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ABSTRACT

Cyclolinopeptides (CLPs), a group of naturally occurring, hydrophobic, cyclic
peptides in flax, have attracted a great deal of attention due to their immunosuppressive
activity. The purpose of this project was to increase our understanding of the occurrence
of CLPs in flaxseed, flaxseed tissues and flaxseed products.

In the first study, systematic methods for CLP extraction, isolation, detection and
quantification were developed. The solubility of CLPs in acetone led to its use as a
preferred solvent for extraction of CLPs and other hydrophobic compounds from whole
flaxseed. Solid phase extraction with a silica gel column followed by selective elution
with organic solvents of increasing polarity enabled the isolation of a crude peptide-rich
fraction. Reverse phase HPLC chromatography of peptide-rich fractions provided a
method for separation and quantification of CLPs.

In the second study, the levels of CLPs in cultivars of flaxseed were studied to
determine if there was any impact of flax genotype or environment on peptide levels.
The concentration of total CLPs varied from 189 pg/g (Flanders) to 303 ug/g (Somme)
in the cultivars tested. Environment, cultivar and their interaction affected the observed
concentration of CLPs.

In the third study, the concentrations of CLPs in fractions produced from
flaxseed were measured by HPLC in seed coat, cotyledon and oil bodies. The
concentration of CLPs was higher in the cotyledon than in the seed coat. The highest
CLP concentrations were found in the oil bodies.

In the fourth study, CLP levels in flaxseed oil were measured during and after oil
extraction and refining. The concentration of CLPs was higher in expeller-extracted
crude oil and solid foots and lower in flaxseed meal. A comparison of CLP levels in
flaxseed oil extracted with a small expeller and in commercially-produced flaxseed oil
was performed. Crude flaxseed oil produced with a small expeller had higher levels of
peptides than were observed in commercial flaxseed oil available at a local retail health
food store. The effect of oil refining processes, including acid degumming and alkali
refining on CLP stability, was studied. Acid degumming using 1% H3;PO, effectively
removed all CLPs. Alkali refining was also demonstrated as being effective at

decreasing levels of CLPs, although it failed to remove all peptides.
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1 INTRODUCTION

Flax (Linum usitatissimum L.), one of the oldest cultivated crops, has been and is
widely grown for oil, fibre and, more recently, food (Oomah, 2001). The average
worldwide flaxseed production between 1999 and 2008 was 2,220,000 tonnes (FAO,
2010). Significantly, Canada accounted for 35% of this production. Flaxseed oil can be
used in paints, varnishes and inks due to its fast-drying property. Flax stems have a high
fibre content, which makes them a good source of fibre for linen and paper production.
With increasing demand for edible oil sources of omega-3 fatty acids, oleaginous
flaxseed, the oil of which can have greater than 50% alpha-linolenic acid (ALA), is
widely marketed as a functional food. Flaxseed is also added to animal feed to improve
animal performance and health.

Flaxseed is widely accepted as a healthy food and numerous beneficial effects
have been associated with flaxseed consumption in controlled experimental diets
(Cunnane et al, 1993; Jenkins et al., 1999; Clark et al., 1995). For instance,
consumption of flaxseed flour reduces epithelial cell proliferation and nuclear
aberrations in female rat mammary glands. This finding indicates that dietary flaxseed
may reduce the growth rate of mammary cancer (Serraino and Thompson, 1991). It has
been found that flaxseed lignan and oil components reduce mammary tumour growth in
the later stages of carcinogenesis (Thompson et al., 1996). Supplements of 14% flaxseed
oil and 20% flaxseed meal reduce the incidence of azoxymethane-induced aberrant crypt
foci formation in Fisher 344 male rats (Williams et al., 2007a, 2007b). Similarly it has
been shown that the substitution of corn meal with flaxseed meal (15%) or corn oil
with flaxseed oil (15%) in a basal diet significantly decreased tumour multiplicity and
size in the small intestine and colon in Fisher male rats. They concluded that flaxseed
meal and oil may be considered as an effective chemo-preventive agents (Bommareddy
et al., 2009). Inclusion of 20% flaxseed in rat diets decreased plasma total cholesterol

(TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) by 21%, 33.7%
1



and 23%, respectively; supplementation with 30% flaxseed had a more significant effect,
reducing the same factors by 33%, 67% and 23% (Ratnayake, 1992). In human studies,
15 g/d of flaxseed administered for three months was associated with reduction in serum
TG and LDL-C without any alteration of high-density lipoprotein cholesterol (HDL-C)
(Bierenhaum, 1993). It was also reported that consumption of 50 g flaxseed per day for
four weeks lowered the plasma LDL-C by 8% in young healthy adults (Cunnane, 1995).
These results support the hypothesis that flaxseed consumption has a positive effect on
suppressing the development of atherosclerosis. However, it is not possible to attribute
the health benefits of flaxseed consumption to a sole component present in flaxseed.
Polyunsaturated fatty acids, lignan complex and CLPs are three major functional classes
of compounds that might induce some or all of the observed experimental results.

The knowledge of the biological roles of flaxseed polyunsaturated fatty acids
and lignan is substantial and the research about their existence, biosynthesis and
metabolism in flaxseed is mature compared to that of cyclolinopeptides (CLPs). The
study of CLPs has been undergoing for more than half a century and the major research
has been done on the identification and conformation of CLPs, as well as their
biological activities. CLPs, the main focus of this thesis, are a group of cyclic,
hydrophobic peptides containing eight or nine amino acid residues with molecular
masses of approximately one thousand Da. CLP-A was the first CLP identified after it
was isolated from the sediments deposited from crude flaxseed oil (Kaufmann and
Tobschirbel, 1959). In 1968, Weygand discovered a similar cyclic nonapeptide, CLP-B.
Between 1997 and 2001, nine additional CLPs (C, D, E, F, G, H, I, J and K) were
identified from the seed and root of flax (Morita et al., 1997a; Morita et al., 1999;
Matsumoto et al., 2001a). In addition, a cyclic peptide, CLP-X, containing the non-
protein amino acid N-methyl-4-aminoproline, was isolated and characterized (Picur et
al., 1998). CLPs occur in flaxseed, but the role of these compounds is largely unknown.
In vitro studies of CLP biological activity have been described in numerous publications
(Kessler et al., 1986a, 1986b; Wieczorek et al., 1991; Gorski et al., 2001; Gaymes et al.,
1997; Siemion, 1999). For instance, CLP-A has the ability to inhibit cholate uptake into
hepatocytes, potentially protecting the liver against poisoning (Kessler, 1986). This CLP

can also inhibit the activation and proliferation of T-lymphocytes by suppressing the



activity of phosphatase in T-cell activation (Wieczorek et al., 1991; Gorski et al., 2001).
Immunosuppressive activity of CLPs described by others may be partially or wholly
explained by this observation, e.g. delaying hypersensitivity response, postponing skin
allograph rejection, suppressing post adjuvant arthritis and haemolytic anemia (Gaymes
et al., 1997; Siemion et al., 1999).

None of the research has illustrated the levels of CLPs in flaxseed. The overall
focus of this project was to develop a systematic method for quantifying CLPs in

flaxseed and flaxseed-related materials. The objectives of this research were as follows:

Objective 1: To establish methods for CLP extraction, isolation, detection and
quantification.
Hypothesis: An HPLC method using an internal standard may be developed that will

allow accurate measurement of CLPs in flaxseed and flaxseed products.

Objective 2: To determine CLP levels in different flaxseed cultivars.
Hypothesis: The concentration of CLPs in flaxseed might vary among genotypes and

might be affected by environmental conditions during seed development.

Objective 3: To confirm the CLP distribution in flaxseed fractions and tissues.
Hypothesis: CLPs concentration may vary among different flaxseed fractions such as

seed coat, cotyledon and oil bodies.

Objective 4: To compare the levels of CLPs in lab-pressed flaxseed oil and
commercial flaxseed oil and investigate the effects of acid degumming and alkali
refining on the levels of CLPs in lab-pressed flaxseed oil.

Hypothesis: A portion or all of the CLPs in flaxseed oil may be removed by liquid and

solid phase refining.



2 LITERATURE REVIEW
2.1 Flaxseed

Mature seed of oleaginous flax is oblong, flat and composed of an embryo
consisting of two cotyledons surrounded by a thin endosperm and a smooth often shiny
seed coat (hull) that varies in colour from yellow to dark brown (Figure 2-1) (Peterson,
1958). The composition of flaxseed is presented in Table 2-1 (Smith, 1958; Hadley et
al., 1992). Lipid, protein and fibre are three major constituents of flaxseed. An analysis
of brown Canadian flaxseed conducted by the Canadian Grain Commission (2001)
showed the average composition of commercial seed was 41% fat, 20% protein, 28%
total dietary fibre, 7.7% moisture and 3.4% ash. Other minor components include
cyanogenic glycosides, phytic acid, phenolics, trypsin inhibitor, linatine, lignans
(phytoestrogens), minerals, vitamins and CLPs (Bhatty, 1995; Morita et al., 1997a;
Matsumoto et al., 2002).

Protein content of flaxseed varies widely from 10.5-31% largely due to genetic
and environmental factors (Bajpai et al., 1985; Salunkhe and Desai, 1986; Oomah,
1993a). Seed protein is stored mainly in aleurone tissues. Approximately 56-70% of the
protein is found in the cotyledons and about 30% in seed coat and endosperm (Dev ef al.,
1986; Sosulski and Bakal, 1969). According to Oomah and Mazza (1993b), flaxseed
meal has an essential amino acid index of 69, compared to 79 for soybean meal. The
amino acid patterns of flax protein from two flax varieties are compared with that of
soybean and listed in Table 2-2 (Oomah and Mazza, 1993b; Bhatty and
Cherdkiatgumcha, 1990b). The essential amino acids found in flaxseed meal from both
varieties are similar to those in soy flour, which makes flaxseed meal a source of one of
the most nutritious plant proteins.

The major carbohydrates in flaxseed are soluble and insoluble fibre where the
level of insoluble fibre is more than that of soluble fibre. Cui (2001) reported contents of
insoluble and soluble fibre of 20% and 9% respectively while Hadley ef al. (1992)
reported 30% and 10% respectively. The soluble fibre mainly exists in the epidermal

4
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Figure 2-1 Anatomical structure of flaxseed (Modified from Peterson, 1958)



Table 2-1 Flaxseed composition (Smith, 1958; Hadley et al., 1992)

Embryo' Hull?
Constituent
(%) Whole With Without With Without
seed fat fat fat fat
Moisture 7.13 431 NR? 7.89 NR?
Nitrogen 4.01 4.64 10.92 3.18 3.52
0il 38.7 53.20 NR? 1.84 NR?
Fiber
(Soluble) 10.2 NR® NR? NR? NR?
(Insoluble) 30.4 NR? NR? NR? NR?
Ash NR? 3.38 7.95 2.99 3.31
Weight fraction NR? 58.60 40.40 41.40 59.96
% of total oil 96.70 3.30
' Cotyledons and embryo
2 Seed coat
3 Not reported



Table 2-2 Amino acid compositions of flaxseed and soy flour (Oomah and Mazza,

1993b; Bhatty and Cherdkiatgumcha, 1990)

Amino acid Flax Cultivar

Soy flour

(g/100 g protein) Brown flax (NorLin) Yellow flax (Omega)
Alanine (Ala) 4.4 4.5 4.1
Arginine (Arg) 9.2 9.4 7.3
Aspartic acid (Asp) 9.3 9.7 11.7
Cystine (Cys) 1.1 1.1 1.1
Glutamic acid (Glu) 19.6 19.7 18.6
Glycine (Gly) 5.8 5.8 4.0
Histidine (His)* 2.2 2.3 2.5
Isoleucine (Ile)* 4.0 4.0 4.7
Leucine (Leu)* 5.8 5.9 7.7
Lysine (Lys)* 4.0 3.9 5.8
Methionine (Met)* 1.5 1.4 1.2
Phenylalanine (Phe)* 4.6 4.7 5.1
Proline (Pro) 3.5 3.5 5.2
Serine (Ser) 4.5 4.6 4.9
Threonine (Thr)* 3.6 3.7 3.6
Tryptophan (Trp)* 1.8 NR! NR'
Tyrosine (Tyr) 2.3 2.3 34
Valine (Val)* 4.6 4.7 5.2

'NR = Not reported.

*Essential amino acids for humans



layer of the seed coat and can be extracted with water. Seed coat soluble fibre is known
as mucilage that consists of both acidic and neutral polysaccharides. The acid
polysaccharide fraction is largely composed of L-rhamnose (25.3%), L-galactose
(11.7%), L-frucose (8.4%) and D-xylose (29.1%) while the neutral polysaccharide
consists of L-arabinose (20%) and D-xylose/D-galactose (76%) (Anderson et al., 1947).
Insoluble fibre is composed of cellulose (7-11%), lignin (2-7%) and acid detergent fibre
(ADF) (10-14%) (Cui, 1994).

Oil content of flaxseed varies from 38-44% due to genotype and environment
though extraction methods may contribute to some of the variation (Van Uden et al.,
1994; Oomah and Mazza, 1997). Oil is mainly stored in the endosperm and cotyledons
in the form of cell bound microscopic droplets or oil bodies also known as oleosomes.
Dorrell reported that the embryo was 45% oil while cotyledons were 51% oil and a
fraction comprising seed coat and endosperm contained 23% oil (Dorrell, 1970). Fatty
acid composition varies among different flaxseed types and cultivars. Most flaxseed oil
(75%) 1s found in cotyledons, the remainder (22%) mainly exists in the seed coat and
endosperm (Dorrell, 1970). The oil is primarily in the form of triacylglycerides (TAGs)
with a fatty acid profile typically including linolenic (52%), linoleic (17%), oleic (20%),
palmitic (6%) and stearic (4%) acids (Green, 1990). The minor lipids and lipid soluble
compounds include monoacylglycerides, diacylglycerides, tocopherols, sterols and
sterol-esters, phospholipids, waxes, CLPs, free fatty acids (FFAs), carotenoids,
chlorophyll and other compounds. The oxidative instability of alpha-linolenic acid (ALA)
present in the oil renders it unsuitable for use as edible cooking oil. In order to produce
flaxseed oil with improved food properties, Australian scientists selected a new genetic
variant Linola® with improved oxidative stability. In Linola varieties, the level of
linoleic acid (LA) content is above 65% and ALA below 2% (Green and Dribnenke,
1994). The fatty acid composition of Linola is similar to that of oils from sunflower,
safflower or corn, making Linola a more suitable edible oil source (Haumann 1990;
Green and Dribnenke, 1994).

ALA, an essential polyunsaturated fatty acid in flaxseed, cannot be synthesized
by human metabolism and contributes to various important physiological effects of

dietary flaxseed oil. It is the intermediate in biosynthesis of hormone-like eicosanoids,



which regulate inflammation and immune function in higher animals (Mantzioris et al.,
1994, 1995). For example, ALA treatments exert variable effects on inflammatory
mediators and markers depending on dose: ALA for 4 weeks at 14 g/d decreased the
production of tumour necrosis factor-alpha (TNF-a), interleukin-6 (IL-6) and cytokines
in humans, while a lower dose did not have this effect (Caughey, 1996; Thies, 2001;
Wallace ef al., 2003). ALA supplementation with 6% ALA depresses the levels of IL-6
and IL-10 and increases the production of TNF-a in mice (Chavali ef al., 1998). It was
suggested that the ratio of omega-6 to omega-3 fatty acids plays an important role in
suppressing atherosclerosis, in that a lower omega-6 to omega-3 fatty acid ratio
decreased atherosclerosis compared to a higher ratio in apolipoprotein E, LDL receptor
double knockout mice. After feeding Golden Syrian hamsters 20 g/d ALA for six weeks
serum cholesterol was reduced by 17-21% (Yang et al., 2005). However, no changes
were found in serum TC, LDL-C or HDL-C in healthy subjects or hyperlipidemic
patients (Freese and Mutanen, 1997; Sanders and Roshanai, 1983; Kestin et al., 1990;
Singer et al., 1990). David (1983) suggested that ALA might lower the growth rate of
breast and colon cancers. It is worth noting that almost all literature extolling the
beneficial functions of flaxseed oil fails to confirm it is ALA itself, rather than other
bioactive compounds found in flaxseed oil or their interactions, that contributes the
observed health benefits.

Flax lignan and flax lignan complex (FLC) comprise a group of oil-insoluble flax
compounds that are reported to have multiple physiological effects in animals and
humans. FLC, which is not oil soluble, is composed of 34-38% secoisolariciresinol
diglucoside  (SDG), 15-21%  cinnamic acid glucoside and  9.6-11%
hydroxymethylglutaric acid (Westcott and Paton, 2001). The lignan complex is reported
to slow the progression of atherosclerosis in humans and other mammals (Prasad, 2005;
Prasad et al., 2009a, 2009b; Zhang et al., 2008). Treatment with FLC (40 mg/kg body
wt/d) for eight weeks suppressed the development of hypercholesterolemic
atherosclerosis by 34% in rabbits (Prasad, 2005). Hypercholesterolemic humans were
treated with 300 mg or 600 mg of FLC for eight weeks. The 300 mg dose reduced TC
and LDL-C by 15% and 17%, respectively, without any change in the ratio of TC/HDL-
C, while 600 mg reduced the serum TC and LDL-C by 24% and 22%, respectively, with



a decrease in the TC/HDL-C ratio (Zhang et al., 2008). Prasad et al. (2009b) also found
that FLC was effective in slowing the progression of atherosclerosis by 31% in

hyperlipidemic rabbits, along with reducing oxidative stress.

2.2 Flaxseed oil processing, refining and flavour chemistry

Currently, most flax is grown for industrial or food oil production. Edible
flaxseed oil may be recovered by cold-pressing alone or a process of pre-pressing
followed by solvent extraction (Kochhar, 2002; Goss, 1946). Cold pressing refers to a
process in which no heat has been used on the oilseeds before passing through an
expeller press (Fils, 2000). Prior to pressing, seeds are normally flaked then fed to the
expeller press. Most of the solids are recovered from pressing as a partially defatted
meal containing less than 10% oil. Partially defatted meal may be extracted with a
solvent such as hexane to increase total oil recovery, but the industry avoids this process
as flax meal with 10% oil content is a preferred animal feed. The crude oil is collected
and settled to separate solids, gums and waxes (as "foots") from the oil before further
refining. The oil-refining process is applied to the oil collected from cold-pressing and

solvent extraction to obtain oil for human consumption (Figure 2-2).

2.2.1 Cold pre-pressing

Mechanical expeller presses can be used to extract flaxseed oil by applying
pressure and shear forces on the seeds to decrease seed volume (Zheng et al., 2003).
While it is said to be important not to apply heat during pressing because the higher
temperature will cause rapid oxidation of the oil, this is not observed in industrial
processing (Reaney, Pers. Commun.). The products of pressing flaxseed are crude oil

that varies from yellow to dark brown and defatted meal.

2.2.2 Settling and filtration

During pressing, phospholipids, wax and some fibre will dissolve in the crude oil
and settling in the tanks for several days is needed to allow time for foots separation.
After suspended solids have settled the oil may be filtered using a plate and frame filter

and filtration improving solids (Patterson, 1989).
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Figure 2-2 Cold pressed flaxseed oil processing (modified from Booth, 2004)
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2.2.3 Solvent extraction
Solvent extraction is practiced to increase oil recovery after pressing (Goss,
1946). Hexane is approved for food use and efficiently dissolves triglyceride oil. It has
high stability and is available in high purity commercial forms. After extraction, hexane
is recovered from oil by a solvent stripper and from meal through a desolventiser-

toaster. Most flaxseed meal is not extracted with solvent.

2.2.4 Degumming and alkali refining

Phospholipids or gums are removed from vegetable oil as part of the oil refining
process. Although most phospholipids present in flaxseed oil are removed by filtration,
some remain in crude oil after this treatment. Phospholipids may be removed by water
degumming, which involves adding 2-4% water and mixing under vacuum at 80°C for
10-30 min (Brekke, 1975). The procedure produces sludge of hydratable phospholipids
that are easily removed from the oil. The addition of phosphoric acid to oil at elevated
temperature (0.13-0.53% of 75% H3PO,) can significantly improve the removal of gums
(Sullivan, 1955). In some processes, gum removal immediately follows alkali refining.
In such processes, the excess H;PO4 and FFAs are neutralized by mixing the oil with
dilute sodium hydroxide (NaOH) forming a soap stock mixed with oil. Centrifugation of
the mixture separates the soap stock from the oil. After alkali refining the oil is subject

to vacuum drying to remove any water remaining in the oil.

2.2.5 Bleaching

Bleaching removes carotenoid and chlorophyll pigments from flaxseed oil,
producing desired lighter-yellow oil colour. Acid-treated bentonite clay is activated by
heat treatment to absorb the pigments, soaps from alkali refining, metals and other
contaminants. Most flaxseed oil is not bleached as the oxidative stability is reduced by
the removal of antioxidants during bleaching (Klein et al., 1984). Flaxseed oil arising

from Linola is an exception as this oil is relatively stable after bleaching.

2.2.6 Winterization

Cloudiness due to the trace amount of wax in vegetable oil may be reduced by

12



low-temperature winterization (Kreulen, 1976). Winterization involves chilling oils so
that waxes crystallize. Subsequent filtration affords a separation of the solid wax from
the oil. Most flaxseed oil is not winterized because it does not form precipitates on

storage at cool temperatures (Reaney, Pers. Commun.).

2.2.7 Deodourization

Deodourization is the final step for vegetable oil refining (Tubaileh et al., 2002).
Deodourization involves steam distillation as a method to remove the volatile
compounds which often contribute to the odour and unpleasant flavour of the oil. Steam
distillation will also remove aldehydes, ketones and acids produced from peroxide
breakdown after fatty acid oxidation. Tocopherol losses are a negative effect of
deodourization because tocophenols are natural antioxidants which can keep highly
unsaturated flaxseed oil from rapid oxidation. Most flaxseed oil is not deodourized
(Reaney, Pers. Commun.). Flaxseed oil arising from Linola is an exception as this oil is

fully processed and sold as a fully refined product.

2.2.8 Refined oil storage and oil flavour chemistry

Refined flaxseed oil has several desired qualities such as low phosphorus content
and light colour compared to crude oil (Table 2-3). For Linola oil with high level of LA,
oil storage conditions are similar to those suitable for sunflower oil because they are
alike in fatty acid composition. However, for traditional flaxseed oil with a high content
of ALA, the edible oil should be stored under cool (less than 4°C), oxygen-depleted,
dark conditions with an antioxidant added to prevent rapid oxidation. Most of the
flaxseed oil products sold as functional food is distributed and sold in opaque plastic or
brown glass to limit degradation by light and flushed with nitrogen at the time of
bottling to preserve freshness (Wiesenborn ef al., 2005). Additionally, it is
recommended that these oils be stored at 4°C.

Fresh, unrefined flaxseed oil usually presents a mild, nutty and pleasant flavour.
After short-term storage, paint-like and fishy odours and fishy and bitter flavours often
arises. The flavour and odour chemistry is too complex to be attributed to a sole factor.

Seed quality, variety, processing, handling and storage all contribute to the flavour of
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Table 2-3 Analytical data for crude and refined flaxseed (Linola) oil (Green and
Dribinenke, 1994)

Parameters Crude oil Refined oil

Refractive index (46 °C) 1.4657 1.4665
Specific gravity 0.921 0.920

Viscosity 46.8 46.4

Phosphorus (mg/kg) 325 <0.5
Chlorophyll (mg/kg) 0.4 0.0

Free fatty acid (as % oleic) 0.3 <0.02
lodine value 142 144

Fatty acid composition (% wt)

16:0 5.6 5.6

18:0 4.0 4.0

18:1 15.9 15.9

18:2 71.8 71.9

18:3 2.0 2.0

Others 0.7 0.6

Sterols (mg/kg) 3095 2324
Tocopherols (mg/kg) 507 172
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flaxseed oil. Several phytochemicals, including phenolic compounds, FFAs, carbonyl
products, products of oxidation and small hydrophobic peptides are believed to correlate
with the off-flavour of flaxseed oil. The fishy flavoured compounds found in oxidized
flaxseed oil are identified as carbonyl compounds including cis-4-heptenal (Seals and
Hammond, 1970). Flaxseed oil is readily oxidized to produce peroxides which can
further breakdown into smaller molecules such as aldehydes, acids and alcohols,
contributing to the unpleasant rancid flavour. Arai et al. attributed the dark colour, bitter
taste and objectionable flavour of some oils to phenolic constituents (Arai ef al., 1966).
The phenolic compounds found in flaxseed, are mainly a complex of SDG,
hydroxymethyl glutaric acid, ferulic acid glucoside and p-coumaric acid glucoside
(Davin et al., 1997; Ford et al., 2001; Schoenrock et al., 1997). However, this complex
is not soluble in vegetable oil. FFAs which contribute to the rancid flavour in butter fats
and certain tallows are present at low levels in most vegetable oils (Bills et al., 1969)

and should not be present in large amounts in good quality flaxseed or flaxseed oil.

The occurrence of a small hydrophobic peptide, more specifically, CLP-E, on the
other hand, contributes a bitter flavour to flaxseed oil according to the study of Briihl et
al. (2007). Briihl et al. (2007) demonstrated that the delicate nutty flavour of freshly
pressed flaxseed oil is replaced by a bitter flavour during storage. The key bitter
compound was isolated and identified as CLP-E by different analytical tests. Fourier
transform infrared spectroscopy (FTIR), liquid chromatography-mass spectrometry (LC-
MS), nuclear magnetic resonance (NMR) spectroscopy and amino acid analysis have all
proved useful in determining the CLP-E content of flaxseed oil. The finding that CLP-E
has a bitter flavour is consistent with theories that predict the bitter tasting potency of
peptides. In 1971, it was first reported that peptides with hydrophobicity values more
than 1400 cal/mole and molecular weight less than 6 kDa contribute a strong bitterness.
Moreover, those peptides with Leu, Pro, Phe, Tyr, Ile and Trp have a tendency to be
bitter (Ney, 1971). The presence of Pro residues has been found to be a major
contributor to peptide bitterness (Ishibashi et al., 1988). It has recently been
demonstrated that bitterness is determined by polarity, hydrophobicity and the spatial
structure of the peptides (Kim ez al., 2008).
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2.3 Plant cyclopeptides

Plant cyclopeptides are cyclic compounds found in higher plants. They are often
composed of 2 to 37 amino acids. While the amino acids typically found in Eukaryotic
proteins are common, non-protein amino acids and D-amino acids are both found. Tan
and Zhou (2006) reviewed the chemistry of plant cyclopeptides and reported structures
of 455 cyclopeptides in Caryophyllaceae, Rhamnaceae and other 24 families. In their
review they divided plant cyclopeptides into two classes, five subclasses and eight types
according to their skeletons and distributions in plants (Figure 2-3). Among them,
cyclopeptide alkaloids (Type I), Caryophyllaceae-type cyclopeptides (Type VI) and
cyclotides (Type VIII) are the three largest groups due to the large numbers (185, 168

and 51 respectively) of cyclopeptides belonging in these categories.

2.3.1 Distribution and biological activities of plant cyclopeptides

Tan and Zhou described the distribution of cyclopeptides in plants in 2006. They
stated that “455 cyclopeptides have been found in 26 families, 65 genera and 120
species; in particular, plants of the Caryophyllaceae and Rhamanaceae families
commonly contain cyclopeptides. These 26 families include Amaranthaceae,
Annonaceae, Araliacea, Asclepiadaceae, Asteraceae, Caryophyllaceae, Celastraceae,
Compositae, Cucurbitaceae, Euphorbiaceae, Labiatae, Linaceae, Malvaceae,
Myrsinaceae, Olacaceae, Pandaceae, Phytolaccaceae, Phamnaceae, Rubiaceae,
Rutaceae, Schizandraceae, Solanaceae, Sterculiaceae, Urticaceae, Verbenaceae and
Violaceae” (Tan and Zhou, 2006).

Literature reports of the distribution, concentration and biological activity of
cyclopeptides from different plant sources show a wide range of compounds and
concentrations possibly due to combined factors such as isolation methods, structures
and plants genetics. The heteromonocyclopeptides, are substantially found in plant bark,
root and whole seed. Other plant parts, which might contain cyclopeptides include root
bark, stem bark, leaves, terminal branches, woody parts, aerial parts, flowers and fruit
(Tan and Zhou, 2006). Most of these tissues and plant parts and extracts from them have

biological activity. Typically these materials are cytotoxic, antimitotic, antibacterial,
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antifungal, antiplasmodial or antimycobacterial. They may also act as sedatives, or
immunostimulants. The alkaloid cyclopeptide (Type I, Figure 2-4. a) frangufoline (also
called Sanjoinine-A), is a known 14-membered cyclopeptide alkaloid with sedative,
anti-bacterial and anti-fungal activities found in the seeds of Zizyphus jujuba
(Rhamnaceae). This plant is widely used as an herbal medicine in the Orient (Han and
Park, 1987). Depsicyclopeptides (Type 11, Figure 2-4. b) extracted from the whole plants
of Ardisia crenata (Myrsinaceae) are cytotoxic, having the specific biological effects of
inhibiting platelet aggregation in rabbits in vitro, decreasing blood pressure and causing
dose-related hypotension in anaesthetized normotensive rats (Fujioka et al., 1988).
Solanaceae-type cyclopeptide (Type III, Figure 2-4. ¢), lyciumins, isolated from the root
bark of Lycium chinense (Solanaceae) inhibit angiotensin-converting enzyme (ACE) and
renin (Yahara, 1989). Urticaceae-type cyclopeptide (Type IV, Figure 2-4. d),
celogentins, with antimitotic activity, are isolated from the seeds of Celosia argenta
(Amaranthaceae) (Kobayashi ef al., 2001; Suzuki et al., 2003). Homocyclopeptides, are
found in plant roots and seeds, as well as latex, leaves, fruit and fruit peels. Astins (A, B,
C) are representative Compositae-type cyclopeptides (Type V, Figure 2-4. e) derived
from the roots of Aster tataricus (Compositae). These compounds have anti-tumour
activity (Morita, 1995; Kosemura et al., 1993). Yunnanins (cyclic heptapeptides) are
Caryophyllaceae-type cyclopeptides (Type VI, Figure 2-4. f), that are extracted from the
roots of Stellaria yunnanensis (Caryophyllaceae) and are found to exert cytotoxic effects
on P388 leukemia cells (Morita et al., 1994, 1996, 1997b; Napolitano et al., 2004). In
addition, some Rubiaceae-type cyclopeptides (Type VII, Figure 2-4. g), found in plant
roots, stems, leaves and flowers have strong antitumour activities (Jolad et al., 1977,
Itokawa et al., 1986, 1991; Morita et al., 1992; Shen et al., 1996). The most active
Rubiaceae-type cyclopeptide RA-VII separated from the roots of Rubiaceae akane
(Rubiaceae) was found to be an effective anticancer drug with low toxicity (Itokawa et
al., 1991). Cyclotides (Type VIII, Figure 2-4. h) are a group of plant disulfide-rich
macrocyclic proteins with 28-37 amino acids with an amide head to tail cyclized peptide
backbone and a cyclic cysteine knot (CCK) (Craik et al., 1999). Their unique structure
renders them highly chemically stable and resistant to enzymatic breakdown (Craik et

al., 1999; Colgrave and Craik, 2004). Some cyclotides are known for their anti-HIV
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e. Compositae-type cyclopeptides (Type V)
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g. Rubiaceae-type cyclopeptides (Type VII)
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activities such as circulins found in the stems of Chassalia parvifolia (Rubiaceae) and
cycloviolin from the bark of Hybanthus parviflourus (Violaceae) (Gustafson et al., 1994;
Derua et al., 1996; Gustafson et al., 2000; Hallock et al., 1999).

2.4 Cyclolinopeptides

CLPs are a group of cyclic, hydrophobic peptides composed of eight or nine
amino acid residues with molecular weights of approximately one thousand Da. They
are Caryophyllaceae-type cyclopeptides (Type VI). After CLP-A was first isolated from
the sediments deposited from crude flaxseed oil by Kaufmann and Tobschirbel in 1959,
ten other CLPs were found in the seeds of Linum usitatissimum by 2001. The primary
amino acid sequences chemical data and primary structures are summarized in Table 2-4
and Figure 2-5 (Kaufmann and Tobschirbel, 1959; Morita et al, 1997a, 1999;
Matsumoto et al., 2001b, 2002). In addition, another cyclic peptide CLP-X with a non-
proteinaceous amino acid residue (N-methyl-4-aminoproline) was isolated from Linum

album in 1998 (Picur et al., 1998).

2.4.1 Biological activity of CLPs

The role of CLPs in flax remains unclear, though through both in vivo and in
vitro studies, it has been demonstrated that CLPs have multiple biological activities. For
instance, in 1986 Kessler and co-workers reported that CLP-A inhibits cholate uptake
into hepatocytes. Later, the tripeptide block -Phe-Phe-Pro- in CLP-A, which is similar to
structures in antamanide and somatostatin, was proved to suppress the hepatocyte cell
transport system. It is possible that this peptide sequence imparts the observed
cytoprotective effects of CLP-A on hepatocytes (Kessler et al., 1986a; Rossi, 1996).
Immunomodulatory activity of CLP-A was studied using Jerne's plaque forming cell
number determination (PFC) test for the primary and secondary humoural immune
response (HIR), delayed type hypersensitivity (DTH) reaction, the skin-allograft
rejection, the graft-versus-host reaction for the cellular immune response in mice, human
lymphocyte proliferation test in vitro and the post-adjuvant polyarthritis test in rats and
hemolytic anemia test in New Zealand Black mice (Wiesenborn et al., 1991). The results

show CLP-A affected both humoural and cellular immune response. It could also
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Table 2-4 Cyclolinopeptides in Linum usitatissimum (Kaufmann and Tobschirbel, 1959;
Morita et al., 1997b; Morita et al., 1999; Matsumoto et al., 2001a, 2002)

Type

Primary structure (cyclo-)

Chemical data Formula (M.W.)

CLP-A

CLP-B

CLP-C

CLP-D

CLP-E

CLP-F

CLP-G

CLP-H

CLP-1

CLP-J

CLP-K

Ile-Leu-Val-Pro-Pro-Phe-Phe-Leu-Ile

Met-Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile

Mso-Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile

Mso-Leu-Leu-Pro-Phe-Phe-Trp-Ile

Mso-Leu-Val-Phe-Pro-Leu-Phe-Ile

Mso-Leu-Mso-Pro-Phe-Phe-Trp-Val

Mso-Leu-Mso-Pro-Phe-Phe-Trp-Ile

Mso-Leu-Met-Pro-Phe-Phe-Trp-Ile

Met-Leu-Mso-Pro-Phe-Phe-Trp-Val

Msn-Leu-Val-Phe-Pro-Leu-Phe-Ile

Msn-Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile

Cs7HgsNoOo (1040)

CseHs:NsOs S (1058)

Cs6Hg3N9oO1oS (1074)

Cs7H77Ng0s S (1064)

Cs1H77Ng0s S (977)

CssH73N9oOjo S, (1084)

Cs6H7sNgO10 S5 (1098)

CseH7sNs0s S5 (1082)

CssH73NoOs S5 (1068)

Cs1H77NgO10 S (993)

CseHs3NsO11S (1090)
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increase the skin allograft rejection time and reduce the graft-versus-host reaction
index. Human lymphocyte proliferation was inhibited by CLP-A through
phytohemagglutinin in vitro (Wiesenborn ef al., 1991). The symptoms associated with
two immune diseases, the post-adjuvant polyarthritis in rats and hemolytic anemia of
New Zealand Black mice, were alleviated. In the research of Gorski et al. (2001), the
immunosuppressive effects of CLP-A were compared with cyclosporin A (CsA), a
known immunosuppressant. Both CLP-A and CsA function by inhibiting the action of
Interleukin-1-alpha and Interleukin-2. This finding strongly indicates that CLP-A
shares the same mechanism as CsA in the plaque-forming cells test and the
autologous rosette-forming cells test. The study also compared the effects of both
compounds on human lymphocytes in vitro. It was found that at very low
concentrations, CLP-A induced the same effects as CsA on T and B cell proliferation,
acquisition of activation antigens and immunoglobulin synthesis (Goérski et al., 2001).

Overall, these studies demonstrated that CLP-A had similar biological effects to CsA.

The toxicity of CLP-A was evaluated by intravenous and oral administering to
rats and mice (Siemion et al., 1999). Oral administration of 4 g/kg CLP-A in olive oil,
2% gelatin solution did not harm mice while 3 g/kg to rats was also well tolerated.
Intravenous administration of CLP-A at 230 mg/kg is non-toxic to mice. The combined
strong immunosuppressive activity and low toxicity at relatively large doses of CLP-A
makes it a potential immunosuppressive drug. The use of this compound as a drug

requires additional research.

Other CLPs and their analogs were also investigated for their
immunosuppressant activities. According to the research of Morita et al. (1997a), CLP-
B inhibits concanavalin-A induced proliferation of human peripheral blood lymphocytes
at treatment levels comparable to that of CsA. CLP-B and CLP-E also manifested a
moderate inhibitory effect on concanavalin-A induced mouse lymphocyte proliferation
(Morita et al., 1997a). Many chemical analogs of CLP-A were tested for their effects on
immune response (Siemion et al., 1999; Benedetti and Pedone, 2005; Picur et al., 2006).
Many of these compounds with a structure of -Pro-Xxx-Phe- sequence (where Xxx

means a hydrophobic, aliphatic, or aromatic residue) were found to exert
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immunosuppressive activity though none of them exerted higher activity than CLP-A
(Picur et al., 2006).

The immunosuppressive activity of CLPs and its analogues make them potential
value added natural products of flax and will lead to further investigations of the
biological activities of CLPs. According to the patent application of Reaney et al. (2009),
CLPs also present a biological activity of induction of heat shock protein 70A
production in Caenorhabditus elegans.

Exposure of nematode cultures to CLP-A (0.1 puM and 10.0 uM) induced a 30%
increase in the production of the HSP 70A protein, while a 3.5-fold increase was
induced in the culture treated with 1.0 uM of CLP-A. Higher concentrations of CLP-A
were lethal to the nematodes (Reaney et al., 2009).

2.4.2 Isolation and separation of CLPs from flaxseed tissues

There are many published methods for isolation of CLPs from flax. The isolation
procedures have depended, in part, on the tissue processed. A low concentration of CLPs
in the source matrix requires the use of solvents and chromatographic columns during
peptide recovery. Kaufman and Tobschirbel (1959) first isolated a cyclic hydrophobic
peptide from flaxseed oil precipitates (foots), which is a slime that precipitates from
flaxseed oil after extraction and settling. Later CLP-A structure was confirmed by Prox
and Weygand (1967). Morita and co-workers (1997a, 1999; Matsumoto et al., 2001a,
2001b, 2002) described the isolation of several additional CLPs from flaxseed, root and
cake after oil pressing. Defatted flax meal (30 kg) and flax roots (30 kg) was first
defatted then extracted with four volumes of hot methanol three times, followed by
solvent stripping. The methanolic extract (about 4 kg) was loaded on a polystyrene
column (Diaion™ HP-20). Methanol with increasing concentrations in water (0-100%)
was utilized as the eluent for further separation and the bound CLPs were removed from
the column with a 100% methanol. The methanol extract was then subjected to a normal
phase silica gel chromatography with chloroform and methanol solvent gradient from
100:0 and the hydrophobic peptides were eluted with low concentrations (10%-15%) of
methanol. Those fractions containing peptides were subjected to reverse phase HPLC

with 40-75% CH3CN solvent system to yield 0.007% of CLP-A, 0.0002% of CLP-B,
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0.0037% of CLP-C, 0.0015% of CLP-D, 0.0058% of CLP-E, 0.0008% of CLP-F,
0.0024% of CLP-G, 0.0002% of CLP-H and 0.00007% of CLP-I (Morita et al., 1997b,
1999; Matsumoto et al., 2001a, 2001b, 2002).

Stefanowicz (2001) described an isolation method for obtaining mixtures of
CLPs. Ground flaxseed (5 g) was extracted overnight with 100 mL of acetone. After
solvent evaporation, the remaining extract was dissolved in methanol and hydrolyzed
with 10% sodium hydroxide. The resulting mixture was dried under vacuum, while the
remaining fraction was mixed with ethyl acetate. The extract was shown to be a mixture
of CLPs by electrospray ionization-mass spectrometry (ESI-MS) and electrospray
ionization tandem mass spectrometry (ESI-MS/MS), but further separation for each
cyclic peptide was not reported.

In 2007, Briihl et al. recovered compounds that contribute a bitter flavour to
flaxseed oil. Flaxseed was first pressed using a laboratory expeller press at a temperature
not exceeding 60°C. This condition produced a yield of 30% oil that was extracted at a
temperature not exceeding 40°C. The "cold pressed" flaxseed oil (100 g) obtained was
mixed with 100 mL heptane, then extracted three times with methanol/water (6/4; v/v,
200 mL each) and the aqueous extracts were combined, followed by solvent evaporation
under vacuum. The bitter fraction identified by sensory testing was collected and
dissolved in methanol/diethyl ether (1/1, v/v; 1 mL) and finally loaded onto a silica gel
(20 g) column. Chromatography with a gradient of diethyl ether and ethanol from 10:0
to 0:10 was conducted. Ten fractions were collected and evaluated for bitter taste after
solvent evaporation and the bitter compound was further purified by RP-C18 HPLC and
proved to be CLP-E by liquid chromatography-mass spectrometry (LC-MS), electro
spray ionization-time of flight-mass spectrometry (ESI-TOF-MS) and nuclear magnetic
resonance (NMR) analyses. The structure was also shown to be consistent with CLP-E
by Fourier transform infrared (FTIR) spectroscopy and amino acid analysis. Briihl et al.
(2007) focused on identifying the bitter compound of flax and not efficient processes for
isolating, separating or quantifying all of CLPs from flaxseed oil. In particular, no
further action was taken to increase oil yield or to maximize the extraction efficiency of

all cyclic peptides.
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2.4.3 Detection, identification, confirmation of CLPs in prepared samples

Detection, identification and confirmation of CLPs from flax extracts has been
achieved using ESI-MS, ESI-MS-MS, ESI-TOF-MS, LC-MS, circular dichroism (CD)
spectroscopy, infrared (IR) spectroscopy, FTIR, high resolution fast atom bombardment
mass spectrometry (HR-FABMS), C-NMR, 'H-NMR and amino acid analysis by
HPLC after hydrolysis (Stefanowicz, 2001; Naider et al., 1971; Brewster and Bovey,
1971; Tancredi et al., 1991; Morita et al., 1999; Matsumoto et al., 2001a; Briihl et al.,
2007).

ESI-MS and ESI-MS-MS are preferred in CLP analysis due to easy sample
preparation, high sensitivity and high dynamic range. In 2001, Stefanowicz described a
method to detect and sequence CLPs from flaxseed by ESI-MS and ESI-MS/MS. Crude
peptide extracts were dissolved in methanol containing 10 mM of ammonium acetate
and injected in to a Finnigan MAT TSQ-700 MS with ESI source. The peptides CLP-B,
CLP-D, CLP-E were detected in agreement with previous literature (Morita et al.,
1997b). The precursors of CLP-D and CLP-E were first presented as the cyclic peptide
containing unoxidized Met. The sequences of CLP-F (Cyclo-(Mso-Leu-Mso-Pro-Phe-
Phe-Trp-Val-)) and CLP-G (Cyclo-(Mso-Leu-Mso-Pro-Phe-Phe-Trp-Ile-)) were also
proposed based on the fragmentation spectra achieved by collision induced dissociation
experiments and the similarity with those of CLP-D' (Stefanowicz, 2001). The use of
MS techniques has its limitations, such as the inability to provide detailed information
about CLPs' conformational structures.

Conformation of CLP structures in different solutions was studied using circular
dichroism (CD) and NMR. The flexibility of the peptide ring and prolyl isomers present
in CLPs will allow the peptides to adopt a number of conformations in solution. The
conformation of CLP-A was first investigated in several organic solvents by CD (Naider
et al., 1971). The results indicated that CLP-A existed in several conformations in
solution with the absence of intra-molecular hydrogen bonds. In the same year, the
conformation of synthetic CLP-A was illustrated by Brewster and Bovey (1971) who
measured the temperature dependence of the NH chemical shifts using 100 and 200
MHz proton NMR, after exchange of peptide NH protons with deuterium. The data
reveals that: 1) the main chain is cyclic, cyclo(Ile-Leu-Val-Pro-Pro-Phe-Phe-Leu-Ile-); 2)
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intramolecular hydrogen bonds are absent in dimethysulfoxide (DMSO); 3) five of the
seven peptide NH protons are exposed to solvent while the remaining two might be
situated in the interior of the ring (Brewster and Bovey, 1971). In another study it is
noted that CLPs have the ability to form complexes with metal ions, such as Ba*", K,
Na', Mg®" and Ca”", which make them a potential vehicle for ion delivery (Tancredi et
al., 1991).

Morita and coworkers were the first group to combine analytical technologies,
including IR, HR-FABMS, 13C-NMR, '"H-NMR and amino acid analysis, to
systematically identify the structures of CLP-B through I (Morita et al, 1999;
Matsumoto et al., 2001b). For instance, HPLC enriched fractions containing mostly
CLP-B were first dissolved in methanol then injected into HR-FABMS. A quasi-
molecular ion peak at m/z 1058.6031 [M+H] was observed, corresponding to the
molecular formula of CLP-B, Cs¢Hs3No09S. The IR absorptions at 3,436 and 1,659 cm™!
indicated the presence of amino and amide carbonyl groups in CLP-B respectively. The
combined application of C-NMR and 'H-NMR provided more structural detail
regarding CLP-B. Signals from *C-NMR spectrum (8 173.17, 172.57x2, 171.65, 171.16,
170.722, 169.99 and 169.89) indicated the existence of nine amide carbonyl groups in
CLP-B, while chemical shifts from "H-NMR spectrum (6 7.89, 7.82, 7.73, 7.71, 7.55,
7.45 and 7.27) showed only seven amide protons in CLP-B. Acid-hydrolysis of CLP-B
yielded Leu (x1), Val (x1), Met (x1), Ile (x2), Phe (%2) and Pro (x2). The molecular
weight and the lack of a terminal amino group ("H-NMR and *C-NMR) demonstrated
that CLP-B was a cyclic peptide with nine amino acid residues. The proton signals and
the corresponding carbon signals were assigned by NMR methods (‘H-"H correlation
spectroscopy (COSY) and heteronuclear multiple quantum coherence (HMQC)). The
phase sensitive Rotating Frame Overhauser Effect Spectroscopy (ROESY) and
heteronuclear multiple bond correlation (HMBC) experiments determined the linking
between individual amino acids and the sequence of CLP-B was finally identified as
cyclo-(Met-Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile-) (Morita et al., 1999). Other CLPs (CLP-
C to I) are similarly determined.

A more recent study utilized LC-MS, high resolution mass spectrometry, NMR,

amino acid analysis and FTIR to identify the bitter principle in stored cold-pressed

31



flaxseed oil (Brihl et al., 2007). The isolated bitter principle (100 pg) was obtained by
the method described in section 2.4.2 for structure identification. A clear pellet was
produced for FTIR spectrometry by pressing a mixture of dry potassium bromide (250
mg) and an aliquot (1.5 mg) of the isolated bitter principle under vacuum. The IR
spectrum was recorded from 4000 to 400 cm™. A broad band at 3,427.7 cm™ indicated
the presence of a hydroxyl group with a shoulder at 3,314.0 cm ™' for NH vibration. The
weak bands of CH; and CH; groups observed at 2,959.3 and 2,928.3 cm 1 at a ratio
about 1:1 demonstrated a lack of long carbon chains and eliminated the possibility of
fatty acid derivatives as bitter compounds. At the same time, C=0O (vibration) and C-N,
N-H (vibration) for N-monosubstituted amides were observed at 1,659.1 and 1,529.9 cm
! while sulfoxide (vibration) and a monosubstituted aromatic system were detected at
1,030.6, 746.0 and 701.3 cm’'. For further structure confirmation, 100 ug of the isolated
bitter compounds was dissolved in 1 mL methanol and an aliquot (5 puL) was injected
into an API 4000 Q Trap LC/MS/MS by means of loop injection with methanol/water
(1/1, v/v) as the solvent. A quasi-molecular ion with m/z 977.7 [M + H]", along with
product cluster ions: ammonium with m/z 994.7 [M + NH,]", sodium with m/z 999.7 [M
+ Na]’, potassium with m/z 1,015.7 [M + K]" and double charged molecule: 489.5 [M +
2H]*", 500.5 [M + H + Na]*’, 508.4 [M + H + K]*" and 511.5 [M + 2Na]*" were
observed. The exact mass measurements are further confirmed by high resolution mass
spectrometry. The bitter isolate was dissolved in methanol and injected into a Bruker
Micro TOF using electrospray ionization in positive and negative ion modes by means
of loop injection with methanol/water (1/1, v/v) as the solvent. The result showed a
sodium adduction [M + Na]® (m/z 999.5366) in the positive ionization mode as
Cs51H7¢NgOoS + Na* (m/z 999.5348) and quasi-molecular ion [M - H]" (m/z 975.7) in the
negative ionization mode as [Cs;H76NgOoS - H]™ (m/z 975.5390). The molecular formula
Cs1H76NgOoS, therefore, was identified as the elementary composition of the isolated
bitter compound. The eight nitrogen atoms in this molecular formula, the hydrophobicity
of this compound and absence of amino acid fragmentation from the terminal peptide
chain upon LC-MS analysis suggested a cyclic peptide structure of the bitter compound.
The amino acid composition was then analyzed by hydrolysis of CLP-E followed by ion
chromatography. An aliquot (300 pg) of the isolated bitter compound was mixed with

32



aqueous hydrochloric acid (6 mol/L; 100 pL) and heated for 17 h at 110°C under an
atmosphere of nitrogen. The hydrolysate (10 pL) was injected into an ion
chromatograph (0.25 mL/min) with the following gradient including deionized water
(solvent A), aqueous sodium hydroxide (250 mmol/L, solvent B), aqueous sodium
acetate (1 mol/L, solvent C) and aqueous acetic acid (100 mmol/L, solvent D). The
retention times of the peaks from each amino acid were compared with those of
authentic standards and six amino acids were identified, including L-proline, L-valine,
L-leucine, L-isoleucine, L-phenylalanine and L-methionine sulfoxide (Mso). The amino
acid composition corroborated the structure of the cyclic octapeptide cyclo-(Mso-Leu-
Val-Phe-Pro-Leu-Phe-Ile), identified as CLP-E found previously in flaxseed (Morita et
al., 1999). A final structure confirmation was conducted by NMR. The bitter compound
was dissolved in methanol-d; or DMSO-ds and 'H-COSY, NOESY, "“C, HMQC and
HMBC experiments were performed. Eight a-amino acid proton signals between oy 3.7
and 5.0 in "H-NMR spectrum were in agreement with the proposed structure of a cyclic
octapeptide. Furthermore, seven amide proton resonances (oy 4.37, 1.83, 2.17, 1.91, 3.50,
3.56) implied the presence of one Pro in the molecule. The signal at dy 2.54 with an
intensity of three protons indicated the presence of the methyl group of the Mso. The
aromatic signal pattern of the two Phe moieties was found between oy 7.1 and 7.3. At
the same time, C-NMR spectroscopy revealed eight carbonyl signals and the
quaternary carbon signals of the aromatic ring in the Phe were found at d¢ shifts at 137.1
and 138.1. Correlation between neighbouring amino acids was established by nuclear
overhauser effect, combined with correlations between the amide carbonyl atoms and
the neighbouring amide protons as well as the amino acid protons by HMBC, to confirm
the structure of the bitter compound. All the collective data were comparable to the
previous report of CLP-E in the literature (Morita et al., 1999).

A whole genome sequence of Linum usitatissimum (var. CDC Bethune) has been
produced and published on linum.ca (2010). Gene sequence g24175 showed the
embedded sequences of CLP-E (MLVFPLFVI), B (MLIPPFFVI) and A (ILVPPFFLI).
Gene sequence of g38655 showed the embedded sequences of CLP-D (MLLPFFWI), F
(MLMPFFWYV) and G (MLMPFFWTI) (Reaney, Pers. Commun.; Figure 2-6, 7).
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Coding sequence of g24175

ATGGCTGTTG
AATAATAATG
ATTACTCCCA
CCGAAAGGAG
GGCCTCCGCA
AAGGAAGGTA
GATGGTATGT
GGCCACAAGT
GGTATACTGG
AATGCAGCAG
GGAGCTGAGA

TGTCCTCTCT
CCTTCCCACC
AGACAACAAC
CAGTTGCTGC
ACCAGGAGGA
GTCAGGACAA
TGATCCCCCC
ATAATAATGC
TCCCCCCCTT
CAGCTGGCGG
ATTAG

GGCTCTGACC
ATCCTCCTCC
AACAGTGAAA
TGCTACTAGT
GAGCGATGGT
GTATAATGGA
CTTCTTTGTC
CGCAGCAGCT
CTTTCTCATA
CCTCCGCGGC

ACTAGCCTAG
AGGAACAACA
GCAGCAGCTG
ACCTTGTCTC
ATGTTGGTCT
GCAGCTGCCC
ATATTCGGCA
GGCGCCCTCC
TTCGGCAAGG
AAGGAGCAGC

Translation of sequence g24175 into amino acid

TTGCTACCGC
AGGCACCAGC
TCTCATGCAA
CTATTTCTGG
TCCCCTTATT
TCCGCGACCA
AGGAAGGTTG
GCGACCAGGA
AAGGTAGTCA
AGGGTGACAA

CGCCGGCCGT
AGACCTTTTC
ACGTCCCTAC
AAAGGATGGC
TATATTCGGC
GGAGGAGAGC
TCAGGATATC
GGAGAGCGAT
GGACAAGTAT
GATGGCGGCT

MAVVSSLA LTTSLVAT AAGRNNNA FPPSSSRN NKAPADLF ITPKTTTT VKAAAVSC KRPYPKGA

VAAATSTL SPISGKDG GLRNQEES DGMLVFPL FIFGKEGS QDKYNGAA ALRDQEES DGMLIPPF

FVIFGKEG CQDIGHKY NNAAAAGA LRDQEESD GILVPPFF LIFGKEGS QDKYNAAA AGGLRGKE

QQOGDKMAA GAEN

Figure 2-6 Nucleotide and protein sequence of g24175 embedded with CLP-E
(MLVFPLFVI), B (MLIPPFFVI) and A (ILVPPFFLI) (linum.ca, 2010)
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Coding sequence of g38655

ATGGCTGTTG
AATAATAATG
ATTACTCCCA
CCGAAAGGAG
GGCCTCCGCA
AAGGAAGGTA
GATGGTATGT
GGCCACAAGT
GGTATACTGG
AATGCAGCAG
GGAGCTGAGA

TGTCCTCTCT
CCTTCCCACC
AGACAACAAC
CAGTTGCTGC
ACCAGGAGGA
GTCAGGACAA
TGATCCCCCC
ATAATAATGC
TCCCCCCCTT
CAGCTGGCGG
ATTAG

GGCTCTGACC
ATCCTCCTCC
AACAGTGAAA
TGCTACTAGT
GAGCGATGGT
GTATAATGGA
CTTCTTTGTC
CGCAGCAGCT
CTTTCTCATA
CCTCCGCGGC

ACTAGCCTAG
AGGAACAACA
GCAGCAGCTG
ACCTTGTCTC
ATGTTGGTCT
GCAGCTGCCC
ATATTCGGCA
GGCGCCCTCC
TTCGGCAAGG
AAGGAGCAGC

Translation of sequence g38655 into amino acid

MAAASSLA
DASLFLGI
FFWIFGKE
MLMPFFWV

FGKQGDNN KGDAVEAI LKN

TTGCTACCGC
AGGCACCAGC
TCTCATGCAA
CTATTTCTGG
TCCCCTTATT
TCCGCGACCA
AGGAAGGTTG
GCGACCAGGA
AAGGTAGTCA
AGGGTGACAA

CGCCGGCCGT
AGACCTTTTC
ACGTCCCTAC
AAAGGATGGC
TATATTCGGC
GGAGGAGAGC
TCAGGATATC
GGAGAGCGAT
GGACAAGTAT
GATGGCGGCT

LATASLVA TGAGGRNN AFLPSKNK TPNLFLNP NKTTSSTV KAVVSSSS CKRPYPKG
DDVFGKDA VAGHDNDQ DAASGQEM AADDMLMP FFWIFGKE GQQQEAEE SSDDMLMP
GQOOQEAES SDDMLLPF FWIFGKEG QQQEAESS DDMLMPFF WIFGKQQQ QOQGESSDD

Figure 2-7 Nucleotide and protein sequence of g38655 embedded with CLP-D
(MLLPFFWI), F (MLMPFFWYV) and G (MLMPFFWI) (linum.ca, 2010)
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2.4.4 Quantification of CLPs in different varieties of flaxseeds

Quantification and characterization of any compound or class of compound is
facilitated by the use of authentic compounds and suitable internal standards (Franke et
al., 1995; Balsevich et al., 2009; Kanduru et al., 2010). Most previous studies of CLPs
do not describe precise quantification due to the lack of authentic standards and the
difficult procedures required for obtaining pure individual peptides (Kaufman and
Tobschirbel, 1959; Morita et al., 1997b; Stefanowicz, 2001; Matsumoto et al., 2002).
The exceptional case was the publication by Briihl et al. (2007) that describes the
measurement of CLP-E concentrations in flaxseed oil. Based on purified CLP-E from
stored flaxseed oil obtained in a previous work of Briihl et al. (2007), an external
calibration with a coefficient of determination R? of 0.998 was established for the range
from 3-900 mg/mL. Flaxseed oil (1 g) was mixed with heptane (10 mL) and loaded onto
a C18 SPE 1000-mg cartridge. The column was eluted with heptane (5 mL, 3 times) to
remove non-polar compounds. Polar compounds remaining on the column were
recovered with a subsequent elution with methanol (5 mL, once). After solvent removal,
the extract was taken in 0.5 mL methanol and injected onto an HPLC column using a
solvent gradient that started with a mixture of methanol/water (75: 25, v/v) at a flow rate
of 1 mL/min and then changing to 100% methanol. The peak of CLP-E was observed at
a retention time of 12.43 min. The levels of CLP-E in different flax cultivars were
calculated using external calibration and the results showed the amount of CLP-E varied

from 0 to 53 mg/kg in flaxseed oils with a mean of 24 mg/kg among 21 flax varieties.

2.5 Potential for commercial production of CLPs
2.5.1 Flaxseed oil as a commercial source of peptides

CLPs derived from flaxseed oil may potentially be valuable bioactive molecules
with immunosuppressive and potential anti-cancer properties. Flaxseed oil could be
considered as an excellent commercial source for CLP recovery as these peptides are
hydrophobic and are mainly dissolved in oil after processing. However, few studies have
presented the levels of CLPs in flax material except that of Briihl ef al. (2008). In their
report levels of CLP-E among 21 flax varieties were analyzed and the data showed that

flax genotype might play a role in determining the level of CLP-E. However, the levels
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of other peptides were not measured. It is not known if the data reflects true genotypic
differences among the flax cultivars or if the variation is due to conditions of harvesting
and storage. Further investigation should be conducted to evaluate the levels of CLPs
among different flax varieties in order to find a good commercial source for peptide
recovery.

Methods were proposed for commercial extraction and concentration of peptides
from flaxseed oil using either liquid-liquid or solid-liquid extraction (Reaney et al.,
2009). However, the recovery from whole seed requires methods that are more costly,
difficult and time-consuming. These methods usually involve the use of a great amount
of solvent, labour and energy for peptide extraction and concentration (Morita et al.,
1997a, 1999; Matsumoto et al., 2001a, 2001b, 2002; Stefanowicz, 2001; Briihl et al.,
2007). Chemical synthesis of CLPs, on the other hand, provides an alternative method of
studying peptides. Wiezorek et al. (1991) described a synthetic method for CLP-A
preparation on Merrifield resin using tert-butyloxycarbonyl protected amino acids.
Trifluoro acetic acid and sulphuric acid are used to produce linear peptides, which were
split from resin and later cyclized by Castro's agent. The final peptide was purified using
HPLC. However, the synthetic method also had a very low product yield and peptide

recovery was difficult.

2.5.2 The potential of CLPs as cryptands

Cyclic peptides containing even numbers of altering D and L amino acids are
able to self-assemble and form nanotubes by intermolecular hydrogen bonding (Ghadiri
et al., 1993). The abundant presence of C=0 and N-H functional groups of CLPs would
introduce a binding cavity suitable for binding other compounds. Such compounds are
called cryptands as they are members of a class of molecules with a suitably sized cavity
for binding other molecules (Cramer, 1952; Pedersen, 1967). Cryptands could be widely
applied in food, cosmetics, cleaning products, pharmaceuticals and agriculture products
due to their multiple functions (Weber, 2005). For example, cyclodextrins, a group of
cyclic oligosaccharides, can trap molecules by forming cage and channel structures to
produce inclusion complex. This property could be used to modify the chemical

reactivity of guest molecules, fix volatile compounds, improve solubility of substances,
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solidify liquid substances and mask or preserve smell and taste. In the cosmetic industry,
cyclodextrins are added into perfumes, body creams, shower gels, air refresher and
detergent in order to control the release of aromatic oils (Prasad et al., 1999). In the food
industry, they are used for flavour delivery or protection since most of the natural or
artificial flavour compounds are volatile oils which could be included into cyclodextrins
to give better performance (Szejtli, 1998). Removing undesired compounds from food
products is another application for cyclodextrins. They are, for example, added to milk
and egg to remove cholesterol (Hedges, 1998). For drug delivery, cyclodextrins can
enhance delivery efficiency by increasing the solubility of hydrophobic drug compounds
in solution and increasing their availability at the surface of the biological barrier
(Rajewski and Stella, 1996). They are also used to mask the bitter flavour in medicine
(Fromming and Szejtli, 1994). For environmental science, organic contaminants, organic
pollutants and heavy metals from environment could be dissolved and removed by
cyclodextrins (Gao and Wang, 1998). The wide applications of cyclodextrins provide an

indication of the potential for CLPs as cryptands.
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3 MATERIALS AND METHODS
3.1 Materials

Five licensed cultivars of flaxseed (Linum usitatissimum) including Somme,
Vimy, Flanders, CDC Bethune and CDC Valour, were grown in field plots at two
locations (Saskatoon, SK and Floral, SK) in 2006 and 2008. The trials were standardized
as a randomized complete block design (RCBD) with two replications. Each plot
contained six rows 0.30 meters apart and 3.66 meters long. The seed was a generous
gift of Dr. G. Rowland of the Saskatchewan Crop Development Centre. Commercial
flaxseed was provided by Natunola Health Inc., Winchester, ON. The variety and
growing conditions of the Natunola seed are unknown. Standards of CLP-A, B, C, D, E,
F, G and Segtalin A (Seg-A) were prepared by Research Assistant P-G. Burnett, Food
and Bioproduct Sciences, University of Saskatchewan. A quality report of each peptide
is included as Appendix A. Bottles of flaxseed oil were purchased from local retail
health food stores. Descriptions on the packaging of these oils included 100% organic
cold pressed flaxseed oil (500 mL, Sangster Health Centers, Saskatoon, SK), flaxseed oil
(448 mL, Omega Nutrition Canada Inc., Vancouver, BC), certified organic flaxseed oil
(500 mL, Floral Inc, Lynden, DC), Natural Brand™ certified organic flaxseed oil (473
mL, General Nutrition Centres Inc., Pittsburgh, PA), certified organic flaxseed oil (500
mL, Gold Top Organics Ltd., Edmonton, AB). Chemicals used in the conduct of thesis

research are listed in Appendix B.

3.2 CLPs in flaxseed from different varieties
3.2.1 Oil extraction from flaxseed

CLPs, along with other hydrophobic compounds, such as TAGs, phospholipids
and carotenoids in flaxseed were first extracted for later peptide isolation. Oil extraction
protocol was modified from method 960.39 (a) of the A.O.A.C (1990). In the modified
process, acetone, instead of hexane, was used as a solvent for extractions. Flaxseed was

ground in a coffee grinder for approximately 30 s to pass through a 1.18-mm test sieve
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(12 inch-HH-BR-SS-US-40; VWR Company, West Chester, PA). Ground material (up
to 5 g) was wrapped in filter paper (Whatman No. 4, Whatman Inc., Piscataway, NJ) and
folded to fit into a cellulose extraction thimble (25 x 80 mm, Ahlstrom Atlanta LLC,
Holly Spring, PA). Extraction beakers were pre-dried in the oven for one hour at
temperature of 100°C and cooled in a desiccator before use. Acetone (50 mL) extraction
was conducted in a Goldfisch extractor (Model 22166B, Laboratory Construction CO.,
Kansas City, MO.) with the heat control set at high for 5 hours. After extraction, acetone
in the oil samples was recovered in a solvent recovery glass tube. Oil was purged with
nitrogen for 10 s and left in the fume hood for 1 h to allow for solvent evaporation
before cooling in a Pyrex® glass desiccator (2.2 L, Corning Inc., Lowell, MA). The
weights of the beaker, the beaker with oil and the sample were determined using an
analytical balance (Accuracy: 1 mg, Model: PB403, Mettler Toledo, Greifensee,
Switzerland) and two decimal places were recorded.

The oil content of the samples was calculated according to Equation

3.1.

% ail {(weight of beaker+oil)-weight of beaker
Yo oil = x

100 (3.1)

weight of sample

3.2.2 CLP isolation from acetone extracts

Silica gel 60 (230-400 mesh; column size, 0.08 % 0.5 cm; Sigma-Aldrich Canada
Ltd., Oakville, ON) flash column chromatography was utilized to adsorb CLPs and other
relatively polar compounds (e.g., pigment, phospholipid and wax) from acetone
extracted samples obtained as described in 3.2.1. Silica gel columns (vertical) were
prepared as follows: a cotton ball was placed in the bottom of a 3 mL plastic syringe
with sand (50-70 mesh; 1 cm height) added on top for support. Silica gel (0.5 g) was
slurried in hexane (1 mL) with a glass stirring rod in a 20 mL beaker and poured onto
the sand then covered by another layer of sand (50-70 mesh; 0.5 cm height) (Figure 3-1).
The plastic syringes were inserted into the Luer-Lok™ fittings (Becton, Dickinson and
Co.) of a Visiprep™ solid phase extraction vacuum manifold (Model: 12-port, Supelco,
Bellefonte, PA). The silica gel columns were equilibrated with 2 mL of hexane for 2 min

before a mixture of oil sample (1 mL) and hexane (1 mL) was loaded onto the gel. The
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Figure 3-1 Silica gel column (a) and Visiprep™ solid phase extraction vacuum

manifold (with one silica gel column in place) (b) used for CLP isolation
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column was eluted with solvents of increasing polarity under vacuum pressure (7.1x10*
Pa) : 100% hexane (10 mL), 20% ethyl acetate (EtOAc) in hexane (10 mL), 50% EtOAc
in hexane (10 mL), 100% EtOAc (10 mL) and 10% methanol (MeOH) in
dichloromethane (CH»Cl,) (10 mL). CLPs were known to elute with 100% EtOAc and
10% MeOH in CH,Cl, wash solvents according to previous studies conducted by Y-H.
Jia (2008). This finding was re-confirmed in this study (Appendix C). The two peptide
enriched fractions were combined in a 100 mL round bottom flask. The solvent was
removed by evaporation under reduced pressure in a rotary evaporator (approximately
9,000 Pa, 40°C water bath, Rotavapor R-200, Buchi, Westbury, NY). The residue in the

flasks was collected for further analysis.

3.2.3 HPLC method development for CLP quantification

The fractions from silica gel isolation were analyzed by reverse phase HPLC. An
Agilent 1200 series HPLC system (Agilent Technologies Canada Inc., Mississauga, ON)
equipped with degasser (G1322A), quaternary pump (G1311A), auto-sampler (G1316A)
and diode array detector (DAD) (G1315D; wavelength range 190-600 nm) and a
ZORBAX Eclipse XDB-C™ 18 column (5 um particle size, 150 x 4.6 mm [.D.) was

used for all analyses.

3.2.3.1 Calibration curves of CLPs with internal standard

CLP standards and Seg-A (10 mg, each) were weighed using an analytical
balance (Accuracy: 0.1 mg, Model: P/PI-214, Denver Instrument, Bohemia, NY) and
dissolved in 5 mL of methanol in a three-dram vial to make stock solutions of 2 mg/mL.
The vials were sealed with Parafilm™ (Pechiney Plastic Packaging, Chicago, Il) to limit
solvent evaporation. A mixture of CLP-A, B, C, D, E, G each at 200 pg/mL and Seg-A,
at 100 pg/mL, was prepared by adding 100 puL of each CLP, 50 uL of Seg-A stock
solution and 350 puL of methanol (1 mL in total) to a 1.5 mL HPLC vial using a
graduated syringe (100 pL, Model: 810 RNW, Hamilton Company, Reno, NV). The
sample was filtered with 0.45 uM PTFE syringe filter (Whatman Ltd., Psicataway, NJ).
The sample (15 pL) was injected onto the HPLC column and the elution gradient

provided in Table 3.1 was initiated. The retention times for each peptide were
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determined by three injections each day for four consecutive days. System precision was
determined by relative standard deviations of signal intensity of each peptide.

Peaks of UV absorbance were detected over the wavelength range from 190-300
nm. Eluting peaks were detected at wavelengths of 214 nm and 244 nm with a 10-nm
bandwidth and against a reference signal at 300 nm with a 10-nm bandwidth and at 280
nm with a 10-nm bandwidth against a reference signal at 340 nm with a 100-nm
bandwidth using Chemstation for LC 3D™ system software (Agilent Technologies
Canada Inc., Mississauga, ON). Area integration of eluting peaks was obtained at 214
nm with 10-nm bandwidth. UV spectra of the peptides were recorded by selecting the
maximum spectrum of each LC peak in the chromatogram using Chemstation software.
Calibration curves for CLP quantification were established between 10 and 500 pg/mL
in the presence of Seg-A at a constant concentration of 50 pg/mL. The concentrations of
CLP, x-axis and the area ratio of the peaks of CLP to Seg-A, y-axis were plotted as a
standard curve. CLPs concentration was determined by calculating peak area relative to
the internal standard using the standard curves. Three samples were prepared at each
concentration of CLPs and injected on three consecutive days to establish the calibration
curves.

No standard was available for CLP-F. The concentration of CLP-F was estimated
based on CLP-G. This assumption is based on the highly similar polarity, molecular
weight and chromophore composition shared by the two compounds (Fig. 2-5; Appendix

D).

3.2.3.2 Accuracy of HPLC methods

A set of quality control solutions (blind samples) were prepared at four
concentrations in methanol (50 ug/mL, 125 pg/mL, 200 pg/mL and 500 pg/mL) by
Research Assistant M. Bagonluri, Plant Sciences, University of Saskatchewan. The
accuracy of the HPLC method in measurement of the concentration of these solutions
was determined using the calibration curves (n=3). Recovery was calculated according

to Equation 3.2.

calculated concentration

%% recoverv= -
actual concentration

43



Table 3-1 Solvent program for CLP identification and quantification by HPLC

Time Solvent composition Flow rate

(min) (% acetonitrile)” (mL/min)

0 30 0.5
3 40 0.5
6 45 0.5
7 65 0.5
19 65 0.5
22 66 0.5
23 70 1.0
24 100 1.0
26 100 1.0
31 30 1.0

# Gradient of acetonitrile in water

44



3.2.4 Quantification of CLPs in flaxseed from different varieties

The aforementioned five licensed cultivars of flaxseed including Somme, Vimy,
Flanders, CDC Bethune and CDC Valour, which were grown in a randomized complete
block design (RCBD) in two locations (Floral and Saskatoon, SK) in 2006 and 2008,
were selected for CLP quantification. Oil was extracted once for each seed sample and

peptide extracts were analyzed twice by HPLC as described above.

3.2.4.1 Sample preparation for CLP quantification using internal standard
Segetalin-A

Flaxseed oil and CLPs, were extracted by acetone from ground flaxseed as
described in 3.2.1. Oil samples (I mL) were then weighed in a 10 mL beaker using an
analytical balance (Accuracy: 1 mg, Model: PB403, Mettler Toledo, Greifensee,
Switzerland) and the weight was recorded to two decimal places. Seg-A solution (25 pL,
2 mg/mL) and hexane (1 mL) were added to the oil. The solution was swirled by hand
before loading onto a silica gel column. After elution from the column, as described
previously (3.2.2), the peptide fraction was taken to dryness and dissolved in 1 mL of
MeOH which was subsequently filtered (0.45 uM PTFE syringe filter, Whatman Ltd.,
Piscataway, NJ) prior to HPLC analysis (as described in 3.2.3). The integrated areas of
each eluting peptide observed in the chromatograms were recorded and the
concentrations of CLPs in flaxseed oil were calculated using calibration curves (as
described in 3.2.3). Oil content was determined according to Equation 3.1. The

concentration of CLPs in flaxseed was calculated using Equation 3.3.

_ calculated concentration in oil _ o
concentration of CLP = X oil content (3.3)
p

Where: calculated concentration in oil (ng/g) was obtained from the calibration curve; p
(g/mL) was the density of the flaxseed oil; and oil content (%) was obtained from
Equation 3.1.
3.3 CLPs in flaxseed fractions

Flaxseed (Natunola, 2008) was chosen for the study of CLP levels in flaxseed

fractions. The variety and growing conditions of the Natunola seed were unknown (plot
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grown pedigreed seed was not available at the time of the study). Flax fractions
including gum, seed coat (called “hull”), cotyledon and oil bodies were prepared for
CLP identification and quantification using the HPLC method. The seed was separated
into fractions and subsequently analyzed three times beginning with the same flaxseed

sample.

3.3.1 Water degumming and seed coat removal

Flaxseed mucilage was extracted by the method of Bhatty (1993). The seed
samples (10.00 g) were added to hot distilled water (100 mL at 80°C) in a 250 mL glass
beaker and extracted overnight with stirring at 400 rpm at room temperature (25°C). The
mucilage was separated from the seeds using a 40 mesh screen (12 inch-HH-BR-SS-US-
40; VWR Co., West Chester, PA) then freeze dried (Model 77540, Labconco
Corporation, Kansas City, MO) until the weight of the dry material (called “gum”)
became constant. Degummed seeds were manually dissected using a stainless steel
spatula (length: 17.8 cm, width: 0.3 cm, VWR International LLC., Arlington Heights,
IL) by applying pressure on the seed coat. The seed coats were, thereby, separated from
cotyledons. The cotyledon fraction was collected, water-rinsed twice with distilled water
(10 mL) and dried overnight in a paper towel at room temperature. The seed coats from
this separation were treated similarly to the cotyledons. The weight of each fraction
(gum, seed coats, cotyledons and whole seeds) was determined using an analytical
balance (Accuracy: 1 mg, Model: PB403, Mettler Toledo, Greifensee, Switzerland) and
recorded to the nearest 10 mg. Oil was extracted from gum, seed coats, cotyledons and
whole seeds with acetone using the method described in 3.2.1. The oil content of each
fraction was determined according to Equation 3.1. Quantification of CLPs was
performed as described in 3.2.4.1.

The gum fraction contained only a trace amount of oil (0.02 g). The beaker used
for gum extraction was directly washed with MeOH (10 mL) twice and the extract was
placed in a 50 mL round bottom flask to ensure the recovery of peptides from this
fraction. Methanol was removed by evaporation under reduced pressure in a rotary
evaporator (approximately 9,000 Pa, 40°C water bath, Buchi, Westbury, NY) and the
residue in the flasks was dissolved in MeOH (1 mL). Subsequently Seg-A solution (25
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uL, 2 mg/mL) was added to the MeOH and the solution was filtered (0.45 uM PTFE
syringe filter) (Whatman Ltd., Piscataway, NJ) before HPLC analysis. HPLC
chromatography was performed as described in 3.2.3 and the concentrations of CLPs in

flaxseed fractions were calculated as described in Equation 3.3.

3.3.2 Oil body (oleosome) isolation

Oil bodies were isolated using the procedure of Simpson (1989). Whole seeds
(20 g, Natunola) were first soaked overnight in 200 mL of 0.5 M NaCl in 50 mM Tris-
HCI buffer, pH 7.2, at 4°C. After soaking, an additional 100 mL of buffer was added and
the mixture was homogenized in a blender for 3 min at 22,000 rpm (Model 8100,
Eberbach Corporation, Ann Arbor, MI). The homogenate was centrifuged in a chilled
rotor (4°C) at 9,000 rpm for 60 min (14,334 x g, Model J-E, JA-10 Rotor, Beckman
Coulter, Inc., Palo Alto, CA) to form three layers: a floating fat pad, a supernatant
fraction and a precipitated solid bottom residue. The floating brown-white fat pad was
removed by a flat stainless spatula (VWR International LLC., Arlington Heights, IL).
The fat pad was homogenized again using the same conditions in five volumes of chilled
(ice bath), fresh buffer. The centrifugation-homogenization procedure was performed
five times and the final fat pad was transferred to a 50 mL centrifuge tube (VWR
International LLC., Arlington Heights, IL). The supernatant (also called “serum’) was
separated from the bottom solid residue by decanting. The fat pad and serum were
freeze-dried (Model 77540, Labconco Corporation, Kansas City, MO) and fraction
weights were recorded to the nearest 10 mg before oil extraction. Solid residue was
stored at 4°C in a refrigerator (Model 153, Fisher Scientific, Dubuque, IA) before oil
extraction.

The oils from serum and bottom residue were extracted as described in 3.2.1
except the samples were not ground. Oil was extracted from the dried oil bodies using 5
volumes of hexane by shaking the hexane-oil body mixture by hand for approximately 2
min. The hexane layer was removed to a 125 mL Erlenmeyer flask (VWR, Edmonton,
Canada). The remaining solid was then mixed with 10 volume of EtOAC and shaken by
hand for 2 min. After mixing the EtOAC solution was filtered (Whatman, No 2 filter
paper, Whatman Ltd., Piscataway, NJ) and the filtrate was combined with
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aforementioned hexane layer. Solvents (hexane and EtOAC) were removed from the
fraction using a rotary evaporator under reduced pressure (approximately 9,000 Pa, 40°C

water bath, Buchi, Westbury, NY). The CLPs were quantified as described in 3.2.4.1.

3.4 Effects of processing on the distribution of CLPs
3.4.1 Crude oil extraction by expeller press

Flaxseed (1 kg, CDC Bethune, 2006, Floral) was extracted using a continuous
oilseed expeller press (Komet, type CAS59C, IBG Monforts Oekotec GmbH & Co.,
Germany) operating at 88 rpm. No heat was applied during pressing. Expeller pressed
oil was allowed to settle for 2 days to produce both clear crude oil and sediment which is
also known as foots. Subsequently, the upper oil layer was decanted. The foots fraction
was separated from the remaining oil by filtration under vacuum (approximately 9,000
Pa) with a Buchner funnel lined with a glass-fibre filter (Whatman, Grade GF/A,
Whatman Inc., Piscataway, NJ). The oil recovered by filtering the foots was combined
with the crude oil that was obtained by sedimentation. Foots and pressed meal were
dried in the fume hood at room temperature overnight and then stored at 4°C in a
refrigerator (Model 153, Fisher Scientific, Dubuque, 1A) before solvent (Goldfisch)
extraction . The concentrations of CLPs in each fraction were calculated as described in
Equation 3.3. Each sample was injected into the HPLC once. This experiment (including
oil processing, settling, foots filtration, acetone extraction, silica gel isolation and HPLC
quantification) was repeated three times and the results were presented as the average of
these three replicates.

Commercial flaxseed oil from local retail health food stores including Omega
(Omega Nutrition Canada Inc., Vancouver, BC), GNC (General Nutrition Centres Inc.,
Pittsburgh, PA), Flora (Floral Inc, Lynden, DC), Sangster (Sangster Health Centers,
Saskatoon, SK) and Gold Top (Gold Top Organics Ltd., Edmonton, AB) were selected
for comparison of CLPs in commercial flaxseed oils and crude oil produced in the lab
(after two days settling). Peptides from three bottles of each brand from different lots
(purchased on three days from one retail outlet) were utilized for this experiment. The
CLPs were quantified as described in 3.2.4.1. Every sample was subject to HPLC

analysis once.
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3.4.2 Acid degumming for removal of CLPs from flaxseed oil

The effect of acid degumming on the solubility of CLPs in lab-pressed flaxseed
oil (CDC Bethune) was determined by treating flaxseed oil with aqueous phosphoric
acid (HsPOy). In the first study, flaxseed oil (50 mL) was heated on a hot plate until it
reached 80°C after which H;PO4 (5 mL, 75%) was added. The sample was mixed
vigorously with a magnetic stirrer at 600 rpm for 5 min at room temperature then
centrifuged in a chilled rotor (4°C, 9,800 x g, Model J-E, JA-25.50 Rotor, Beckman
Coulter, Inc., Palo Alto, CA) for 30 min. After centrifugation, the upper oil layer was
decanted from the bottom gum. In the second, third and fourth experiments, acid
degumming condition was the same as described above except 1 mL of H;PO4 (75%),
0.5 mL of H3PO4 (75%), 0.5 mL of H3PO4 (50%) were added, respectively. In the fifth
experiment, 0.05 mL of H3PO4 (75%) was first added to the flaxseed oil (50 mL) and the
acid degumming was performed as described above. After centrifugation, the upper oil
was taken to perform a second acid degumming treatment using 0.05 mL of 75% H3POs,.
The same procedure for acid degumming was followed. Experiments were repeated
three times.

Untreated crude oil was used as a control. The CLPs were quantified as

described in 3.2.4.1. Every sample was subject to a single HPLC analysis.

3.4.3 CLPs from phospholipid gum after acid degumming

After decanting oil (section 3.4.2) the phospholipid gum pellet (from 50 mL
flaxseed oil), remaining in the centrifuge tube, was mixed with hexane (10 X volume)
and mixed vigorously by hand. The hexane extract was filtered (Whatman, No. 2,
Whatman Inc., Piscataway, NJ) and the filtrate was combined with an equivalent volume
of MeOH. The mixture was transferred to a separatory funnel (125 mL) and the phases
were allowed to separate. After 3 hours, the MeOH phase (upper layer) was recovered
and concentrated under reduced pressure in a rotary evaporator (approximately 9,000 Pa,
40°C water bath, Rotavapor R-200, Buchi, Westbury, NY). The concentrate was washed
twice with diethyl ether (Et,O) (100 mL). After each wash, the upper layer was decanted
and the residue was concentrated under reduced pressure using a rotary evaporator

(approximately 9,000 Pa, 40°C water bath, Rotavapor R-200, Buchi, Westbury, NY).
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The concentrate was re-suspended in acetone (10 % volume), followed by filtration
(Whatman No. 2, Whatman Inc., Piscataway, NJ). The acetone filtrate was concentrated
by a rotary evaporator under reduced pressure (approximately 9,000 Pa, 40°C water
bath, Rotavapor R-200, Buchi, Westbury, NY). The collected peptides were taken into
50 mL of MeOH. A portion of the MeOH solution (1 mL) was mixed with 25 pL of 2
mg/mL Seg-A before filtering with a 0.45 uM PTFE syringe filter (Whatman Ltd.,
Piscataway, NJ). Each sample was injected once onto HPLC for analysis as described in
3.2.3 and the concentration of CLPs was calculated according to Equation 3.3. This
experiment was repeated three times.

After elution from the column, as described previously, the peptide fraction was
taken to dryness and dissolved in MeOH (1 mL), which was subsequently filtered (0.45
uM PTFE syringe filter, Whatman Ltd., Piscataway, NJ) prior to HPLC analysis (as
described in 3.2.3).

3.4.4 Alkali refining for removal of CLPs from flaxseed oil

Lab-pressed flaxseed oil (CDC Bethune) was refined by addition of alkali into
flaxseed oil to neutralize the FFAs (e.g., oleic acid). In the first experiment, flaxseed oil
(50 mL) was heated on a hot plate until temperature of the oil reached 80°C and then 0.5
mL of 4M NaOH was added. The sample was mixed vigorously with a magnetic stirrer
at 600 rpm for 5 min at room temperature then centrifuged (9,800 x g, Model J-E, JA-
25.50 Rotor, Beckman Coulter, Inc., Palo Alto, CA) at 4°C for 30 min, to facilitate
separation of the oil and soap that formed from the neutralization. In subsequent
experiments, the conditions of alkali refining were the same as described above except
0.5 mL of 4 M KOH, 0.5 mL of 2 M K,COs3 0.5 mL of 2 M Na,CO3;, 0.5 mL of
saturated NaHCO3, 1.3 M K;3PO4and 0.5 mL of 1.3 M Na3;PO4 were used, respectively.
Experiments were repeated three times.

Crude oil without alkali treatment was used as a negative control. The CLPs

were quantified as described in 3.2.4.1.
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3.5 Statistical analysis
During extraction CLP oxidation was observed (CLP-B was readily oxidized to

CLP-C, CLP-H to CLP-G, CLP-I to CLP-F). As the oxidation was not a controlled
experimental variable, statistical analysis of each peptide separately was not possible.
During the course of this study the genomic sequence of flax was published on the world
wide web (linum.ca, 2010). Searches of this database have revealed that peptides CLP-
A, B, C and E are the product of a gene sequence (g24175), additionally CLP-D, F, G, H
and I were the product of gene g38655 (linum.ca, 2010). The reliability of CLP
quantification was improved by grouping peptides that were products of a single gene
reading frame. Products of g24175 are hereafter referred to as CLP-24175 (total CLPs
expressed by gene g24175) and CLP-38655 includes all CLPs expressed by gene
reading frame g38655. These groupings were used in subsequent statistical analysis.

All statistical analyses were conducted using the Statistical Analysis System
(SAS for Windows®, Release 9.2, SAS Institute Inc., Cary, NC).

One way ANOV A was used to analyze the effect of cultivar on the level of CLPs
in flaxseed. The following second-order polynomial equation was utilized to analyze the

differences of CLPs among different flax cultivars (Equation 3.4).
Yij =u+T +Sij (34)

Where Yj; is the observed value for the j™ replicate of the i™ cultivar. p is the grand
mean. T; is the effect for the ith cultivar. g;1s the random error associated with the Yj;
experimental unit.

Post-hoc multiple comparison test was Tukey's test. Differences were considered
significant at P < 0.05. Results were expressed as means + SD (standard deviation).

In order to analyze the effects of variety, year, location and their interactions on
the expression of CLPs, analysis of variance by PROC MIXED procedure, Pearson
correlation (to estimate the linear relationships between the expressions of group CLP-
24175 and CLP-38655) and variance components using PROC VARCOMP procedure
were performed according to SAS methods. The following second-order polynomial

equation was utilized (Equation 3.5).
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Yix = 1 T aitbjrabjtcitacitbejtabei e (3.5)

Where Y is the dependent variable observed value in level & of the ij treatment. p is the
grand mean. a is the effect of level i of variety. b is the effect of level j of location. ¢ is
the effect of level k of year. abj; is the effect of using level i of variety with level j of
location. bcj 1s the effect of using level j of location with level k of year. ac;y is the effect
of using level i of variety with level k of year. abcjjc is the effect of using level i of
variety with level j of location and level k of year. g 1s the residual.

The following second-order polynomial equation was utilized to analyze the
differences of CLPs among different commercial flaxseed oils and among different

processing treatments by one-way ANOVA(Equation 3.6).
Y=+ 1itg (3.6)

Where Yj; is the observed value for the j™ replicate of the i™ treatment. p is the grand
mean. T; is the treatment effect for the ith treatment. ¢;is the random error associated
with the Y experimental unit.

Post-hoc multiple comparison test was Tukey's test. Differences were considered

significant at P < 0.05. Results were expressed as means + SD (standard deviation).
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4 RESULTS AND DISCUSSION

4.1 Oil content of flaxseed and flaxseed materials

Acetone (polarity index: 5.1) is a suitable solvent for extracting oil and non-oil
compounds from a variety of plant materials. For example, acetone was used for
extraction of fatty acids from beechwood (Demirbas, 1991). Eaves et al. (1952)
observed that the crude oil yield of cottonseed obtained by acetone extraction was
comparable to that recovered by hexane extraction. In addition, non-oil materials
including pigments and gossypol were found in the acetone extract (Eaves ef al., 1952).
Stefanowic (2001) used acetone to isolate CLPs from ground flaxseed (1:20, w/v) at
room temperature. In this project, acetone was chosen for simultaneous extraction of
flaxseed oil and CLPs due to the solubility of CLPs in acetone, as well as the better
extraction power of acetone in the presence of water in analyzed samples. The oil
contents of flaxseed and flaxseed materials including seed coat (hull), gum, cotyledon,
oil bodies, serum, residue, crude oil, meal and foots, are listed in Table 4-1. The oil
content of flaxseed from different varieties varied from 38.0% to 42.4%. The variance
may be caused by the genetic or environmental differences among flaxseed samples,
moisture difference among flaxseed samples and/or experimental errors during
processing (Flax Council of Canada, 2011). It was worth noting that these data were
lower than the oil contents published by the Flax Council of Canada for the same
varieties (42.5%-45.7%) (2011). The difference could be explained by the fact the oil
content obtained in this project was based on flaxseed determined on an “as is” basis
while the reported data from the Flax Council of Canada was calculated on a dry matter
basis.

In flaxseed fractions, the oil content of the cotyledon (46.3%) was higher than
that of the seed coat (25.5%) or gum (1.9%). These results correspond with previous
studies where 51.0% and 22.9% oil content (dry basis) were found in cotyledons and

seed coat, respectively (Dorrell, 1970). The trace oil found in the gum fraction might be
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Table 4-1 Oil content of flaxseed and flax materials, as is basis (n means the number of

the tested samples)

(n=4) Weight (g) Oil content (%)
Somme Mean 5.0 41.5
SD - 2.1
CDC Mean 5.0 38.0
Valour SD - 1.41
Mean 5.0 40.7
Flander SD i 29
CDC Mean 5.0 42.4
Bethune SD - 0.7
Vim Mean 5.0 41.7
Y SD ; 1.1
(n=3) Natunola
Mean 10.0 409
Whole seed SD i 0.2
Mean 5.2 46.3
Cotyledon SD 0.1 0.7
Mean 4.1 25.5
Seed coat SD 0.1 0.3
Gum Mean 0.7 1.9
u SD 0.1 0.8
(n=3) Natunola
Mean 20.0 409
Whole seed SD i 0.2
. } Mean 4.9 88.7
Oil bodies D 0.1 12
Serum Mean 2.7 24.3
SD 0.2 0.6
) Mean 11.0 28.0
Residue SD 0.3 2.0
(n=3) CDC Bethune
Mean 1000.0 42.4
Whole seed SD i 0.3
) Mean 343.9 100.0
Crude oil SD 6.4 )
Mean 575.4 14.9
Meal SD 10.5 3.6
Foots Mean 354 54.1
SD 4.0 4.3
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due to contamination during processing. Oil bodies are the main organelle for oil
storage in the plant seed (Huang, 1996). In this project, the oil content of the oil body
fraction was 88.7%. The oil contents of serum (24.3%) and residue (28.0%) were
much lower. This is typical as the low density of the oil bodies causes them to mostly
distribute in the fat pad after homogenization and centrifugation.

Flaxseed meal produced by pressing had an oil content of 14.9%. The remaining

oil was found in sedimented foots (oil content of 54.1%).

4.2 CLP isolation

Silica gel was used by Briihl et al. (2007) to isolate cyclolinopeptides from
flaxseed oil. In this project, silica gel columns were also used for CLP isolation from
flaxseed oil at the ratio of 1:2 (w/v, silica to oil). Less polar solvent washes (such as
hexane, 20% EtOAC in hexane, 50% EtOAC in hexane) were used to elute low polarity
neutral compounds of flaxseed oil (e.g., TAG, wax and pigments), while 100% EtOAC
and 10% MeOH in Dichloromethane (DCM) eluted CLPs from the silica gel.

4.3 CLP identification and quantification by HPLC

Briihl et al. (2007) determined the CLP-E concentration in flaxseed oil using an
external standard method. In their study, an external calibration curve was established
from 3-900 pg/mL CLP-E with a coefficient of determination of 0.998. However, the
calibration curve or equation was not included in their publication. CLP standards have
not been available to previous researchers and, therefore, there is no other literature
available on the CLP concentration in flaxseed tissues. In the current study, a HPLC
method for CLP detection and quantification was developed using Seg-A as an internal
standard. Seven peaks were observed in HPLC chromatograms of flaxseed oil extracts
after addition of the standard including Seg-A, CLP-G, CLP-C, CLP-E, CLP-D, CLP-B
and CLP-A respectively, (Figure 4-1). Absorption of ultraviolet light by chromophores
in the CLPs provided a signal that was readily detected by a diode array detector. These
chromophores include peptide bonds (214 nm), phenylalanine (260 nm) and tryptophan
(280 nm) which are useful for peptide detection, characterization and quantification

(Marshak, 1996; Pace et al., 1995). In HPLC chromatograms, all six CLPs at 0.2 mg/mL
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Figure 4-1 HPLC chromatograms of CLP-A, B, C, D, E, G (0.2 mg/mL, each) and
Seg-A (0.1 mg/mL) at the wavelengths of (a) 214, (b) 244 and (c) 280
nm with a bandwidth of 10 nm. Defaulted reference signals were used
(300 nm with 10 nm bandwidth for 214 and 244 nm, 340 nm with 100
nm bandwidth for 280 nm). HPLC conditions are provided in Table 3-1.
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presented useful absorbances (over 150 mAU) at 214 nm due to the strong absorption of
peptide bonds and conjugated double bonds in aromatic amino acids. Comparatively
weaker absorbance (less than 20 mAU) at 244 nm was found in all peptides. Three
standards (CLP-D, G and Seg-A) all had weak absorbances (around 40 mAU) at 280 nm
due to the presence of the indole group of tryptophan (Trp) in their structure. The
complete UV spectra of Trp-containing peptides (190 nm-300 nm) obtained from HPLC
chromatograms confirmed this observation (Figure 4-2).

In a previous report of chromatographic conditions for separation of
cyclolinopeptides, Briihl et al. (2007) separated five peptides (CLP-F, G, C, E and A)
with elution times at 20-30 min. They reported that crude extracts (4.4 mg) were
dissolved in water/ethanol (1:1, v/v; 1.5 mL) and 100 pL of the aliquots were injected
onto a 250 mm x 4 mm, 5 um LiChrospher 100 RP-18 column. Chromatography was
performed using a mixture of methanol/water (from 75/25 to 100/0, v/v; within 25 min).
In the current study, a shorter column (150 mm % 4.6 mm, 5 um) and a different solvent
system (acetonitrile/water) were employed. The same CLPs were more evenly
distributed throughout the chromatogram, eluting between 12 and 25 min (Table 4-2).

The coefficient of variation (CV) of HPLC elution time was less than 3% for all
CLP measurements, which indicated good reproducibility of HPLC. Calibration curves
for each peptide were established with the origin (0, 0) included in each standard curve
(Appendix E). The equations extracted from calibration curves were used to calculate
the concentrations of CLPs of unknown samples (Table 4-3).

Quality control solutions of CLPs were made by another analyst in the lab to test
the accuracy of HPLC for CLP determination. The recovery of CLPs ranged from 92%
to 115% for a concentration of 50 pg/mL and from 95% to 118% at 125 pg/mL. The
apparent high recovery of 115-118% could be explained by human and systematic errors
when dilute samples were handled. At higher concentrations, the coefficient of variation
of recovery was reduced and the range of results was consistent with 100% recovery;

94%-104% at 200 pg/mL and 95% to 103% at 500 pg/mL (Table 4-4).

4.4 CLPs content of flaxseed from different flax cultivars

With the exception of the report by Briihl er al. (2007), the concentration of
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Figure 4-2 Comparison of UV spectra of Seg-A, CLP-G and CLP-D (Trp-containing
peptides) and CLP-C, B, A and E (Trp-free peptides) (in methanol) extracted
from HPLC chromatograms using Chemstation. HPLC conditions are listed
in Table 3-1. Elution times: Seg-A (8.86 min), CLP-G (12.91 min), CLP- C
(13.77 min), CLP-E (15.84 min), CLP-D (17.31 min), CLP-B (21.74 min)

and CLP-A (24.22 min).

58




Table 4-2 Retention times of Seg-A and CLPs

Retention time'  CV? Area’ CcV?

(min) (%) (mAUXxs) (%)

Seg-A 8.79 1.41 4203 1.49
CLP-G 12.83 0.46 5945 1.00
CLP-C 13.61 1.95 3875 1.43
CLP-E 15.72 0.77 3507 2.72
CLP-D 17.22 0.99 6705 1.32
CLP-B 21.55 1.02 2453 2.34
CLP-A 24.05 0.84 2080 2.74

" Mean of retention time for 12 runs (three runs/day for four days)
? Coefficient of variance=standard deviation/meanx100%

3 Mean of peak area for 12 runs (three runs/day for four days)
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Table 4-3 Quantification equations for CLPs using Seg-A as internal standard

CLPs Equation R squared

CLP-A  Y’=(X+0.0398)/5.6897  0.9984
CLP-B  Y=(X-0.0104)/5.9165 0.9998
CLP-C  Y=(X+0.0015)/9.6736 0.9999
CLP-D  Y=(X-0.0125)/15.672 0.9997
CLP-E  Y=(X+0.0477)/9.848 0.9990

CLP-G  Y=(X+0.0349)/16.313 0.9993

*X=Area ratio of CLP/Seg-A from the HPLC chromatogram

Y= Concentration of CLP (mg/mL) in analyzed sample
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Table 4-4 Accuracy for assay solutions using HPLC quantification

Calculated concentration Reported concentration Recovery

(ng/mL) (ng/mL) (%)
57 50 114
123 125 99
CLP-A
197 200 99
491 500 98
46 50 92
136 125 109
CLP-B
208 200 104
475 500 95
58 50 115
119 125 95
CLP-C
188 200 94
515 500 103
56 50 113
147 125 118
CLP-D
188 200 94
499 500 100
55 50 110
125 125 100
CLP-E
190 200 94
495 500 99
51 50 102
116 125 93
CLP-G
204 200 102
473 500 95
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CLPs in flaxseed has not been reported. In Briihl ez al. (2007), CLP-E was determined
in the oil of 25 flaxseed varieties during storage. This study provided analysis of single
samples of each flax variety. A study involving repeated sampling of the same varieties
grown in plots might overcome the limitations of the previous study and determine the
range of flaxseed peptide content. In the current research, flaxseed samples of five
cultivars grown at two locations in two growing seasons were analyzed to study the
possible effects of both genotype and environment on the concentration of CLPs in
flaxseed. The CLP content of flaxseed differed significantly among varieties (Table 4-
5).

The one-way ANOVA analyses showed there were significant differences in
single and overall CLP levels among the five varieties. Somme had the highest levels of
CLP-A (65.9 ug/g), D (42.5 pg/g), F (16.6 ng/g), G (50.0 ug/g) and overall CLPs (302.9
ug/g). The peptide levels of CDC Bethune and CDC Valour were similar; CLP-A
concentrations found in this study were lower than the literature report for whole seed
(44-66 pg/g vs. 70 ug/g) (Morita et al., 1999). CLP-B, CLP-H, CLP-I were not found in
any of the flaxseed samples, which may be consistent with the trace amounts (2 pg/g, 2
ug/g and 0.7 pg/g, respectively) previously reported (Matsumoto et al., 2001b). Higher
concentrations of CLP-C were found in oil samples than in flaxseed (54-80 pg/g vs. 37
ug/g). CLP-D concentrations varied among different varieties, in which CDC Valour
and Flanders had comparable concentrations (12-43 pg/g vs.15 png/g). CLP-E
concentrations also showed significant variability, where CDC Valour shared similar
results with the literature (46 ug/g-71 pg/g vs. 58 ng/g). Equal or higher concentrations
of CLP-F and G were found in this study than previous literature reports (8 ng/g -17
ug/g vs. 8 ug/g, 24 ng/g -51 ng/g vs. 24 ng/g). The levels of CLP-C, CLP-F and CLP-G
in all of the analyzed samples were higher than in those published previously. This
observation may be due to methionine oxidation of CLP-B, CLP-H, CLP-I, or genetic
and/or environmental differences among different flaxseed cultivars.

Analysis of CLPs was complicated by methionine oxidation. According to the
literature, methionine can be transformed to its oxidized forms (methionine sulfoxide
and methionine sulfone) by chemical and biological means (Cuq et al., 1973; Shechter,

1986). Hydrogen peroxide proved to be effective in oxidizing methionine in an acid
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environment (Shechter, 1986). The superoxide anions produced in oxidative metabolism
in biological systems could oxidize methionine to the sulfoxide (Vogt, 1995). Briihl et
al. (2007) found a rapid increase in CLP-E in flaxseed oil (from 0 mg/kg to 843 mg/kg)
stored over 150 days due to oxidation. In all the samples analyzed, the methionine-
containing peptides, including CLP-B, CLP-H and CLP-I, were not observed. These
methionine containing peptides were possibly oxidized by the extraction procedure
(Appendix F). They were likely converted to CLP-C, CLP-G and CLP-F, respectively
with the exposure to heat and oxygen during oil extraction (Figure 4-3).

High intraspecific variation of secondary metabolites might be the other reason
for the difficulty in measuring CLP levels in multiple samples from the same flaxseed
variety. Unlike primary metabolites (such as protein, carbohydrate and lipid) that are
indispensable, uniform and conserved for plant growth and development, secondary
metabolites (such as flavonoids, lignan, CLPs, etc.) are often unique, diverse and
adaptive to their environment (Hartmann, 1996). The variance in CLP concentration in
different flaxseed varieties has not been thoroughly studied, except for the study of CLP-
E changes during storage by Briihl ef al. (2007). CLP-E levels in that study showed great
variance from 0 mg/kg to 53 mg/kg among 25 flaxseed varieties at the beginning of the
study. After a 150-day storage period, the levels of CLP-E increased to above 600 mg/kg
without other obvious changes noticed in flaxseed oil. The large intraspecific variance of
CLP-E content at the beginning of the study and the corresponding increase in CLP-E in
the sample over time indicated uncertainty in measuring CLPs in flaxseed oils,
especially where single samples and measurements were considered.

Due to the transformation of CLPs during processing (CLP-B could be oxidized
to CLP-C, CLP-H to CLP-G, CLP-I to CLP-F), statistical analysis of each peptide
separately may not be meaningful. As it was recently discovered that cyclolinopeptides
are encoded in genes that have several peptides in one gene, it is proposed that CLP-A,
B, C and E be grouped (CLP-24175) for statistical analysis as the products expressed by
gene g24175, whereas CLP-D, F, G, H and I are also grouped (CLP-38655) as the
products of gene g38655. The contents of CLP-24175 and CLP-38655 differed among
varieties (Table 4-6).

64



Methionine

ﬁ%(’:g | ] \

Koo

I’..
-0

':f°
l}
o %

-~
22X
é?

- u
NH " o Qm’ " )
HN — nozc HN
|\ ‘,fj( CLP- ,.,Io\O :ﬁ\oi'm CLP-F ”:]:O\Q

/H!}

Ry

Figure 4-3 Transformation of CLP by oxidation of methionine to methionine

sulfoxide

65



Table 4-6 CLP content (ng/g) of flaxseed varieties grown at two locations for two

years
Mean' of CLP- Mean' of CLP-
Variety 5 Range 3 Range
24175 38655
CDC 200.85 123.60-257.90 72.11° 29.40-129.20
Bethune
Flanders 152.05° 89.30-208.80 50.45° 18.20-91.10
Somme 192.73% 138.90-243.10 110.15% 88.30-124.40
CDC 167.05° 113.20-235.20 54.05° 25.60-75.30
Valour
Vimy 205.11° 122.30-303.50 76.85° 52.60-140.30

"Means followed by the same superscript were not significantly different by Tukey’s
multiple comparison test at 5% level.

2 CLP-24175 was the total CLP production (CLP-A, B, C and E) by gene g24175

3 CLP-38655 was the total CLP production (CLP-D, F, G, H and I) by gene g38655
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The standard deviation obtained from Table 4-5 in the levels of CLPs and the
wide range of CLP-24175 and CLP-38655 (Table 4-6) in the same flax varieties
indicated that not only genotype, but the environment played a role in the concentration
of CLPs observed in flaxseed. Analysis of variance was conducted to determine the
effect of variety (V), year (Y), location (L) and their interaction on the concentration of
CLP-24175 and CLP-38655 in flaxseed grown at two locations for two years (Table 4-
7). While there was no impact of year alone on the concentration of CLP-24175
(p=0.68), other effects were all significant (p<0.0001) in contributing to variation. The
interaction of V x Y x L (96%) suggested the variety responded differently to year for
each location. For CLP-38655, the effects of variety, location, year and their interaction
all were significant to the expression of CLP-38655. Variance of CLP-24175 was mostly
caused by V x Y x L interactions, whereas the variance observed in CLP-38655 content
was contributed by variety, location, V x Y, L x Y and V X Y X L, which accounted for
27%, 8%, 10%, 23% and 30% of the total variability respectively.

The complex interaction of variety and environment on CLP levels is shown in
Figure 4-4. Influence of variety on the production of CLPs in each environment was
plotted against four environment means. No obvious pattern was found to conclude the
relationship between environmental effect (growth location, climate, etc.) on the
production of CLPs in different flax varieties. This study was restrained due to the
limited accessibility of flaxseed and the time-consuming processing protocols. Large
scale studies of flaxseed with greater genetic differences from different locations and
years should be done in the future when more rapid quantification methods have been

developed.

4.5 Correlation between CLPs

A whole genome shotgun assembly of Linum usitatissimum L. (var. CDC
Bethune) has been published online by the University of Alberta (linum.ca, 2010).
Searches of the annotated database generated from the sequences has revealed that CLP-
A, B and E are expressed as motifs in a single gene sequence (g24175, Figure 2-6),
while CLP-D, F and G occur as motifs in another gene (g38655, Figure 2-7) present in

the flax genome (linum.ca, 2010, Reaney Pers. Commun.). There is just one copy of the
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Table 4-7 Analysis of variance for CLP-24175 and CLP-38655 of flaxseed grown

at two locations for two years

Variance
Source DF Mean square P
Component (%)
CLP-24175'
Variety (V) 4 4225.82 <0.0001 0
Year (Y) 1 12.88 0.6817 0
Location (L) 1 8079.80 <0.0001 0
VxY 4 3039.04 <0.0001 0
V xL 4 6219.46 <0.0001 0
LxY 4 16880 <0.0001 1.30
VxYxL 4 9921.31 <0.0001 95.97
Error 20 82.42 <0.0001 2.73
Total 39 3083.15
CLP-38655"
Variety (V) 4 4525.90 <0.0001 27.07
Year (Y) 1 5605.05 <0.0001 0
Location (L) 1 9348.30 <0.0001 7.71
VxY 4 1280.58 <0.0001 10.15
V xLL 4 434.17 <0.0001 0
LxY 4 2710.96 <0.0001 23.21
VxYxL 4 1145.93 <0.0001 30.37
Error 20 19.75 <0.0001 1.49
Total 39 1220.67

' CLP-24175 was the total CLP production (CLP-A, B, C and E) by gene g24175
2 CLP-38655 was the total CLP production (CLP-D, F, G, H and I) by gene g38655
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sequence for each of CLP-E, B and A in sequence g24175. The gene that includes the
motifs for CLP-D, G and F includes one copy of D and F and three copies of the motif
that encodes CLP-G. All amino acids of the peptides are given in the sequence they
occur in the peptide gene. The correlation among CLP concentrations found in flaxseed
was evaluated using the data from the study of genotype by environment (n=20) on
peptide levels. This data may be used to determine the relationship of the expression
levels of CLPs in flaxseed. The Pearson's product momentum correlation coefficients (r,
p) between CLPs are listed in Table 4-8. It is worth noting that the relationship between
individual and total CLPs was highly significant (p <0.0001) meaning there was a linear
relationship between these compounds. The highest correlations between individual
CLPs occurred amongst peptides on the same gene. For example, the correlations of
CLPs within g38655 were high [CLP-F and CLP-G (r=0.996), CLP-D and CLP-F
(r=0.851) and CLP-D and CLP-G (r=0.869)] and significant (at p<0.0001). In
comparison, the relationship between the CLPs on g38655 and g24175 was weaker
[CLP-F with CLP-A (r=0.4847, p=0.0015), CLP-G with CLP-A (r=0.5176, p=0.0006),
CLP-D with CLP-A (r=0.3999, p=0.0106), CLP-D with CLP-C (r=0.5180, p=0.0006)].
For peptides in g24175, CLP-C and CLP-E (r=0.9634, p<0.0001) were strongly
correlated; however the correlations between CLP-A and the other peptides were weaker
[CLP-A with CLP-C (r=0.6575, p<0.0001), CLP-A with CLP-E (r=0.7019, p<0.0001)].
The observed lower correlations between peptide CLP-A levels and other CLPs may be
due to incomplete recovery of CLP-A, random error or a real difference in the
expression of this compound. The correlation between CLP-24175 (CLP-A, B, C and E)
and CLP-38655 (CLP-D, F, G, H and I) was significant (r= 0.7439, p<0.0001).

It is generally accepted that plant primary and secondary metabolites arise as
products of a multitude of enzymes involved in metabolism. The concentration of any
individual metabolite is controlled by a number of factors related to metabolic
processes (Waterman and Mole, 1989; Rolin, 2006). These metabolites make up the
metabolome. Enzymes and other protein products are produced as the result of
ribosomal translation of mRNA. These compounds would be seen as belonging to the
proteome. The concentration of a cyclic peptide is determined by transcription,

translation and post-translational modification, typical components of the proteome
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(linum.ca, 2010). The structure of cyclolinopeptide genes could lead to as many as
three peptides being produced by the post-translational modification of the pre-
peptide protein g24175 and five peptides being produced from the modification of
238655 (Figure 2-6, 2-7). Although there is no reason to assume that each translated
224175 or g38655 would produce three or five cyclolinopeptides, respectively, lower
numbers of cyclolinopeptides arising from sequence translation is possible.
Nevertheless, the strong correlation between the cyclolinopeptides arising from the
same gene is interesting. With additional research this unique discovery may shed

light on the post-translational modification of peptides.

4.6 The levels of CLPs in flaxseed fractions

The distribution of compounds in seeds can aid in the development of processes
for enrichment. Flaxseed lignan is found primarily in the seed coat and indeed isolation
of flaxseed lignan from seed coat or whole flaxseed provides significant advantages over
isolation from ground whole seed or seed meal (Bhatty and Cherdkiatgumchai, 1990;
Bhatty, 1993). The commercial availability of a flaxseed seed coat product from
Natunola (Natunola Health Inc., Winchester, ON, Canada) makes it a popular source for
research of seed coat composition (Oomah and Sitter, 2009; Petit et al., 2009; Kazama et
al., 2010).

The distribution of cyclic peptides in plant tissues is broad with many known
seed borne peptides (Tan and Zhou, 2006). For instance, CLP-A was the first
cyclolinopeptide isolated from seeds of Linum usitatissimum (Kaufmann and
Tobschirbel, 1959). The bicyclic peptides Moroidin, celogentins D—H and celogentin-J
were extracted with MeOH from the seeds of Celosia argentea (Morita et al., 2000;
Suzuki et al., 2003). There are no reports of the distribution of CLPs in flaxseed in the
scientific literature. Therefore, research was conducted to determine the distribution of
CLPs in flaxseed. Natunola sells a commercial flax product that consists primarily of
flaxseed seed coats. This product was chosen for studies of the concentration of CLPs in
flax seed coat and seed coat free materials. Natunola flaxseed had a CLP concentration
(total, 268.3 ng/g) (Table 4-9) comparable to those observed in CDC varieties (Table 4-

6). The seed coat removing process used by Natunola is a trade secret. Also, we found
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that the seed coat fraction contained a significant content of oil, which was likely
transferred to the seed coats during the seed coat removing process. As such, the
fractions (cotyledons and seed coat) provided by Natunola were not used in further
studies.

Manual seed coat removal was conducted to provide more reliable results.
Flaxseed gum (0.7 g) was obtained from flaxseed (10.0 g). A flaxseed seed coat fraction
(4.1 g) and seed coat free seed (5.2 g) were separated from the water-degummed
flaxseed (Figure 4-5). The concentration of CLPs in each fraction is presented in Table
4-9. No CLPs were detected by HPLC analysis of gum extracts (Figure 4-6). CLPs are
relatively more hydrophobic than the seed gum, which is a hydrophilic mixture of
polysaccharides which yield rhamnose, fucose, arabinose, xylose, galactose,
galacturonic acid and glucose after acid-catalyzed hydrolysis (Erskine and Jones, 1957;
Fedeniuk and Biliaderis, 1994). Similarly, previous researchers have not determined the
presence of cyclic peptides in flaxseed gum.

CLP-B was not detected in any samples, likely due to the oxidation of
methionine to methionine sulfoxide (Table 4-9). This oxidation is similar to the
oxidation of CLP E' to E noted in bottled flaxseed oil by Briihl et al. (2007). The
concentrations of CLP-A (25.2 ng/g), C (98.8 ng/g), D (13.1 pg/g), E (80.2ug/g), F
(19.6 pg/g), G (55.0 ng/g) and overall CLPs (291.9 pg/g) were higher in the cotyledon
than in the seed coat fraction, where the concentrations were CLP-A (19.3 pg/g), C (31.0
ug/g), D (15.6 pg/g), E (30.7 ng/g), F (6.7 ng/g), G (19.8 ng/g) and total CLPs (123.1
ug/g). Due to the possible oxidation of CLPs expressed by the same gene (Figure 4-3),
the levels of CLP-24175 (the group of all products produced by gene g24175: CLP-A, B,
C and E) and CLP-38655 (the group of all products produced by gene g38655: CLP-D,
F, G, H and I) were utilized to reduce statistical variation and to obtain a measure of the
products of post-translational processing of these genes. The levels of CLP-24175 and
CLP-38655 in the cotyledon were more than two times those in the seed coat (204.2
ng/g vs.81.0 png/g and 87.7 ng/g vs.42.2 ng/g, respectively). The prevalence of CLPs in
the cotyledon fraction might be explained if the peptides are present in oil storage bodies
as cotyledons are the major location for oil storage. The CLPs observed in the seed coat

fraction were possibly contributed by the endosperm attached to the seed coats, which
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c. Seed coat d. Whole flaxseed

Figure 4-5 Flaxseed fractions after water degumming and manual dissection
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also contributed oil to the seed coats. Overall CLP recovery from seed coats and
cotyledons was 75.1% of the recovery from whole seed. The loss could be explained by
incomplete extraction, systematic errors and loss of material during processing, which
could happen during processing without the observation of loss of total weight because
the water degumming process could change the moisture content of the seed fractions.
This is the first report of the distribution of CLPs in flaxseed fractions.

The distribution of CLPs in different parts of the flaxseed led us to study the
location of CLP storage in flaxseed fractions. The observation that the majority of CLPs
were found in flaxseed oil after conventional processing indicated the possibility that the
peptides were stored in oil bodies or oleosomes, the main oil-bearing structure in
flaxseed.

The diameter of oil bodies isolated from flaxseed was approximately 1.3 um and
the major components were TAG (97.7%), protein (1.3%), phospholipid (0.9%) and free
fatty acids (0.1%) (Tzen et al., 1993). The diameter of oil bodies obtained in this study
varied from 0.5-2.0 um, with an average of approximately 1.0 um, which agreed with
the literature (Figure 4-7, c). A brownish crude oil body pad (oil body-1, 9.3 g) was
isolated from flaxseed (20.0 g) by homogenization and centrifugation. After repeated
homogenization and centrifugation (six times), the oil body pad (oil body-2, 7.5 g) was
substantially reduced in contaminants. The resulting fractions were freeze dried, yielding
three dried fractions of oil body (4.9 g), serum (2.7 g) and residue (11.0 g) (Figure 4-7).
Subsequently, the levels of CLPs were quantified by HPLC (Figure 4-8 and Table 4-10).
Extraction conditions led to the oxidation of methionine containing peptides, as CLP-B,
CLP-H and CLP-I were not found in any of the fractions (Figure 4-3). After the initial
homogenization/centrifugation treatment, a higher concentration of CLPs are detected in
crude oil bodies (643.9 png/g) than in serum (99.5 pg/g) or residue (15.7 pg/g). After five
more homogenization/centrifugation treatments, the concentration of CLPs were reduced
in the crude oil body fraction (153.1 pg/g). The overall recovery of CLPs (from oil
bodies, serum and residue) was 93.1% after the first time homogenization/ centrifugation
and was reduced to 28.0% after the sixth homogenization/centrifugation due to the loss

of CLPs associated with the oil bodies. All of the CLP-C, E, F and G and 68% of CLP-A
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a. Flaxseed serum b. Flaxseed oil body pad

c. Micrograph of oil bodies taken at a magnification of 400X

Figure 4-7 Products after oil body isolation from flaxseed
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Figure 4-8 HPLC chromatograms of CLPs flaxseed fractions at 214 nm.

Fractions: a.residue, b. serum, c. oil body-1 (crude oil bodies isolated

after one time homogenization/centrifugation), d. oil body-2 (pure oil

bodies isolated after six times homogenization/centrifugation), e. whole

seed
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from oil bodies were removed by homogenization/centrifugation, whereas the CLP-D in
oil bodies remained basically unchanged. The lower polarity of CLP-A and CLP-D
might explain their presence in oil bodies when other CLPs with higher polarity were
redistributed into the aqueous layer during centrifugation. It is possible that CLPs were
stored in oil bodies along with TAGs before processing and they were removed from oil
bodies by homogenization/centrifugation, but further confirmation of this is not possible

at this time.

4.7 Effects of processing on the distribution of CLPs in flaxseed products
4.7.1 CLP distribution after expeller-pressing

The extraction of natural products with vegetable oil occurs during oilseed
pressing (Jung et al., 1989). Phospholipids, phytosterols, tocopherols are all found in
crude oil after pressing and and it is often necessary to remove these compounds with
further refining processes (Verhe et al., 2008). Crude oil (380.9 g) and flaxseed meal
(575.4 g) were obtained after cold pressing of 1000.0 g of flaxseed. The weight loss
observed (43.7 g) was likely due to residues remaining in the expeller after pressing. The
oil content of flaxseed (38.1%) obtained by cold pressing was in agreement with a prior
study (Dedio and Dorrel, 1977), whereas the oil content of flaxseed grown in different
locations in Canada was reported to range between 25% and 41%. The crude oil was
allowed to settle overnight in a 500-mL graduated cylinder to separate suspended "foots"
(sediments commonly found in flaxseed oil after settling). Foots (35.4 g) were separated
from oil by filtration under vacuum (Figure 4-9). The filtered oil was combined with
clarified oil from the upper layer after settling, to obtain 343.9 g of oil that was used for
further studies of CLP levels. The concentration of CLPs in crude oil (after settling),
foots and meal are shown in Figure 4-10 and Table 4-11. CLP-B was detected in crude
oil (98.0 pug/g) but not in other fractions. Met-containing peptides were oxidized during
acetone extraction (Figure 4-3, Appendix F). CLP-A, CLP-C, CLP-D and CLP-E, which
had lower polarity than other peptides based on their later emergence from reverse phase
chromatography, were found in greater concentration in crude oil (466.7 pg/g, 368.6
ug/g, 227.5 ng/g and 462.7 ng/g, respectively), whereas the concentrations of CLP-F
(92.2 pg/g) and CLP-G (266.2 ng/g), which had relatively higher polarity were higher in
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(c) (d) (e)

Figure 4-9 Products after cold pressing of flaxseed

Fractions: a. whole flaxseed, b. flaxseed meal, c. crude oil without

settling, d. crude oil after settling, e. foots separated from crude oil
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Figure 4-10 HPLC chromatograms (214 nm) of CLPs flaxseed products after processing.

Fractions: a. crude oil, b. meal, c. foots
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the foots fraction. A higher concentration of total CLPs produced by gene g24175 (CLP-
24175) was found in crude oil (1972.6 ng/g) than in meal (67.4 ng/g) and foots (710.5
ug/g). The concentrations of total CLPs produced by gene g38655 (CLP-38655) were
similar in crude oil (576.5 pg/g) and foots (544.9 ng/g), but significantly higher than that
in meal (31.6 pg/g). The concentration of CLPs in meal was relatively low (total 98.9
ug/g), which was expected after cold pressing as the polarity of CLPs allowed them to
dissolve in the oil during processing. It is worth noting that the overall CLPs found in
crude oil, meal and foots from flaxseed (0.78 mg/g) were higher than the amount of
CLPs recovered from flaxseed by Goldfisch extraction (0.37 mg/g). This observation
might be a result of improved extraction of CLPs, including reduced ones (e.g., CLP-E’,
CLP-F’ and CLP-G’) after oxidation by the applied shear force and heat generated from
screw-pressing. Oxidation has been noticed in the different stages of vegetable oil
processing (such as soybean oil and flaxseed oil) and their co-products (such as meal
and cake, etc) (Jung et al., 1989; Wanasundara and Shahidi, 1998; Wiesenborn et al.,
2005).

A painty and bitter flavour of flaxseed oil appeared after 15 weeks of storage at 4
°C. The breakdown of ALA was suspected as the cause of the unpleasant flavor
(Wiesenborn et al., 2005). In 2007, Briihl et al. isolated the bitter compound from stored
flaxseed oil and proved that oxidation of a CLP to CLP-E produced the observed
bitterness. Five brands of flaxseed oil from local health stores were chosen for CLP
analysis. The levels of CLPs varied among the brands (Table 4-12). Omega had the
highest levels of CLP-B (112.2 pg/mL) among all the flaxseed oils tested whereas
Sangster and Gold Top had none. Flora had the highest amounts of CLP-C (263.1
pg/mL), CLP-D (165.3 pg/mL) and CLP-F (29.1 pg/mL), but they all had lower peptide
levels compared to that of flaxseed oil prepared in the lab, where CLP-A (397.7 ug/mL),
CLP-B (83.3 pg/mL), CLP-C (310.6 pg/mL), CLP-D (197.0 pg/mL), CLP-E (393.9
pg/mL), CLP-F (70.8 pg/mL), CLP-G (219.7 ug/mL) and total CLPs (1,673.0 pg/mL)
were found. Flora had the highest level of the bitter peptide CLP-E (270.1 pg/mL)
among five commercial flaxseed oils, which implied more bitter intensity in this oil.
Lab-produced crude oil contained more CLP-E (393.9 pg/mL) than any of the

commercial flaxseed oils. Significant differences of CLP-24175 were found among the

85



UOBIADD pIepue)s=s ,
$698¢3 aua3 Aq (I pue ‘H ‘D ‘J ‘d-d1D) uononpoid 10 €103 oY) sem §598¢-d 10 .
SL1¥8 oudd £q (4 pue D ‘g V-d1D) uononpoid 10 €103 3y sem GL14-d 10,

D'1dH Aq Pa3od)op jou JuedU  —,,
pozATeue a1oMm [10 oo Jo sojdwes oIy, ,
[OA] %6 Je 359} uostredwod dydnnur s Aa)n ], £q JuaIolyIp Appueoyrusis jou a1om jduosiodns swres oty AQ pomo[[0J SUBDIA] |

€L 69 $'6S v'e It  SLI 0t €L TIL 8P dS  oonn o
9'L8Y #S'S811 JTELOT  LL'6IT  80L  6€6€ L0L6T 901€ ,£€8 L,LL6E UN

96 0°€01 6 6°€l 96  LtvT  LYE 8S by I'cc  ds -
S'8LT S 188 QOO09TT  (I'P8 16T I'0LT £S91 I'€9T 9T9 L'S8T UBN

9°¢ TS 8'9S L'y I'c 10l LT 6y 60T 68T  dS ey
€18 4 TS9 STEEL S8 GFEL 86ST (€61 LPE0T  LTTIT  (89LT UedN

89 8 vt L9 $'1 LT 86 I'¢ 96l - P0T  dS 4o pros
,C'99 (E'LES SE09  LS6T  S9T 8681 (TOT  ,qT6] - L9°6ST  UBRON

98 TSt €S €8 '8 L6 89 el - TIE dS o aneg
8°6L oL 08S $°099  LIST  ,L0T 0191 Otb  ,L'L9T o~ (61ST UBIN

L€l L'9¢ '8t 89 8¢ €0T 9% Lee 181 601 ,dS o
W HST o708 OPEL  GI'€6  ,TTE SOl 06T I'TLL  9VE  ,T6LT U

(SS98E-dTD  SLIYT-dTD [BOL  O-dTD d-d10 d-d10 a-dT1D Od1D d-dT10 V-d1D
Ae=1)

(Tu/3n) sg 1D Jo uonenuDUO)

S[10 POISXE[} 9PNIO PaonpoId-qe] pue [LIOISWIOD UI S]OA] J 1D Jo uostredwo) 71-¢ 91qe L

86



commercial oils. Crude oil and Floral flaxseed oil had the highest concentrations
(1,185.5 pg/mL and 881.5 pg/mL respectively), whereas GNC, Sangster, Gold Top and
Omega samples had lower concentrations of these peptides (580.4 pg/mL, 580.7 ug/mL,
537.3 pg/mL and 652.2 pg/mL, respectively). The concentration of CLP-38655 among
different oils also differed significantly. A higher concentration was found in crude oil
and Flora (487.5 pg/mL and 278.5 pg/mL), whereas the remaining products were lower
in these peptides. The lower levels observed in some commercial products might have
been caused by additional processing of the commercial products such as acid
degumming and alkali refining. The effects of processing on CLP removal are described

below.

4.7.2 Effects of acid degumming on removal of CLPs from flaxseed oil

Crude flaxseed oil contains minor components such as phospholipids, FFAs and
metal containing compounds (Green and Drimbinenke, 1994). Concentrations of minor
constituents of vegetable oils, such as phospholipids, phytosterols, tocopherols and
phytosterol esters, are reduced during refining processes (Ferrari et al., 1996).
Degumming of crude soybean oil removed 76.4% of phosphorus, 73.1% of iron and
51.4% of FFAs (Jung et al., 1989). The phosphorus in degummed flaxseed oil was
reduced from 325 mg/kg to 0.5 mg/kg without obvious loss of sterols and tocopherols
(Green and Drimbinenke, 1994; Hosseinian et al., 2004). Other minor compounds from
vegetable oil could also be partly removed by acid degumming. For instance, 1.1% of
oryzanol was removed from degummed rice bran oil (Krishna et al., 2001).
Acid degumming with H3;PO,4 effectively removed CLPs from crude flaxseed oil
(Table 4-13). Degumming with 1%, 2% or 10% (v/v) of 75% H3PO, to flaxseed oil
removed all of the peptides. Lower concentrations of acid are commonly used in
industrial settings for degumming. Sullivan (1955) reported the use of 0.13-0.53% of
75% H3POy4 in industry. Two-stage degumming was tested using two treatments with
just 0.1% of 75% H3PO4 (v/v) to mimic an acid-conserving degumming protocol
(Reaney, Pers. Commun.). The two-stage acid degumming treatment removed all of
CLP-B, C, D, F and G, leaving trace amounts of CLP-A (8.6%) and E (5.8%) in crude

oil. Acid degumming with a lower concentration of acid [1% (v/v) of 50% H3;PO4]
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removed all peptides from the oil except CLP-A (44.8%).

Phospholipids found in crude soybean oil are not dissolved but are mostly in
micelles that encapsulate sugars and metals (Sengupta, 1986). Non-hydratable
phospholipids (NHP), phosphatidic acid (PA) and part of the phosphatidyl ethanolamine
(PE) are present as Ca’" and/or Mg”" salts, which could be removed by addition of
strong acid into crude oil at elevated temperature (Sullivan, 1955; Young ef al., 1994).
In this experiment, acid degumming using H3;PO4 proved to be an effective way of
removing CLPs from crude flaxseed oil. The absence of CLPs after degumming may
indicate that CLPs are entrained in phospholipid micelles that are removed during acid
degumming treatment. It is also possible that CLP solubility in oil may require binding
to metals that are also removed by acid degumming. These observations may also
explain why CLPs were primarily found in the serum of the oleosome extracts, as both
phospholipid micelles and metal complexes are more likely to be present in the aqueous
phase. Degumming treatments with H3;PO, would be considered a safe and practical
approach for CLP removal from flaxseed oil as it is commonly used to remove the
phospholipids from crude oil in industrial oil refining. Larger scale testing of acid

degumming on the peptides in flaxseed oil should be conducted in the future.

4.7.3 CLPs from gum after acid degumming

It was not certain if the gum from acid degumming could be used as a source of
peptides or the amide bonds of peptides are susceptible to hydrolysis by acid. It is
possible that acid degumming of flaxseed oil leads to the hydrolysis of CLPs, as the
concentration of acid and temperature of processing were relatively high (up to 75%
H;PO4 at 80°C). Therefore, gums from acid degumming treatments were tested to
determine CLP levels (Figure 4-11 and Table 4-14). CLP-B was not found in the gum.
The yield of CLPs from extracted gums varied by peptide type. Peptides CLP-A, CLP-C
and CLP-E (54.5%) were recovered with reasonable efficiency (55%, 74% and 55%,
respectively). The trp-containing peptides CLP-D, CLP-F and CLP-G were recovered in
low yields of 0%, 17% and 10%, respectively. Overall, 71.6% of CLP-24175 and 10.5%
of CLP-38655 were recovered. The partial loss of these peptides and the absence of
CLP-D might be caused by hydrolysis under the strongly acidic conditions.
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CLP-C

CLP-E

Figure 4-11 HPLC chromatogram of CLPs in gum from 1 mL flaxseed oil
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The recovery of CLPs from gums was difficult, requiring significant amounts of
solvent and labour. Recovery procedures could be improved in the future by using
liquid-liquid partitioning of CLPs in different solvents. However, this study did prove
the gum from acid degumming was a good source of CLP-24175 and by future

engineering, it could be used for industrial scale isolation of CLPs.

4.7.4 Effect of alkali refining on CLPs in flaxseed oil

The solubility of non-polar peptides in oil and organic solvents was reported by
Igbal and Balaram (1982). A non-polar decapeptide Boc-Aib-Pro-Val-Aib-Val-Ala-Aib-
Ala-Aib-Aib-OMe (Aib=a-aminoisobutyric acid), aggregates and adopts a 3;¢ helical
conformation in organic solvents [CDCl; and (CD3),SO] stabilized by eight
intramolecular hydrogen bonds. They also found that peptides containing the
hydrophobic amino acid residue, leucine, are very soluble in vegetable oils (commercial
olive oil or safflower oil), as well as in mineral oil.

Free fatty acids (FFAs) are amphiphilic and may have the potential to stabilize
CLPs in flaxseed oil or even increase their oil solubility. These compounds may be
removed from oil by alkali refining (Handrix, 1990; Markley and Feuge, 1954). Alkali
refining reduced FFAs from 0.74% to 0.02% in crude soybean oil (Jung et al., 1989).

The FFAs of flaxseed oil were neutralized by a number of alkali treatments to
evaluate the impact of alkali refining on CLPs in oil. HPLC data suggested that the
alkalinity and chemistry of the alkali used in alkali refining influenced CLP removal
from flaxseed oil (Table 4-15). All alkaline solutions removed substantial amounts of
CLPs. However, none of them removed all of the peptides. CLP-B was not found in any
sample because of its oxidation to CLP-C during heating. The stronger alkalis, sodium
hydroxide (NaOH), potassium hydroxide (KOH), potassium carbonate (K,CO;) and
sodium carbonate (Na,COs3), appeared more effective at removing CLP-D, F, G whereas
sodium bicarbonate (NaHCOs;), tripotassium phosphate (K3PO4) and trisodium
phosphate (Na;PO,4) removed only CLP-D and F. Alkali refining removed most of CLP-
38655 (0-4.1% recovery) and some CLP-24175 (21.1%-51.9% recovery). Therefore,
Trp-containing peptides (CLP-D, F and G) were effectively removed during alkali
refining, whereas Trp-free CLPs (CLP-A, C and E) were not. The higher polarity of
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the indole group of Trp compared to other CLP amino acids (e.g., Val, Leu, Ile and
Phe) may have increased the water solubility of CLP-38655. The total CLPs
remaining after NaOH, KOH, K,COs3, Na,CO3;, NaHCOs3, Na;PO4 and K;PO, alkali
refining were 14.9%, 17.4%, 20.5%, 21.7%, 24.1%, 30.3% and 41.0%, respectively.

The experiment showed stronger alkalis were more efficient than weaker ones
(NaOH > KOH > K,CO3 > Na,CO3; > NaHCO3; > Na3;PO,4 > K;PO4) at CLP removal.
The removal of only a portion of the CLPs during alkali refining process might be
caused by: 1) a change in the solubility of CLPs in the presence of ions; 2) a change
in the solubility of CLPs in the presence of soap; and/or 3) release of CLPs from
FFAs. In the future, the solubility of CLPs in soap solutions, binding between CLPs
and different ions and binding between CLPs and FFAs can be studied to test these
hypotheses.
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S SUMMARY AND CONCLUSIONS

Flax is widely grown in western Canada. CLPs in flaxseed, along with lignan and
linolenic acid, are drawing increased attention due to their potential health benefits
(Cunnane et al., 1993; Jenkins et al., 1999; Clark et al., 1995; Wieczorek et al., 1991).
The study of CLPs, in particular, has been increasing since their immunosuppressive
activity was first discovered (Wieczorek et al., 1991). The present project investigated: 1)
methods for CLP extraction, isolation, detection and quantification, 2) the concentration
of CLPs in flaxseed from different flaxseed cultivars, 3) the distribution of CLPs in
different parts of the flaxseed, 4) the concentration of CLPs in lab-pressed flaxseed oil
and commercial flaxseed oils and 5) the effects of acid degumming and alkali refining
on the level of CLPs in cold-pressed flaxseed oil.

CLP-A was first found in the sediment of standing flaxseed oil. The low polarity
of the peptides is responsible for their tendency to concentrate in seed oil after crushing.
In this study, acetone was chosen for CLP extractions from flaxseed due to their high
solubility in this solvent. Solid phase extraction (silica gel column) followed by solvent
elution was used to separate crude peptides from other low polarity hydrophobic
compounds. HPLC was utilized for CLP separation, isolation, identification and
quantification, whereas MS was used as an alternative method for CLP identification.

Prior to this study, the level of CLPs in domestic flaxseed cultivars and the effect
of the growth environment on the concentrations of CLPs in flaxseed had not been
reported. The concentration of peptides in five cultivars grown in two locations over two
years were analyzed. The concentration of CLPs varied, with Somme having the highest
levels of CLP-A, D, F, G and total CLPs. Cultivar, environment and their interaction
proved to be significant variables that influenced the production of CLPs in flaxseed
even though no pattern was found in the relationship between the effect of environment

and the concentration of CLPs in different flax cultivars.
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The distribution of CLPs in flaxseed was studied using the HPLC quantification
method that was developed in this work. It was found that the water-soluble gum
contained no peptides. The cotyledon had the highest concentration of CLPs, whereas
seed coat had lower levels. Oil bodies, the main oil storage organelles, were found to be
the main location for CLPs after one time homogenization/centrifugation; while residues
and serum also contributed a small proportion of the CLPs. More
homogenization/centrifugation steps caused large losses of CLPs, which might be due to
the redistribution of CLPs in the aqueous solution. The main organelle for CLP storage
was not determined in this study and further study is required to determine the
distribution of peptides in flaxseed tissues.

Compared to the meal, CLPs were found in greater amounts in crude oil and
solid foots from expeller-pressed flaxseed. The concentration of CLPs in crude flaxseed
oil produced on a lab scale was much higher than those in commercial oils, which led us
to test the effect of oil refining on the removal of CLPs. Acid degumming using H3PO4
proved to be effective for removal of all CLPs from crude flaxseed oil. Alkali refining
was also effective at removing CLPs, even though this treatment failed to remove all
peptides equally.

This work developed systematic methods for CLP extraction, isolation,
separation, detection and identification. It increased our knowledge of CLPs from
flaxseed, including their levels in flaxseed and flaxseed fractions, their distribution after
oil processing and methods for removing and recovering peptides from flaxseed oil. This
work has demonstrated the presence of CLPs in flaxseed and flaxseed oil, which led to
the consideration of flaxseed as a good source for CLP recovery. The presence of CLPs
in flaxseed assures that CLPs will also be found in flax-related food products (flaxseed
oil, flaxseed meal, flaxseed bread, etc.). This work also illustrated ways that CLPs may
be extracted from flaxseed oil and could lead to large-scale industrial extraction
processes. The ability to extract CLPs at a larger scale should allow faster exploration of
the potential applications of these molecules and provide the flaxseed industry with

potential value-added co-products.
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7 APPENDIX A

Quality reports for standard CLP-A, B, C, D, E, F, G and Seg-A

Figure 7-1 NMR spectra of standard CLPs and Seg-A. a. The IH NMR of CLP-A
in CDCIs, b. The 1H NMR of CLP-B in CDCl; (Con’t).
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Figure 7-1 NMR spectra of standard CLPs and Seg-A. ¢. The 1H NMR of CLP-C
in CDCIs, d. The 1H NMR of CLP-D in CDCl; (Con’t).
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Figure 7-1 NMR spectra of standard CLPs and Seg-A. e. The IH NMR of CLP-E
in CDClIs, f. The 1H NMR of CLP-F in CDCl; (Con’t).
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Note: The standard peptides CLP-A, CLP-B, CLP-C, CLP-D, CLP-E, CLP-F, CLP-G
and Seg-A were diluted in deuterated chloroform (CDCI3) respectively and
measurements were performed using a 500 MHz NMR equipped with TXI and BBO
probe (Bruker, Bremen, Germany, SSSC, Saskatoon). All spectra were measured in
solution 500 MHz for 1H NMR. Manual baseline correction and integration were
applied in the software of XWIN-NMR 3.0.

Figure 7-1 NMR spectra of standard CLPs and Seg-A. g. The 1H NMR of CLP-G
in CDCI3, h. The 1H NMR of Seg-A in CDCls.
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ESI-MS spectra for CLP-A, B, C, D, E, F, G and Seg-A
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Figure 7-2 ESI-MS spectra of standard CLPA, B, C, D, E, F, G and Seg-A. a. ESI-

MS of CLP-A, b. ESI-MS of CLP-B (Con’t)
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Figure 7-2 ESI-MS spectra of standard CLPA, B, C, D, E, F, G and Seg-A. c. ESI-

MS of CLP-C, d. ESI-MS of CLP-D (Con’t)
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Figure 7-2 ESI-MS spectra of standard CLPA, B, C, D, E, F, G and Seg-A. e. ESI-

MS of CLP-E, f. ESI-MS of CLP-F (Con't)
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Note: The standard peptide was prepared in a solution containing 90% methanol, 10%
water and 0.1% formic acid in a total volume of 1 mL for MS analysis. MS analysis was
performed on a Hybrid Quadrupole-TOF LC/MS/MS system. The solution was
introduced into the turbo ion electrospray spectrometer source by loop injection at a rate
of 5 uL per min. Ion scanning experimental data was acquired with the pulsing function
turned on, using a dwell time of 50 ms and the step size of one Dalton. All signals were
created and analyzed by the Analyst QS 1.1 software.

Figure 7-2 ESI-MS spectra of standard CLPA, B, C, D, E, F, G and Seg-A. g. ESI-

MS of CLP-G, h. ESI-MS of Seg-A
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Acetone
Acetonitrile
Dichloromethane
Diethyl ether

Ethyl acetate
Hexane

Methanol

Methonal
Phosphoric acid
Potassium carbonate
Potassium hydroxide
Sodium bicarbonate
Sodium carbonate
Sodium hydroxide

Sodium chloride

8 APPENDIX B

LIST OF CHEMICALS

Tripotassium phosphate

Trisodium phosphate

Sand
Silica gel 60

Tris-HCL buffer

grade

Purchased from EMD chemicals Inc (Gibbstown, NJ)

Purchased from Sigma-Aldrich (St. Louis, MO)

Purchased from Bio-Rad laboratories (Hercules, CA)
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GR ACS grade
HPLC grade

GR ACS grade
GR ACS grade
GR ACS grade
GR ACS grade
GR ACS grade
GR ACS grade
GR ACS grade
GR ACS grade
GR ACS grade
GR ACS grade
GR ACS grade
GR ACS grade
GR ACS grade
GR ACS grade
GR ACS grade

Flash chromatography/preparative liquid chromatography

1.5M, PH 8.8



9 APPENDIX C

Solvent fractions from silica gel isolation
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Figure 9-1 Fractions from peptide isolation using Silica gel column. Fraction a,
oil, fraction b, 20% EtOAC in hexane, fraction ¢, 50% EtOAC in

hexane (Con’t)
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Note: Silica gel isolation of CLPs from flaxseed oil was conducted as described in 3.2.1
and 3.2.2. HPLC separation was followed as described in 3.2.3. CLPs were enriched in
Fraction d (100% EtOAC) and e (10% MeOH in DCM) while other Fraction a (oil), b
(20% EtOACQ), ¢ (50% EtOAC), or f (EtOH) did not contain any of the peptides.

Figure 9-2 Fractions from peptide isolation using Silica gel column. Fraction

d, 100% EtOAC, fraction e, 10% MeOH in DCM, fraction f, EtOH
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10 APPENDIX D
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Figure 10-1 HPLC chromatogram of CLP-F (0.6 mg/mL) and CLP-G (0.7
mg/mL) under the wavelengths of (a) 214, (b) 244 and (c) 280 nm
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11 APPENDIX E

Calibration curves of CLPs using internal standard Seg-A

Calibration curve of CLP-A
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Figure 11-1 Calibration curves of CLPs using internal standard Seg-A (0.05
mg/mL) (Con’t)
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Calibration curve of CLP-C

(=)
)

¥=9.6753x- 00021
R*=0.9999

2 W =
L

—

Area ratio of CLP-C/Seg-A

o

0 0.1 02 03 0.4 0.5 0.6

Concentration of CLP-C (mg/mL)

Calibration curve of CLP-D

9 .
.81 y=15.659x+0.0174
80+ R*=0.9996
L)
G
A6
&5
24
o
o3
=,
=2
Z1
0 . . . ‘ ‘ ‘
0 0.1 0.2 03 0.4 05 0.6

Concentration of CLP-D (mg/mL)

Figure 11-1 Calibration curves of CLPs using internal standard Seg-A (0.05
mg/mL) (Con’t)
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Calibration curve of CLP-E
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Figure 11-1 Calibration curves of CLPs using internal standard Seg-A (0.05
mg/mL)
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12 APPENDIX F

CLP-B
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Figure 12-1 Transformation of CLPs during processing
a: CLPs isolated from degummed flaxseed by directly stirring in 10 x
(W/V) 70% methanol in water for 2 hrs at room temperature

b: CLPs isolated from flaxseed oil extracted by goldfisch extraction

126



