.

Regarding mineral composition, buckwheat was shown to be relatively stable in
content during both boiling and steaming. 87% of zinc, 98% of calcium and 100%
of iron was retained in steamed buckwheat. All minerals investigated decreased in
concentrations by 3 -13% in the boiled samples. The reductions were probably due
to minerals leaching to the water during the boiling process. The mineral content
increased with longer duration of parboiling. Parboiled buckwheat can thus be rec-

ommended to increase mineral content in buckwheat. Both common and tartary
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buckwheat were similar in mineral content which makes them a good source of

iron, zinc, potassium, magnesium, phosphorus, calcium, copper and manganese.

Despite some processing losses, the nutritional properties of buckwheat have still
been observed to be superior to wheat and other cereals in processed food products
such as bread, pasta, cookies etc. Stoki¢ et al. (2015) reported higher content of di-
etary fiber and flavonoids in buckwheat-enriched bread which was suggested to
decrease the total cholesterol and LDL-cholesterol in the studied participants. Ad-
ditionally, bread made with 15 % husked buckwheat contained higher amounts of
insoluble b-glucan (compared to wheat and unhusked bread) which has an im-

munostimulating effect (Stoki¢ et al., 2015)

Previous research suggested that high a-glucosidase (a carbohydrate digestive en-
zyme) and a-amylase inhibitory activity still is obtained after heat treatment (Su-
Que et al., 2013). Inhibition of these enzymes was shown to delay carbohydrate di-
gestion and glucose absorption, and consequently, could reduce the risk of devel-
oping type Il diabetes. Enzyme activity was inhibited by phenols; hence, a high
phenolic content increases the anti-diabetic effect of buckwheat. Particularly pro-
anthocyanidins were shown to be responsible of the inhibitory effects. A lowering
of the glycemic and insulin indexes was also noted as effect of buckwheat-en-
riched bread consumption, possibly caused by the formation of indigestible starch
after heating the buckwheat flour and by the amelioration of insulin resistance
through D-chiro-inositol (Su-Que et al., 2013).

3.3 Bioavailability, absorption and bioactivity

As discussed in the section 3.2, buckwheat has both unique nutritional composi-
tion in terms of micro and macronutrients as well as is abundant in phytochemicals
with health effects.
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Its high fibre content, optimal amino acid composition and mineral and vitamin
content makes it applicable as potentially beneficial dietary components to prevent

malnutrition, obesity, diabetes, hyperlipidaemia and hypertension.

Minor phytochemicals in buckwheat, particularly phenolic compounds have been
demonstrated to both have a quenching effect on oxidative stress as well as spe-
cific interactions with cellular components which makes them applicable as poten-

tial therapeutics.

Multiple in vivo studies have confirmed the effects of these compounds but the po-
tential is however related to their bioavailability and pharmacokinetics which de-
termines the level of absorption and hence, the concentration and activity in blood

plasma and tissues.

3.3.1 Bioavailability of phenolic compounds

Despite the acknowledged health effects, flavonoids are known to have low bioa-
vailability because of chemical instability in the gastrointestinal tract, poor absorp-
tion in the intestine and degradation by endogenous enzymes. Furthermore, flavo-
noids are fermented into various metabolites in the large intestine by the gut mi-
crobiota (Rocchetti et al., 2018). Free phenolic compounds are probably mainly
absorbed in the upper gastrointestinal tract whereas bound fraction needs to be fur-
ther metabolized in the colon where it forms phenolic acids such as hydroxyben-
zoic and hydroxycinnamic acids (Qin et al., 2017). The polarity and the high mo-
lecular weight of the bound compounds inhibit their absorption. Aglycones and
phenolic acids are smaller and more lipophilic which enables them to diffuse pas-
sively through the epithelial membrane. However, phenols are generally present as
glycosides or esters and needs glycosidases or esterases to carry out the hydrolysis.
Some intestinal enzymes have been suggested to preform phenol deglycosylation

but the main degradation is carried out by colonic microbes(Martin, 2009).
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Microbes preform diverse deglycosylation reactions which releases aglycons that
are degraded into simpler phenolic acids. Rutin and quercetin are often metabo-
lized into 3,4-dihydroxyphenylacetic acid (3,4- DHPAA), 3-hydroxyphenylacetic
acid (3-HPAA), and 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid,
HVA). Quercetin is known to have the highest reducing and antioxidant activity,
followed by rutin. 3,4- DHPAA has an equal activity as rutin while -HPAA and
HVA had a significantly lower activity. Evidence show that the antioxidant prop-
erties of these compounds are closely related to the free hydroxyl group in the car-

bon ring (Giménez-Bastida et al., 2017).

Similarly, the bioactivity is also determined by the affinity to serum albumin in
plasma, which differs between flavonoids and is related to position and degree of
hydroxylation, glycosylation and methoxylation. A higher affinity decreases the
flavonoid distribution to the cells. Hence, the structure-affinity relationship greatly

affects the cellular response to dietary flavonoids (Pal and Saha, 2014)

Since studies have demonstrated a noteworthy difference in rate of absorption and
distribution of quercetin in blood plasma when provided as dietary rutin or querce-
tin, it was suggested that the absorption of quercetin in humans primarily depends

on the sugar moiety.

Quercetin can be absorbed both in the small and large intestine but as glycoside it

must be de-glycosylated to be absorbed (Manach et al., 1997).

It’s not yet completely understood how quercetin glycosides are transported
through the small intestinal mucosa, but several carrier mediated processes have
been proposed. The site of absorption seems to be different for different quercetin-
glucosides (differences have been demonstrated between quercetin-4'-O-glucoside
and rutin (quercetin-3-O-rutinoside). An involvement of the glucose carrier

SGLT1 in the transportation of quercetin glucosides have been suggested. After
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transportation, the glycosides are possibly hydrolyzed inside the cells by a cyto-
solic B-glucosidase. The involvement of the lactase phloridzine hydrolase (LPH), a
glucosidase at the border of the apical membrane of the small intestine, is another
suggested pathway for absorption. LPH catalyzes extracellular hydrolysis of some
glucosides, which allows the diffusion of the aglycone across the membrane (Ma-
nach et al., 2004).

In the case of buckwheat tea compared with the isolated compound (quercetin), the
plant matrix did neither effect the rate or extent of absorption in a major extent
(Qin et al., 2013).

During absorption, phenols are conjugated in both the small intestine and in the

liver by CYP450 enzymes. This is phase | in the metabolic detoxification process.

Most of the absorbed phenols are then further processed to conjugated derivatives
by methylation, sulfation, and glucuronidation during Phase 1l metabolism. They

are then biliary or urinary eliminated.

It is necessary to take into consideration both phenolic acids arising from micro-
bial breakdown as well as conjugated metabolites formed in the liver, and not only
consider free quercetin form, when investigating the biological effect and activity

of polyphenolic compounds.

Even though free quercetin is one of the most potent antioxidants it is probably
present in minor concentrations, mainly due to conjugation and interaction with

plasma proteins (Manach et al., 1997).
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4  Discussion

Comparison of several varieties of Fagopyrum esculentum Moench (common
buckwheat) and Fagopyrum tataricum (tartary buckwheat) demonstrated that the
chemical composition of buckwheat is highly dependent on specie, variety (i.e
genotype) as well as location and environment parameters (phenotype). Tartary
buckwheat is the specie with the most documented health benefits, mostly due to
its high content of phenolic compounds. The adaption to harsh environmental con-
ditions (since traditionally being cultivated in extreme climates) has facilitated the
development of protection mechanisms, including production of secondary metab-
olites for protection against ultraviolet radiation, pathogens, and herbivores. Low
temperature can increase the production of phenolic compounds by enhancing syn-
thesis of phenylalanine ammonia lyase (PAL) in plants. Moreover, high altitude
and long sunlight hours with higher UV radiation can positively affect the activity
of phenolics synthase. This knowledge can be used to increase the levels of phe-
nolic compounds in buckwheat cultivars. The results from this study indicated that
antioxidants including flavonoids and phenolic acids are concentrated in the bran
of common and tartary buckwheat. Phenols are absolute highest in tartary brans.
The bran had the greatest antioxidant properties, total phenolic and flavonoid con-
tents and phenolic acid concentration followed by the hull and flour. Most nutri-
tional and functional components are concentrated in the embryo and aleurone of

grain, making the bran richest in all nutrients.

31



Buckwheat flour is the most common fraction of buckwheat and consists mainly
of the starchy endosperm. The hull, which acts as the seed’s first-line defense sys-

tem, contain higher phenolic concentrations.

The result in this study promotes the use of particularly milled Tartary buckwheat
bran as a dietary ingredient to develop functional foods rich in antioxidants (Guo
et. al 2011). It has been reported that buckwheat-enhanced wheat bread has higher
antioxidant properties than wheat bread. This study also suggests that hulled buck-
wheat flour could be used to further increase the dietary fibre in buckwheat prod-
ucts. Both buckwheat bran and flour can be used to enrich food products with vita-
mins and minerals, especially gluten-free products which usually are low in micro-
nutrients. Soaking and germinating the buckwheat may also increase the amounts
of minerals and vitamins present. Germination has also been observed to increase
the level of phenolic compounds in buckwheat. Since buckwheat have high levels
of phytase, cooking or quickly soaking it may be enough to degrade the phytic

acid.

Buckwheat flour is reported especially valuable for diabetics and the obese due to
its high protein and insoluble fibre contents. Hence, the use of buckwheat flour in
bread may contribute to the lowering of the glycaemic and insulin indexes as well
as the dietary fibre content and the protein (with an equal physiological effect)
may increase post-meal satiety, decreasing proceeding hunger and ameliorate con-

stipation.

Processing does not tremendously affect the chemical composition of buckwheat
but the exact impact of different processing methods and techniques needs to be
further investigated. Methods used to increase the solubility of phenolic com-
pounds may increase the absorption of these and possibly increase the effect they
have on pathological abnormalities.

32



Research suggests that phenolic compounds in their free form may be absorbed in
the upper gastrointestinal tract, while compounds in bound form are fermented in
the colon. Thus, phenols in buckwheat are probably mainly absorbed in the small
intestine tract compared to wheat, corn, rice and oat, and are easier available for
organisms. This may exert a more preventative effect in the upper Gl tract com-
pared to the other grains (Qin et al., 2017).

Putative targets of buckwheat are remarkably abundant. Orona-Tamayo et al used
a network analysis approach to investigate the relationship between the gene and
protein targets of tartary buckwheat and its pathways. The analysis suggested 20
compounds and 28 key-targets with effects against Diabetes mellitus type 2, hy-
pertension, hyperlipoidemia (Manach et al., 1997). Further research in this area

can discover the molecular targets of rutin based drugs.

Flavonoids are important regulators of certain nuclear receptors related to the pro-
gression of metabolic disorder (Avior et al., 2013). These nuclear receptors in-
clude peroxisome proliferator-activated receptor (PPAR), which are involved in
lipid metabolism; estrogen receptor (ER), which regulate estrogenic activity; far-
nesoid X receptor (FXR), which is important in cholesterol metabolism; and preg-
nant X receptor (PXR), which is involved in steroid and xenobiotic metabolism. If
dietary flavonoids can selectively affect these receptors, they can possibly be used
as pharmaceutical compounds. However, more knowledge is needed on the mech-
anism of interactions between flavonoids and nuclear receptors before flavonoids

can be applied in pharmaceutical industry.

Rutin can attenuate pro-inflammatory gene expression by supressing the mRNA
levels of IL-1p, IL-6, IL-10, IL-13 and TNF-a(Nosratabadi et al., 2009). The sup-
pression of cytokine patterns by rutin can for instance suppress colitis and colorec-
tal carcinogenesis. This, in addition to the suppression of MPO and secretory
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phospholipase A2, shows rutins potential in the prevention and treatment of many
inflammatory diseases. Developing pharmaceuticals with rutin should be looked
more into, it may enhance the absorption and the therapeutic effect. Since flavo-
noids have not demonstrated any toxicity when administrated in large quantity,

they can be used without concern of major side-effects.

I would advise to look further into the interaction between rutin and other querce-
tin-glycosides and the SGLT1 transporter. It may provide more knowledge about

the absorption of quercetin glycosides as well as elucidate the possibility of using
them to inhibit SGLT1. Inhibition of SGLT1 has been promoted as a target for re-
ducing postprandial hyperglycemia.
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5. Conclusion

Buckwheat as dietary component is ideal due to it being a sustainable, environ-
mental friendly source of both macro and micronutrients. As a resilient crop, it can
be cultivated worldwide and be used to combat malnutrition in low-income coun-
tries. As a dietary source of bioactive compounds with therapeutic effect, it can be
used to prevent or treat conditions in people with a low socioeconomic status. It is
for example a great option for treating hypercholesterolemia in patients which can-
not use statins. Flavonoids as pharmaceuticals should be designed to target recep-
tors such as PPAR, SGLT1 or proteins involved in the inflammatory response, for
example phospholipase A. With a suitable method for drug delivery (for example a
liposome or a biological nanoparticle layer) they can be very useful in clinical

medicine.

Tartary buckwheat bran and flour should be used together with other pseudo cere-

als to increase the nutritional quality in gluten-free products.

Buckwheat is recommended to be included in diets of both healthy and unhealthy
individuals. As part of a plant-based diet it provides a good amount of natural phe-
nols and antioxidants that may reduce the risk for developing CVD, DMT2, cancer
and increase longevity. The role of nutrition and lifestyle in disease occurrence is
still a rather unsolved mystery. Difficulties includes conducting and designing sci-
entific studies which are ethical, inexpensive and have well-designed research
methologies. With more interdisciplinary human observational and experimental
research on nutrition in disease aetiology, we can come closer to knowing how nu-

trition can be used as and during treatment and for prognosis.
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