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ABSTRACT 

 Cyclolinopeptides (CLPs), a group of naturally occurring, hydrophobic, cyclic 

peptides in flax, have attracted a great deal of attention due to their immunosuppressive 

activity. The purpose of this project was to increase our understanding of the occurrence 

of CLPs in flaxseed, flaxseed tissues and flaxseed products. 

 In the first study, systematic methods for CLP extraction, isolation, detection and 

quantification were developed. The solubility of CLPs in acetone led to its use as a 

preferred solvent for extraction of CLPs and other hydrophobic compounds from whole 

flaxseed. Solid phase extraction with a silica gel column followed by selective elution 

with organic solvents of increasing polarity enabled the isolation of a crude peptide-rich 

fraction. Reverse phase HPLC chromatography of peptide-rich fractions provided a 

method for separation and quantification of CLPs. 

 In the second study, the levels of CLPs in cultivars of flaxseed were studied to 

determine if there was any impact of flax genotype or environment on peptide levels. 

The concentration of total CLPs varied from 189 µg/g (Flanders) to 303 µg/g (Somme) 

in the cultivars tested. Environment, cultivar and their interaction affected the observed 

concentration of CLPs. 

 In the third study, the concentrations of CLPs in fractions produced from 

flaxseed were measured by HPLC in seed coat, cotyledon and oil bodies. The 

concentration of CLPs was higher in the cotyledon than in the seed coat. The highest 

CLP concentrations were found in the oil bodies. 

 In the fourth study, CLP levels in flaxseed oil were measured during and after oil 

extraction and refining. The concentration of CLPs was higher in expeller-extracted 

crude oil and solid foots and lower in flaxseed meal. A comparison of CLP levels in 

flaxseed oil extracted with a small expeller and in commercially-produced flaxseed oil 

was performed. Crude flaxseed oil produced with a small expeller had higher levels of 

peptides than were observed in commercial flaxseed oil available at a local retail health 

food store. The effect of oil refining processes, including acid degumming and alkali 

refining on CLP stability, was studied. Acid degumming using 1% H3PO4 effectively 

removed all CLPs. Alkali refining was also demonstrated as being effective at 

decreasing levels of CLPs, although it failed to remove all peptides.   
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 1 INTRODUCTION 
 

 Flax (Linum usitatissimum L.), one of the oldest cultivated crops, has been and is 

widely grown for oil, fibre and, more recently, food (Oomah, 2001). The average 

worldwide flaxseed production between 1999 and 2008 was 2,220,000 tonnes (FAO, 

2010). Significantly, Canada accounted for 35% of this production. Flaxseed oil can be 

used in paints, varnishes and inks due to its fast-drying property. Flax stems have a high 

fibre content, which makes them a good source of fibre for linen and paper production. 

With increasing demand for edible oil sources of omega-3 fatty acids, oleaginous 

flaxseed, the oil of which can have greater than 50% alpha-linolenic acid (ALA), is 

widely marketed as a functional food. Flaxseed is also added to animal feed to improve 

animal performance and health. 

 Flaxseed is widely accepted as a healthy food and numerous beneficial effects 

have been associated with flaxseed consumption in controlled experimental diets 

(Cunnane et al., 1993; Jenkins et al., 1999; Clark et al., 1995). For instance, 

consumption of flaxseed flour reduces epithelial cell proliferation and nuclear 

aberrations in female rat mammary glands. This finding indicates that dietary flaxseed 

may reduce the growth rate of mammary cancer (Serraino and Thompson, 1991). It has 

been found that flaxseed lignan and oil components reduce mammary tumour growth in 

the later stages of carcinogenesis (Thompson et al., 1996). Supplements of 14% flaxseed 

oil and 20% flaxseed meal reduce the incidence of azoxymethane-induced aberrant crypt 

foci formation in Fisher 344 male rats (Williams et al., 2007a, 2007b). Similarly it has 

been shown that the substitution of corn meal with flaxseed meal (15%)  or corn oil 

with flaxseed oil (15%) in a basal diet significantly decreased tumour multiplicity and 

size in the small intestine and colon in Fisher male rats. They concluded that flaxseed 

meal and oil may be considered as an effective chemo-preventive agents (Bommareddy 

et al., 2009). Inclusion of 20% flaxseed in rat diets decreased plasma total cholesterol 

(TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) by 21%, 33.7% 
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and 23%, respectively; supplementation with 30% flaxseed had a more significant effect, 

reducing the same factors by 33%, 67% and 23% (Ratnayake, 1992). In human studies, 

15 g/d of flaxseed administered for three months was associated with reduction in serum 

TG and LDL-C without any alteration of high-density lipoprotein cholesterol (HDL-C) 

(Bierenhaum, 1993). It was also reported that consumption of 50 g flaxseed per day for 

four weeks lowered the plasma LDL-C by 8% in young healthy adults (Cunnane, 1995). 

These results support the hypothesis that flaxseed consumption has a positive effect on 

suppressing the development of atherosclerosis. However, it is not possible to attribute 

the health benefits of flaxseed consumption to a sole component present in flaxseed. 

Polyunsaturated fatty acids, lignan complex and CLPs are three major functional classes 

of compounds that might induce some or all of the observed experimental results. 

 The knowledge of the biological roles of flaxseed polyunsaturated fatty acids 

and lignan is substantial and the research about their existence, biosynthesis and 

metabolism in flaxseed is mature compared to that of cyclolinopeptides (CLPs). The 

study of CLPs has been undergoing for more than half a century and the major research 

has been done on the identification and conformation of CLPs, as well as their 

biological activities. CLPs, the main focus of this thesis, are a group of cyclic, 

hydrophobic peptides containing eight or nine amino acid residues with molecular 

masses of approximately one thousand Da. CLP-A was the first CLP identified after it 

was isolated from the sediments deposited from crude flaxseed oil (Kaufmann and 

Tobschirbel, 1959). In 1968, Weygand discovered a similar cyclic nonapeptide, CLP-B. 

Between 1997 and 2001, nine additional CLPs (C, D, E, F, G, H, I, J and K) were 

identified from the seed and root of flax (Morita et al., 1997a; Morita et al., 1999; 

Matsumoto et al., 2001a). In addition, a cyclic peptide, CLP-X, containing the non-

protein amino acid N-methyl-4-aminoproline, was isolated and characterized (Picur et 

al., 1998). CLPs occur in flaxseed, but the role of these compounds is largely unknown. 

In vitro studies of CLP biological activity have been described in numerous publications 

(Kessler et al., 1986a, 1986b; Wieczorek et al., 1991; Górski et al., 2001; Gaymes et al., 

1997; Siemion, 1999). For instance, CLP-A has the ability to inhibit cholate uptake into 

hepatocytes, potentially protecting the liver against poisoning (Kessler, 1986). This CLP 

can also inhibit the activation and proliferation of T-lymphocytes by suppressing the 
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activity of phosphatase in T-cell activation (Wieczorek et al., 1991; Górski et al., 2001). 

Immunosuppressive activity of CLPs described by others may be partially or wholly 

explained by this observation, e.g. delaying hypersensitivity response, postponing skin 

allograph rejection, suppressing post adjuvant arthritis and haemolytic anemia (Gaymes 

et al., 1997; Siemion et al., 1999). 

 None of the research has illustrated the levels of CLPs in flaxseed. The overall 

focus of this project was to develop a systematic method for quantifying CLPs in 

flaxseed and flaxseed-related materials. The objectives of this research were as follows: 

 

Objective 1: To establish methods for CLP extraction, isolation, detection and 

quantification. 

Hypothesis: An HPLC method using an internal standard may be developed that will 

allow accurate measurement of CLPs in flaxseed and flaxseed products.  

 

Objective 2: To determine CLP levels in different flaxseed cultivars. 

Hypothesis: The concentration of CLPs in flaxseed might vary among genotypes and 

might be affected by environmental conditions during seed development.  

 

Objective 3: To confirm the CLP distribution in flaxseed fractions and tissues. 

Hypothesis: CLPs concentration may vary among different flaxseed fractions such as 

seed coat, cotyledon and oil bodies.  

 

Objective 4: To compare the levels of CLPs in lab-pressed flaxseed oil and 

commercial flaxseed oil and investigate the effects of acid degumming and alkali 

refining on the levels of CLPs in lab-pressed flaxseed oil. 

Hypothesis: A portion or all of the CLPs in flaxseed oil may be removed by liquid and 

solid phase refining. 
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 2 LITERATURE REVIEW 
2.1 Flaxseed 

 Mature seed of oleaginous flax is oblong, flat and composed of an embryo 

consisting of two cotyledons surrounded by a thin endosperm and a smooth often shiny 

seed coat (hull) that varies in colour from yellow to dark brown (Figure 2-1) (Peterson, 

1958). The composition of flaxseed is presented in Table 2-1 (Smith, 1958; Hadley et 

al., 1992). Lipid, protein and fibre are three major constituents of flaxseed. An analysis 

of brown Canadian flaxseed conducted by the Canadian Grain Commission (2001) 

showed the average composition of commercial seed was 41% fat, 20% protein, 28% 

total dietary fibre, 7.7% moisture and 3.4% ash. Other minor components include 

cyanogenic glycosides, phytic acid, phenolics, trypsin inhibitor, linatine, lignans 

(phytoestrogens), minerals, vitamins and CLPs (Bhatty, 1995; Morita et al., 1997a; 

Matsumoto et al., 2002). 

 Protein content of flaxseed varies widely from 10.5-31% largely due to genetic 

and environmental factors (Bajpai et al., 1985; Salunkhe and Desai, 1986; Oomah, 

1993a). Seed protein is stored mainly in aleurone tissues. Approximately 56-70% of the 

protein is found in the cotyledons and about 30% in seed coat and endosperm (Dev et al., 

1986; Sosulski and Bakal, 1969). According to Oomah and Mazza (1993b), flaxseed 

meal has an essential amino acid index of 69, compared to 79 for soybean meal. The 

amino acid patterns of flax protein from two flax varieties are compared with that of 

soybean and listed in Table 2-2 (Oomah and Mazza, 1993b; Bhatty and 

Cherdkiatgumcha, 1990b). The essential amino acids found in flaxseed meal from both 

varieties are similar to those in soy flour, which makes flaxseed meal a source of one of 

the most nutritious plant proteins. 

The major carbohydrates in flaxseed are soluble and insoluble fibre where the 

level of insoluble fibre is more than that of soluble fibre. Cui (2001) reported contents of 

insoluble and soluble fibre of 20% and 9% respectively while Hadley et al. (1992) 

reported 30% and 10% respectively. The soluble fibre mainly exists in the epidermal 
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Figure 2-1 Anatomical structure of flaxseed (Modified from Peterson, 1958) 
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Table 2-1 Flaxseed composition (Smith, 1958; Hadley et al., 1992) 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Cotyledons and embryo 
2 Seed coat 
3 Not reported 

 

 

 

Constituent 

(%) 

 Embryo1 Hull2 

Whole 

seed 

With 

fat 

Without 

fat 

With 

fat 

Without 

fat 

Moisture 7.13 4.31 NR3 7.89 NR3 

Nitrogen 4.01 4.64 10.92 3.18 3.52 

Oil 38.7 53.20 NR3 1.84 NR3 

Fiber      

(Soluble) 10.2 NR3 NR3 NR3 NR3 

(Insoluble) 30.4 NR3 NR3 NR3 NR3 

Ash NR3 3.38 7.95 2.99 3.31 

Weight fraction NR3 58.60 40.40 41.40 59.96 

% of total oil  96.70 3.30 
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Table 2-2 Amino acid compositions of flaxseed and soy flour (Oomah and Mazza,  

        1993b; Bhatty and Cherdkiatgumcha, 1990) 

 

Amino acid 

(g/100 g protein) 

Flax Cultivar 
Soy flour 

Brown flax (NorLin) Yellow flax (Omega) 

Alanine (Ala) 4.4 4.5 4.1 

Arginine (Arg) 9.2 9.4 7.3 

Aspartic acid (Asp) 9.3 9.7 11.7 

Cystine (Cys) 1.1 1.1 1.1 

Glutamic acid (Glu) 19.6 19.7 18.6 

Glycine (Gly) 5.8 5.8 4.0 

Histidine (His)* 2.2 2.3 2.5 

Isoleucine (Ile)* 4.0 4.0 4.7 

Leucine (Leu)* 5.8 5.9 7.7 

Lysine (Lys)* 4.0 3.9 5.8 

Methionine (Met)* 1.5 1.4 1.2 

Phenylalanine (Phe)* 4.6 4.7 5.1 

Proline (Pro) 3.5 3.5 5.2 

Serine (Ser) 4.5 4.6 4.9 

Threonine (Thr)* 3.6 3.7 3.6 

Tryptophan (Trp)* 1.8 NR1 NR1 

Tyrosine (Tyr) 2.3 2.3 3.4 

Valine (Val)* 4.6 4.7 5.2 
  1NR = Not reported. 

 *Essential amino acids for humans 
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layer of the seed coat and can be extracted with water. Seed coat soluble fibre is known 

as mucilage that consists of both acidic and neutral polysaccharides. The acid 

polysaccharide fraction is largely composed of L-rhamnose (25.3%), L-galactose 

(11.7%), L-frucose (8.4%) and D-xylose (29.1%) while the neutral polysaccharide 

consists of L-arabinose (20%) and D-xylose/D-galactose (76%) (Anderson et al., 1947). 

Insoluble fibre is composed of cellulose (7-11%), lignin (2-7%) and acid detergent fibre 

(ADF) (10-14%) (Cui, 1994). 

 Oil content of flaxseed varies from 38-44% due to genotype and environment 

though extraction methods may contribute to some of the variation (Van Uden et al., 

1994; Oomah and Mazza, 1997). Oil is mainly stored in the endosperm and cotyledons 

in the form of cell bound microscopic droplets or oil bodies also known as oleosomes. 

Dorrell reported that the embryo was 45% oil while cotyledons were 51% oil and a 

fraction comprising seed coat and endosperm contained 23% oil (Dorrell, 1970). Fatty 

acid composition varies among different flaxseed types and cultivars. Most flaxseed oil 

(75%) is found in cotyledons, the remainder (22%) mainly exists in the seed coat and 

endosperm (Dorrell, 1970). The oil is primarily in the form of triacylglycerides (TAGs) 

with a fatty acid profile typically including linolenic (52%), linoleic (17%), oleic (20%), 

palmitic (6%) and stearic (4%) acids (Green, 1990). The minor lipids and lipid soluble 

compounds include monoacylglycerides, diacylglycerides, tocopherols, sterols and 

sterol-esters, phospholipids, waxes, CLPs, free fatty acids (FFAs), carotenoids, 

chlorophyll and other compounds. The oxidative instability of alpha-linolenic acid (ALA) 

present in the oil renders it unsuitable for use as edible cooking oil. In order to produce 

flaxseed oil with improved food properties, Australian scientists selected a new genetic 

variant Linola® with improved oxidative stability. In Linola varieties, the level of 

linoleic acid (LA) content is above 65% and ALA below 2% (Green and Dribnenke, 

1994). The fatty acid composition of Linola is similar to that of oils from sunflower, 

safflower or corn, making Linola a more suitable edible oil source (Haumann 1990; 

Green and Dribnenke, 1994).  

 ALA, an essential polyunsaturated fatty acid in flaxseed, cannot be synthesized 

by human metabolism and contributes to various important physiological effects of 

dietary flaxseed oil. It is the intermediate in biosynthesis of hormone-like eicosanoids, 
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which regulate inflammation and immune function in higher animals (Mantzioris et al., 

1994, 1995). For example, ALA treatments exert variable effects on inflammatory 

mediators and markers depending on dose: ALA for 4 weeks at 14 g/d decreased the 

production of tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cytokines 

in humans, while a lower dose did not have this effect (Caughey, 1996; Thies, 2001; 

Wallace et al., 2003). ALA supplementation with 6% ALA depresses the levels of IL-6 

and IL-10 and increases the production of TNF-α in mice (Chavali et al., 1998). It was 

suggested that the ratio of omega-6 to omega-3 fatty acids plays an important role in 

suppressing atherosclerosis, in that a lower omega-6 to omega-3 fatty acid ratio 

decreased atherosclerosis compared to a higher ratio in apolipoprotein E, LDL receptor 

double knockout mice. After feeding Golden Syrian hamsters 20 g/d ALA for six weeks 

serum cholesterol was reduced by 17-21% (Yang et al., 2005). However, no changes 

were found in serum TC, LDL-C or HDL-C in healthy subjects or hyperlipidemic 

patients (Freese and Mutanen, 1997; Sanders and Roshanai, 1983; Kestin et al., 1990; 

Singer et al., 1990). David (1983) suggested that ALA might lower the growth rate of 

breast and colon cancers. It is worth noting that almost all literature extolling the 

beneficial functions of flaxseed oil fails to confirm it is ALA itself, rather than other 

bioactive compounds found in flaxseed oil or their interactions, that contributes the 

observed health benefits. 

 Flax lignan and flax lignan complex (FLC) comprise a group of oil-insoluble flax 

compounds that are reported to have multiple physiological effects in animals and 

humans. FLC, which is not oil soluble, is composed of 34-38% secoisolariciresinol 

diglucoside (SDG), 15-21% cinnamic acid glucoside and 9.6-11% 

hydroxymethylglutaric acid (Westcott and Paton, 2001). The lignan complex is reported 

to slow the progression of atherosclerosis in humans and other mammals (Prasad, 2005; 

Prasad et al., 2009a, 2009b; Zhang et al., 2008). Treatment with FLC (40 mg/kg body 

wt/d) for eight weeks suppressed the development of hypercholesterolemic 

atherosclerosis by 34% in rabbits (Prasad, 2005). Hypercholesterolemic humans were 

treated with 300 mg or 600 mg of FLC for eight weeks. The 300 mg dose reduced TC 

and LDL-C by 15% and 17%, respectively, without any change in the ratio of TC/HDL-

C, while 600 mg reduced the serum TC and LDL-C by 24% and 22%, respectively, with 
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a decrease in the TC/HDL-C ratio (Zhang et al., 2008). Prasad et al. (2009b) also found 

that FLC was effective in slowing the progression of atherosclerosis by 31% in 

hyperlipidemic rabbits, along with reducing oxidative stress. 

 

2.2 Flaxseed oil processing, refining and flavour chemistry 

Currently, most flax is grown for industrial or food oil production. Edible 

flaxseed oil may be recovered by cold-pressing alone or a process of pre-pressing 

followed by solvent extraction (Kochhar, 2002; Goss, 1946). Cold pressing refers to a 

process in which no heat has been used on the oilseeds before passing through an 

expeller press (Fils, 2000). Prior to pressing, seeds are normally flaked then fed to the 

expeller press. Most of the solids are recovered from pressing as a partially defatted 

meal containing less than 10% oil. Partially defatted meal may be extracted with a 

solvent such as hexane to increase total oil recovery, but the industry avoids this process 

as flax meal with 10% oil content is a preferred animal feed. The crude oil is collected 

and settled to separate solids, gums and waxes (as "foots") from the oil before further 

refining. The oil-refining process is applied to the oil collected from cold-pressing and 

solvent extraction to obtain oil for human consumption (Figure 2-2). 

 

2.2.1 Cold pre-pressing 

 Mechanical expeller presses can be used to extract flaxseed oil by applying 

pressure and shear forces on the seeds to decrease seed volume (Zheng et al., 2003). 

While it is said to be important not to apply heat during pressing because the higher 

temperature will cause rapid oxidation of the oil, this is not observed in industrial 

processing (Reaney, Pers. Commun.). The products of pressing flaxseed are crude oil 

that varies from yellow to dark brown and defatted meal. 

 

2.2.2 Settling and filtration 

 During pressing, phospholipids, wax and some fibre will dissolve in the crude oil 

and settling in the tanks for several days is needed to allow time for foots separation. 

After suspended solids have settled the oil may be filtered using a plate and frame filter 

and filtration improving solids (Patterson, 1989). 
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Figure 2-2 Cold pressed flaxseed oil processing (modified from Booth, 2004) 
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 2.2.3 Solvent extraction  

 Solvent extraction is practiced to increase oil recovery after pressing (Goss,  

1946). Hexane is approved for food use and efficiently dissolves triglyceride oil. It has 

high stability and is available in high purity commercial forms. After extraction, hexane 

is recovered from oil by a solvent stripper and from meal through a desolventiser-

toaster. Most flaxseed meal is not extracted with solvent. 

 

2.2.4 Degumming and alkali refining 

 Phospholipids or gums are removed from vegetable oil as part of the oil refining 

process. Although most phospholipids present in flaxseed oil are removed by filtration, 

some remain in crude oil after this treatment. Phospholipids may be removed by water 

degumming, which involves adding 2-4% water and mixing under vacuum at 80°C for 

10-30 min (Brekke, 1975). The procedure produces sludge of hydratable phospholipids 

that are easily removed from the oil. The addition of phosphoric acid to oil at elevated 

temperature (0.13-0.53% of 75% H3PO4) can significantly improve the removal of gums 

(Sullivan, 1955). In some processes, gum removal immediately follows alkali refining. 

In such processes, the excess H3PO4 and FFAs are neutralized by mixing the oil with 

dilute sodium hydroxide (NaOH) forming a soap stock mixed with oil. Centrifugation of 

the mixture separates the soap stock from the oil. After alkali refining the oil is subject 

to vacuum drying to remove any water remaining in the oil.  

 

2.2.5 Bleaching 

 Bleaching removes carotenoid and chlorophyll pigments from flaxseed oil, 

producing desired lighter-yellow oil colour. Acid-treated bentonite clay is activated by 

heat treatment to absorb the pigments, soaps from alkali refining, metals and other 

contaminants. Most flaxseed oil is not bleached as the oxidative stability is reduced by 

the removal of antioxidants during bleaching (Klein et al., 1984). Flaxseed oil arising 

from Linola is an exception as this oil is relatively stable after bleaching. 

 

2.2.6 Winterization 

 Cloudiness due to the trace amount of wax in vegetable oil may be reduced by  
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low-temperature winterization (Kreulen, 1976). Winterization involves chilling oils so 

that waxes crystallize. Subsequent filtration affords a separation of the solid wax from 

the oil. Most flaxseed oil is not winterized because it does not form precipitates on 

storage at cool temperatures (Reaney, Pers. Commun.).  

 

2.2.7 Deodourization 

 Deodourization is the final step for vegetable oil refining (Tubaileh et al., 2002). 

Deodourization involves steam distillation as a method to remove the volatile 

compounds which often contribute to the odour and unpleasant flavour of the oil. Steam 

distillation will also remove aldehydes, ketones and acids produced from peroxide 

breakdown after fatty acid oxidation. Tocopherol losses are a negative effect of 

deodourization because tocophenols are natural antioxidants which can keep highly 

unsaturated flaxseed oil from rapid oxidation. Most flaxseed oil is not deodourized 

(Reaney, Pers. Commun.). Flaxseed oil arising from Linola is an exception as this oil is 

fully processed and sold as a fully refined product.  

 

2.2.8 Refined oil storage and oil flavour chemistry 

 Refined flaxseed oil has several desired qualities such as low phosphorus content 

and light colour compared to crude oil (Table 2-3). For Linola oil with high level of LA, 

oil storage conditions are similar to those suitable for sunflower oil because they are 

alike in fatty acid composition. However, for traditional flaxseed oil with a high content 

of ALA, the edible oil should be stored under cool (less than 4°C), oxygen-depleted, 

dark conditions with an antioxidant added to prevent rapid oxidation. Most of the 

flaxseed oil products sold as functional food is distributed and sold in opaque plastic or 

brown glass to limit degradation by light and flushed with nitrogen at the time of 

bottling to preserve freshness (Wiesenborn et al., 2005). Additionally, it is 

recommended that these oils be stored at 4°C. 

Fresh, unrefined flaxseed oil usually presents a mild, nutty and pleasant flavour. 

After short-term storage, paint-like and fishy odours and fishy and bitter flavours often 

arises. The flavour and odour chemistry is too complex to be attributed to a sole factor. 

Seed quality, variety, processing, handling and storage all contribute to the flavour of  
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Table 2-3 Analytical data for crude and refined flaxseed (Linola) oil (Green and   

        Dribinenke, 1994) 

 

Parameters Crude oil Refined oil 

Refractive index (46 ºC) 1.4657 1.4665 

Specific gravity 0.921 0.920 

Viscosity 46.8 46.4 

Phosphorus (mg/kg) 325 <0.5 

Chlorophyll (mg/kg) 0.4 0.0 

Free fatty acid (as % oleic) 0.3 <0.02 

Iodine value 142 144 

Fatty acid composition (% wt)   

16:0 5.6 5.6 

18:0 4.0 4.0 

18:1 15.9 15.9 

18:2 71.8 71.9 

18:3 2.0 2.0 

Others 0.7 0.6 

Sterols (mg/kg) 3095 2324 

Tocopherols (mg/kg) 507 172 
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flaxseed oil. Several phytochemicals, including phenolic compounds, FFAs, carbonyl 

products, products of oxidation and small hydrophobic peptides are believed to correlate 

with the off-flavour of flaxseed oil. The fishy flavoured compounds found in oxidized 

flaxseed oil are identified as carbonyl compounds including cis-4-heptenal (Seals and 

Hammond, 1970). Flaxseed oil is readily oxidized to produce peroxides which can 

further breakdown into smaller molecules such as aldehydes, acids and alcohols, 

contributing to the unpleasant rancid flavour. Arai et al. attributed the dark colour, bitter 

taste and objectionable flavour of some oils to phenolic constituents (Arai et al., 1966). 

The phenolic compounds found in flaxseed, are mainly a complex of SDG, 

hydroxymethyl glutaric acid, ferulic acid glucoside and p-coumaric acid glucoside 

(Davin et al., 1997; Ford et al., 2001; Schoenrock et al., 1997). However, this complex 

is not soluble in vegetable oil. FFAs which contribute to the rancid flavour in butter fats 

and certain tallows are present at low levels in most vegetable oils (Bills et al., 1969) 

and should not be present in large amounts in good quality flaxseed or flaxseed oil. 

The occurrence of a small hydrophobic peptide, more specifically, CLP-E, on the 

other hand, contributes a bitter flavour to flaxseed oil according to the study of Brühl et 

al. (2007). Brühl et al. (2007) demonstrated that the delicate nutty flavour of freshly 

pressed flaxseed oil is replaced by a bitter flavour during storage. The key bitter 

compound was isolated and identified as CLP-E by different analytical tests. Fourier 

transform infrared spectroscopy (FTIR), liquid chromatography-mass spectrometry (LC-

MS), nuclear magnetic resonance (NMR) spectroscopy and amino acid analysis have all 

proved useful in determining the CLP-E content of flaxseed oil. The finding that CLP-E 

has a bitter flavour is consistent with theories that predict the bitter tasting potency of 

peptides. In 1971, it was first reported that peptides with hydrophobicity values more 

than 1400 cal/mole and molecular weight less than 6 kDa contribute a strong bitterness. 

Moreover, those peptides with Leu, Pro, Phe, Tyr, Ile and Trp have a tendency to be 

bitter (Ney, 1971). The presence of Pro residues has been found to be a major 

contributor to peptide bitterness (Ishibashi et al., 1988). It has recently been 

demonstrated that bitterness is determined by polarity, hydrophobicity and the spatial 

structure of the peptides (Kim et al., 2008). 



 

16 

2.3 Plant cyclopeptides  

 Plant cyclopeptides are cyclic compounds found in higher plants. They are often 

composed of 2 to 37 amino acids. While the amino acids typically found in Eukaryotic 

proteins are common, non-protein amino acids and D-amino acids are both found. Tan 

and Zhou (2006) reviewed the chemistry of plant cyclopeptides and reported structures 

of 455 cyclopeptides in Caryophyllaceae, Rhamnaceae and other 24 families. In their 

review they divided plant cyclopeptides into two classes, five subclasses and eight types 

according to their skeletons and distributions in plants (Figure 2-3). Among them, 

cyclopeptide alkaloids (Type I), Caryophyllaceae-type cyclopeptides (Type VI) and 

cyclotides (Type VIII) are the three largest groups due to the large numbers (185, 168 

and 51 respectively) of cyclopeptides belonging in these categories. 

 

2.3.1 Distribution and biological activities of plant cyclopeptides 

 Tan and Zhou described the distribution of cyclopeptides in plants in 2006. They 

stated that “455 cyclopeptides have been found in 26 families, 65 genera and 120 

species; in particular, plants of the Caryophyllaceae and Rhamanaceae families 

commonly contain cyclopeptides. These 26 families include Amaranthaceae, 

Annonaceae, Araliacea, Asclepiadaceae, Asteraceae, Caryophyllaceae, Celastraceae, 

Compositae, Cucurbitaceae, Euphorbiaceae, Labiatae, Linaceae, Malvaceae, 

Myrsinaceae, Olacaceae, Pandaceae, Phytolaccaceae, Phamnaceae, Rubiaceae, 

Rutaceae, Schizandraceae, Solanaceae, Sterculiaceae, Urticaceae, Verbenaceae and 

Violaceae” (Tan and Zhou, 2006). 

 Literature reports of the distribution, concentration and biological activity of 

cyclopeptides from different plant sources show a wide range of compounds and 

concentrations possibly due to combined factors such as isolation methods, structures 

and plants genetics. The heteromonocyclopeptides, are substantially found in plant bark, 

root and whole seed. Other plant parts, which might contain cyclopeptides include root 

bark, stem bark, leaves, terminal branches, woody parts, aerial parts, flowers and fruit 

(Tan and Zhou, 2006). Most of these tissues and plant parts and extracts from them have 

biological activity. Typically these materials are cytotoxic, antimitotic, antibacterial, 
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Figure 2-3 Classification of plant cyclopeptides（modified from Tan and Zhou, 2006） 
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antifungal, antiplasmodial or antimycobacterial. They may also act as sedatives, or 

immunostimulants. The alkaloid cyclopeptide (Type I, Figure 2-4. a) frangufoline (also 

called Sanjoinine-A), is a known 14-membered cyclopeptide alkaloid with sedative, 

anti-bacterial and anti-fungal activities found in the seeds of Zizyphus jujuba 

(Rhamnaceae). This plant is widely used as an herbal medicine in the Orient (Han and 

Park, 1987). Depsicyclopeptides (Type II, Figure 2-4. b) extracted from the whole plants 

of Ardisia crenata (Myrsinaceae) are cytotoxic, having the specific biological effects of 

inhibiting platelet aggregation in rabbits in vitro, decreasing blood pressure and causing 

dose-related hypotension in anaesthetized normotensive rats (Fujioka et al., 1988). 

Solanaceae-type cyclopeptide (Type III, Figure 2-4. c), lyciumins, isolated from the root 

bark of Lycium chinense (Solanaceae) inhibit angiotensin-converting enzyme (ACE) and 

renin (Yahara, 1989). Urticaceae-type cyclopeptide (Type IV, Figure 2-4. d), 

celogentins, with antimitotic activity, are isolated from the seeds of Celosia argenta 

(Amaranthaceae) (Kobayashi et al., 2001; Suzuki et al., 2003). Homocyclopeptides, are 

found in plant roots and seeds, as well as latex, leaves, fruit and fruit peels. Astins (A, B, 

C) are representative Compositae-type cyclopeptides (Type V, Figure 2-4. e) derived 

from the roots of Aster tataricus (Compositae). These compounds have anti-tumour 

activity (Morita, 1995; Kosemura et al., 1993). Yunnanins (cyclic heptapeptides) are 

Caryophyllaceae-type cyclopeptides (Type VI, Figure 2-4. f), that are extracted from the 

roots of Stellaria yunnanensis (Caryophyllaceae) and are found to exert cytotoxic effects 

on P388 leukemia cells (Morita et al., 1994, 1996, 1997b; Napolitano et al., 2004). In 

addition, some Rubiaceae-type cyclopeptides (Type VII, Figure 2-4. g), found in plant 

roots, stems, leaves and flowers have strong antitumour activities (Jolad et al., 1977; 

Itokawa et al., 1986, 1991; Morita et al., 1992; Shen et al., 1996). The most active 

Rubiaceae-type cyclopeptide RA-VII separated from the roots of Rubiaceae akane 

(Rubiaceae) was found to be an effective anticancer drug with low toxicity (Itokawa et 

al., 1991). Cyclotides (Type VIII, Figure 2-4. h) are a group of plant disulfide-rich 

macrocyclic proteins with 28-37 amino acids with an amide head to tail cyclized peptide 

backbone and a cyclic cysteine knot (CCK) (Craik et al., 1999). Their unique structure 

renders them highly chemically stable and resistant to enzymatic breakdown (Craik et 

al., 1999; Colgrave and Craik, 2004). Some cyclotides are known for their anti-HIV  
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a. Cyclopeptide alkaloids (Type I) 

 
b. Depsicyclopeptides (Type II) 

 

 
c. Solanaceae-type cyclopeptides (Type III) 

Figure 2-4 Structures of cyclopeptides（modified from Tan and Zhou, 2006）(Con’t)
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d. Urticaceae-type cyclopeptides (Type IV) 

 

 
 

e. Compositae-type cyclopeptides (Type V) 

 

 
 

f. Caryophyllaceae-type cyclopeptides (Type VI) 

 

Figure 2-4 Structures of cyclopeptides（modified from Tan and Zhou, 2006）(Con’t) 
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g. Rubiaceae-type cyclopeptides (Type VII) 

 

 
 

h. Cyclotides (Type VIII) 

 

 

Note: (X-Y=CH=CH, CH (OH)-CH2, CH (OCH3)-CH2, CH-CH, C C; 

R1=amino acid residues; R2=side chain of amino acids; R3=H, OH, OCH3, OAc, Cl, 

Oglc; R4=NH2, NHCH3, N (CH3)2; R5=OH or amino acid residues; R6=CH3 or CH2CH3) 

 

Figure 2-4 Structures of cyclopeptides（modifieded from Tan and Zhou, 2006） 
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activities such as circulins found in the stems of Chassalia parvifolia (Rubiaceae) and 

cycloviolin from the bark of Hybanthus parviflourus (Violaceae) (Gustafson et al., 1994; 

Derua et al., 1996; Gustafson et al., 2000; Hallock et al., 1999). 

 

2.4 Cyclolinopeptides 

 CLPs are a group of cyclic, hydrophobic peptides composed of eight or nine 

amino acid residues with molecular weights of approximately one thousand Da. They 

are Caryophyllaceae-type cyclopeptides (Type VI). After CLP-A was first isolated from 

the sediments deposited from crude flaxseed oil by Kaufmann and Tobschirbel in 1959, 

ten other CLPs were found in the seeds of Linum usitatissimum by 2001. The primary 

amino acid sequences chemical data and primary structures are summarized in Table 2-4 

and Figure 2-5 (Kaufmann and Tobschirbel, 1959; Morita et al., 1997a, 1999; 

Matsumoto et al., 2001b, 2002). In addition, another cyclic peptide CLP-X with a non-

proteinaceous amino acid residue (N-methyl-4-aminoproline) was isolated from Linum 

album in 1998 (Picur et al., 1998). 

 

2.4.1 Biological activity of CLPs 

 The role of CLPs in flax remains unclear, though through both in vivo and in 

vitro studies, it has been demonstrated that CLPs have multiple biological activities. For 

instance, in 1986 Kessler and co-workers reported that CLP-A inhibits cholate uptake 

into hepatocytes. Later, the tripeptide block -Phe-Phe-Pro- in CLP-A, which is similar to 

structures in antamanide and somatostatin, was proved to suppress the hepatocyte cell 

transport system. It is possible that this peptide sequence imparts the observed 

cytoprotective effects of CLP-A on hepatocytes (Kessler et al., 1986a; Rossi, 1996). 

Immunomodulatory activity of CLP-A was studied using Jerne's plaque forming cell 

number determination (PFC) test for the primary and secondary humoural immune 

response (HIR), delayed type hypersensitivity (DTH) reaction, the skin-allograft 

rejection, the graft-versus-host reaction for the cellular immune response in mice, human 

lymphocyte proliferation test in vitro and the post-adjuvant polyarthritis test in rats and 

hemolytic anemia test in New Zealand Black mice (Wiesenborn et al., 1991). The results 

show CLP-A affected both humoural and cellular immune response. It could also  
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Table 2-4 Cyclolinopeptides in Linum usitatissimum (Kaufmann and Tobschirbel, 1959; 

Morita et al., 1997b; Morita et al., 1999; Matsumoto et al., 2001a, 2002) 

Type Primary structure (cyclo-) Chemical data Formula (M.W.) 

CLP-A Ile-Leu-Val-Pro-Pro-Phe-Phe-Leu-Ile C57H85N9O9 (1040) 

CLP-B Met-Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile C56H83N9O9 S (1058) 

CLP-C Mso-Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile C56H83N9O10S (1074) 

CLP-D Mso-Leu-Leu-Pro-Phe-Phe-Trp-Ile C57H77N9O9 S (1064) 

CLP-E Mso-Leu-Val-Phe-Pro-Leu-Phe-Ile C51H77N8O9 S (977) 

CLP-F Mso-Leu-Mso-Pro-Phe-Phe-Trp-Val C55H73N9O10 S2 (1084) 

CLP-G Mso-Leu-Mso-Pro-Phe-Phe-Trp-Ile C56H75N9O10 S2 (1098) 

CLP-H Mso-Leu-Met-Pro-Phe-Phe-Trp-Ile C56H75N9O9 S2 (1082) 

CLP-I Met-Leu-Mso-Pro-Phe-Phe-Trp-Val C55H73N9O9 S2 (1068) 

CLP-J Msn-Leu-Val-Phe-Pro-Leu-Phe-Ile C51H77N8O10 S (993) 

CLP-K Msn-Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile C56H83N9O11S (1090) 
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Figure 2-5 Primary structures of CLPs from the seeds of Linum usitatissimum  
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increase the skin allograft rejection time and reduce the graft-versus-host reaction 

index. Human lymphocyte proliferation was inhibited by CLP-A through 

phytohemagglutinin in vitro (Wiesenborn et al., 1991). The symptoms associated with 

two immune diseases, the post-adjuvant polyarthritis in rats and hemolytic anemia of 

New Zealand Black mice, were alleviated. In the research of Górski et al. (2001), the 

immunosuppressive effects of CLP-A were compared with cyclosporin A (CsA), a 

known immunosuppressant. Both CLP-A and CsA function by inhibiting the action of 

Interleukin-1-alpha and Interleukin-2. This finding strongly indicates that CLP-A 

shares the same mechanism as CsA in the plaque-forming cells test and the 

autologous rosette-forming cells test. The study also compared the effects of both 

compounds on human lymphocytes in vitro. It was found that at very low 

concentrations, CLP-A induced the same effects as CsA on T and B cell proliferation, 

acquisition of activation antigens and immunoglobulin synthesis (Górski et al., 2001). 

Overall, these studies demonstrated that CLP-A had similar biological effects to CsA.  

 The toxicity of CLP-A was evaluated by intravenous and oral administering to 

rats and mice (Siemion et al., 1999). Oral administration of 4 g/kg CLP-A in olive oil, 

2% gelatin solution did not harm mice while 3 g/kg to rats was also well tolerated. 

Intravenous administration of CLP-A at 230 mg/kg is non-toxic to mice. The combined 

strong immunosuppressive activity and low toxicity at relatively large doses of CLP-A 

makes it a potential immunosuppressive drug. The use of this compound as a drug 

requires additional research. 

 Other CLPs and their analogs were also investigated for their 

immunosuppressant activities. According to the research of Morita et al. (1997a), CLP-

B inhibits concanavalin-A induced proliferation of human peripheral blood lymphocytes 

at treatment levels comparable to that of CsA. CLP-B and CLP-E also manifested a 

moderate inhibitory effect on concanavalin-A induced mouse lymphocyte proliferation 

(Morita et al., 1997a). Many chemical analogs of CLP-A were tested for their effects on 

immune response (Siemion et al., 1999; Benedetti and Pedone, 2005; Picur et al., 2006). 

Many of these compounds with a structure of -Pro-Xxx-Phe- sequence (where Xxx 

means a hydrophobic, aliphatic, or aromatic residue) were found to exert  
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immunosuppressive activity though none of them exerted higher activity than CLP-A 

(Picur et al., 2006).  

 The immunosuppressive activity of CLPs and its analogues make them potential 

value added natural products of flax and will lead to further investigations of the 

biological activities of CLPs. According to the patent application of Reaney et al. (2009), 

CLPs also present a biological activity of induction of heat shock protein 70A 

production in Caenorhabditus elegans. 

 Exposure of nematode cultures to CLP-A (0.1 µM and 10.0 µM) induced a 30% 

increase in the production of the HSP 70A protein, while a 3.5-fold increase was 

induced in the culture treated with 1.0 µM of CLP-A. Higher concentrations of CLP-A 

were lethal to the nematodes (Reaney et al., 2009). 
  

2.4.2 Isolation and separation of CLPs from flaxseed tissues 

 There are many published methods for isolation of CLPs from flax. The isolation 

procedures have depended, in part, on the tissue processed. A low concentration of CLPs 

in the source matrix requires the use of solvents and chromatographic columns during 

peptide recovery. Kaufman and Tobschirbel (1959) first isolated a cyclic hydrophobic 

peptide from flaxseed oil precipitates (foots), which is a slime that precipitates from 

flaxseed oil after extraction and settling. Later CLP-A structure was confirmed by Prox 

and Weygand (1967). Morita and co-workers (1997a, 1999; Matsumoto et al., 2001a, 

2001b, 2002) described the isolation of several additional CLPs from flaxseed, root and 

cake after oil pressing. Defatted flax meal (30 kg) and flax roots (30 kg) was first 

defatted then extracted with four volumes of hot methanol three times, followed by 

solvent stripping. The methanolic extract (about 4 kg) was loaded on a polystyrene 

column (Diaion™ HP-20). Methanol with increasing concentrations in water (0-100%) 

was utilized as the eluent for further separation and the bound CLPs were removed from 

the column with a 100% methanol. The methanol extract was then subjected to a normal 

phase silica gel chromatography with chloroform and methanol solvent gradient from 

100:0 and the hydrophobic peptides were eluted with low concentrations (10%-15%) of 

methanol. Those fractions containing peptides were subjected to reverse phase HPLC 

with 40-75% CH3CN solvent system to yield 0.007% of CLP-A, 0.0002% of CLP-B, 
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0.0037% of CLP-C, 0.0015% of CLP-D, 0.0058% of CLP-E, 0.0008% of CLP-F, 

0.0024% of CLP-G, 0.0002% of CLP-H and 0.00007% of CLP-I (Morita et al., 1997b, 

1999; Matsumoto et al., 2001a, 2001b, 2002). 

 Stefanowicz (2001) described an isolation method for obtaining mixtures of 

CLPs. Ground flaxseed (5 g) was extracted overnight with 100 mL of acetone. After 

solvent evaporation, the remaining extract was dissolved in methanol and hydrolyzed 

with 10% sodium hydroxide. The resulting mixture was dried under vacuum, while the 

remaining fraction was mixed with ethyl acetate. The extract was shown to be a mixture 

of CLPs by electrospray ionization-mass spectrometry (ESI-MS) and electrospray 

ionization tandem mass spectrometry (ESI-MS/MS), but further separation for each 

cyclic peptide was not reported.  

 In 2007, Brühl et al. recovered compounds that contribute a bitter flavour to 

flaxseed oil. Flaxseed was first pressed using a laboratory expeller press at a temperature 

not exceeding 60°C. This condition produced a yield of 30% oil that was extracted at a 

temperature not exceeding 40°C. The "cold pressed" flaxseed oil (100 g) obtained was 

mixed with 100 mL heptane, then extracted three times with methanol/water (6/4; v/v, 

200 mL each) and the aqueous extracts were combined, followed by solvent evaporation 

under vacuum. The bitter fraction identified by sensory testing was collected and 

dissolved in methanol/diethyl ether (1/1, v/v; 1 mL) and finally loaded onto a silica gel 

(20 g) column. Chromatography with a gradient of diethyl ether and ethanol from 10:0 

to 0:10 was conducted. Ten fractions were collected and evaluated for bitter taste after 

solvent evaporation and the bitter compound was further purified by RP-C18 HPLC and 

proved to be CLP-E by liquid chromatography-mass spectrometry (LC-MS), electro 

spray ionization-time of flight-mass spectrometry (ESI-TOF-MS) and nuclear magnetic 

resonance (NMR) analyses. The structure was also shown to be consistent with CLP-E 

by Fourier transform infrared (FTIR) spectroscopy and amino acid analysis. Brühl et al. 

(2007) focused on identifying the bitter compound of flax and not efficient processes for 

isolating, separating or quantifying all of CLPs from flaxseed oil. In particular, no 

further action was taken to increase oil yield or to maximize the extraction efficiency of 

all cyclic peptides.  
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2.4.3 Detection, identification, confirmation of CLPs in prepared samples 

 Detection, identification and confirmation of CLPs from flax extracts has been 

achieved using ESI-MS, ESI-MS-MS, ESI-TOF-MS, LC-MS, circular dichroism (CD) 

spectroscopy, infrared (IR) spectroscopy, FTIR, high resolution fast atom bombardment 

mass spectrometry (HR-FABMS), 13C-NMR, 1H-NMR and amino acid analysis by 

HPLC after hydrolysis (Stefanowicz, 2001; Naider et al., 1971; Brewster and Bovey, 

1971; Tancredi et al., 1991; Morita et al., 1999; Matsumoto et al., 2001a; Brühl et al., 

2007). 

 ESI-MS and ESI-MS-MS are preferred in CLP analysis due to easy sample 

preparation, high sensitivity and high dynamic range. In 2001, Stefanowicz described a 

method to detect and sequence CLPs from flaxseed by ESI-MS and ESI-MS/MS. Crude 

peptide extracts were dissolved in methanol containing 10 mM of ammonium acetate 

and injected in to a Finnigan MAT TSQ-700 MS with ESI source. The peptides CLP-B, 

CLP-D, CLP-E were detected in agreement with previous literature (Morita et al., 

1997b). The precursors of CLP-D and CLP-E were first presented as the cyclic peptide 

containing unoxidized Met. The sequences of CLP-F (Cyclo-(Mso-Leu-Mso-Pro-Phe-

Phe-Trp-Val-)) and CLP-G (Cyclo-(Mso-Leu-Mso-Pro-Phe-Phe-Trp-Ile-)) were also 

proposed based on the fragmentation spectra achieved by collision induced dissociation 

experiments and the similarity with those of CLP-D' (Stefanowicz, 2001). The use of 

MS techniques has its limitations, such as the inability to provide detailed information 

about CLPs' conformational structures. 

 Conformation of CLP structures in different solutions was studied using circular 

dichroism (CD) and NMR. The flexibility of the peptide ring and prolyl isomers present 

in CLPs will allow the peptides to adopt a number of conformations in solution. The 

conformation of CLP-A was first investigated in several organic solvents by CD (Naider 

et al., 1971). The results indicated that CLP-A existed in several conformations in 

solution with the absence of intra-molecular hydrogen bonds. In the same year, the 

conformation of synthetic CLP-A was illustrated by Brewster and Bovey (1971) who 

measured the temperature dependence of the NH chemical shifts using 100 and 200 

MHz proton NMR, after exchange of peptide NH protons with deuterium. The data 

reveals that: 1) the main chain is cyclic, cyclo(Ile-Leu-Val-Pro-Pro-Phe-Phe-Leu-Ile-); 2) 
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intramolecular hydrogen bonds are absent in dimethysulfoxide (DMSO); 3) five of the 

seven peptide NH protons are exposed to solvent while the remaining two might be 

situated in the interior of the ring (Brewster and Bovey, 1971). In another study it is 

noted that CLPs have the ability to form complexes with metal ions, such as Ba2+, K+, 

Na+, Mg2+ and Ca2+, which make them a potential vehicle for ion delivery (Tancredi et 

al., 1991).  

 Morita and coworkers were the first group to combine analytical technologies, 

including IR, HR-FABMS, 13C-NMR, 1H-NMR and amino acid analysis, to 

systematically identify the structures of CLP-B through I (Morita et al., 1999; 

Matsumoto et al., 2001b). For instance, HPLC enriched fractions containing mostly 

CLP-B were first dissolved in methanol then injected into HR-FABMS. A quasi-

molecular ion peak at m/z 1058.6031 [M+H]+ was observed, corresponding to the 

molecular formula of CLP-B, C56H83N909S. The IR absorptions at 3,436 and 1,659 cm-1 

indicated the presence of amino and amide carbonyl groups in CLP-B respectively. The 

combined application of 13C-NMR and 1H-NMR provided more structural detail 

regarding CLP-B. Signals from 13C-NMR spectrum (δ 173.17, 172.57×2, 171.65, 171.16, 

170.722, 169.99 and 169.89) indicated the existence of nine amide carbonyl groups in 

CLP-B, while chemical shifts from 1H-NMR spectrum (δ 7.89, 7.82, 7.73, 7.71, 7.55, 

7.45 and 7.27) showed only seven amide protons in CLP-B. Acid-hydrolysis of CLP-B 

yielded Leu (×1), Val (×1), Met (×1), Ile (×2), Phe (×2) and Pro (×2). The molecular 

weight and the lack of a terminal amino group (1H-NMR and 13C-NMR) demonstrated 

that CLP-B was a cyclic peptide with nine amino acid residues. The proton signals and 

the corresponding carbon signals were assigned by NMR methods (1H-1H correlation 

spectroscopy (COSY) and heteronuclear multiple quantum coherence (HMQC)). The 

phase sensitive Rotating Frame Overhauser Effect Spectroscopy (ROESY) and 

heteronuclear multiple bond correlation (HMBC) experiments determined the linking 

between individual amino acids and the sequence of CLP-B was finally identified as 

cyclo-(Met-Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile-) (Morita et al., 1999). Other CLPs (CLP-

C to I) are similarly determined.  

 A more recent study utilized LC-MS, high resolution mass spectrometry, NMR, 

amino acid analysis and FTIR to identify the bitter principle in stored cold-pressed 
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flaxseed oil (Brühl et al., 2007). The isolated bitter principle (100 µg) was obtained by 

the method described in section 2.4.2 for structure identification. A clear pellet was 

produced for FTIR spectrometry by pressing a mixture of dry potassium bromide (250 

mg) and an aliquot (1.5 mg) of the isolated bitter principle under vacuum. The IR 

spectrum was recorded from 4000 to 400 cm-1. A broad band at 3,427.7 cm-1 indicated 

the presence of a hydroxyl group with a shoulder at 3,314.0 cm -1 for NH vibration. The 

weak bands of CH3 and CH2 groups observed at 2,959.3 and 2,928.3 cm -1 at a ratio 

about 1:1 demonstrated a lack of long carbon chains and eliminated the possibility of 

fatty acid derivatives as bitter compounds. At the same time, C=O (vibration) and C-N, 

N-H (vibration) for N-monosubstituted amides were observed at 1,659.1 and 1,529.9 cm-

1, while sulfoxide (vibration) and a monosubstituted aromatic system were detected at 

1,030.6, 746.0 and 701.3 cm-1. For further structure confirmation, 100 µg of the isolated 

bitter compounds was dissolved in 1 mL methanol and an aliquot (5 µL) was injected 

into an API 4000 Q Trap LC/MS/MS by means of loop injection with methanol/water 

(1/1, v/v) as the solvent. A quasi-molecular ion with m/z 977.7 [M + H]+, along with 

product cluster ions: ammonium with m/z 994.7 [M + NH4]+, sodium with m/z 999.7 [M 

+ Na]+, potassium with m/z 1,015.7 [M + K]+ and double charged molecule: 489.5 [M + 

2H]2+, 500.5 [M + H + Na]2+, 508.4 [M + H + K]2+ and 511.5 [M + 2Na]2+ were 

observed. The exact mass measurements are further confirmed by high resolution mass 

spectrometry. The bitter isolate was dissolved in methanol and injected into a Bruker 

Micro TOF using electrospray ionization in positive and negative ion modes by means 

of loop injection with methanol/water (1/1, v/v) as the solvent. The result showed a 

sodium adduction [M + Na]+ (m/z 999.5366) in the positive ionization mode as 

C51H76N8O9S + Na+ (m/z 999.5348) and quasi-molecular ion [M - H]- (m/z 975.7) in the 

negative ionization mode as [C51H76N8O9S - H]- (m/z 975.5390). The molecular formula 

C51H76N8O9S, therefore, was identified as the elementary composition of the isolated 

bitter compound. The eight nitrogen atoms in this molecular formula, the hydrophobicity 

of this compound and absence of amino acid fragmentation from the terminal peptide 

chain upon LC-MS analysis suggested a cyclic peptide structure of the bitter compound. 

The amino acid composition was then analyzed by hydrolysis of CLP-E followed by ion 

chromatography. An aliquot (300 µg) of the isolated bitter compound was mixed with 
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aqueous hydrochloric acid (6 mol/L; 100 µL) and heated for 17 h at 110°C under an 

atmosphere of nitrogen. The hydrolysate (10 µL) was injected into an ion 

chromatograph (0.25 mL/min) with the following gradient including deionized water 

(solvent A), aqueous sodium hydroxide (250 mmol/L, solvent B), aqueous sodium 

acetate (1 mol/L, solvent C) and aqueous acetic acid (100 mmol/L, solvent D). The 

retention times of the peaks from each amino acid were compared with those of 

authentic standards and six amino acids were identified, including L-proline, L-valine, 

L-leucine, L-isoleucine, L-phenylalanine and L-methionine sulfoxide (Mso). The amino 

acid composition corroborated the structure of the cyclic octapeptide cyclo-(Mso-Leu-

Val-Phe-Pro-Leu-Phe-Ile), identified as CLP-E found previously in flaxseed (Morita et 

al., 1999). A final structure confirmation was conducted by NMR. The bitter compound 

was dissolved in methanol-d4 or DMSO-d6 and 1H-COSY, NOESY, 13C, HMQC and 

HMBC experiments were performed. Eight α-amino acid proton signals between δH 3.7 

and 5.0 in 1H-NMR spectrum were in agreement with the proposed structure of a cyclic 

octapeptide. Furthermore, seven amide proton resonances (δH 4.37, 1.83, 2.17, 1.91, 3.50, 

3.56) implied the presence of one Pro in the molecule. The signal at δH 2.54 with an 

intensity of three protons indicated the presence of the methyl group of the Mso. The 

aromatic signal pattern of the two Phe moieties was found between δH 7.1 and 7.3. At 

the same time, 13C-NMR spectroscopy revealed eight carbonyl signals and the 

quaternary carbon signals of the aromatic ring in the Phe were found at δC shifts at 137.1 

and 138.1. Correlation between neighbouring amino acids was established by nuclear 

overhauser effect, combined with correlations between the amide carbonyl atoms and 

the neighbouring amide protons as well as the amino acid protons by HMBC, to confirm 

the structure of the bitter compound. All the collective data were comparable to the 

previous report of CLP-E in the literature (Morita et al., 1999). 

 A whole genome sequence of Linum usitatissimum (var. CDC Bethune) has been 

produced and published on linum.ca (2010). Gene sequence g24175 showed the 

embedded sequences of CLP-E (MLVFPLFVI), B (MLIPPFFVI) and A (ILVPPFFLI). 

Gene sequence of g38655 showed the embedded sequences of CLP-D (MLLPFFWI), F 

(MLMPFFWV) and G (MLMPFFWI) (Reaney, Pers. Commun.; Figure 2-6, 7). 
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Coding sequence of g24175 
ATGGCTGTTG TGTCCTCTCT GGCTCTGACC ACTAGCCTAG TTGCTACCGC CGCCGGCCGT 

AATAATAATG CCTTCCCACC ATCCTCCTCC AGGAACAACA AGGCACCAGC AGACCTTTTC 

ATTACTCCCA AGACAACAAC AACAGTGAAA GCAGCAGCTG TCTCATGCAA ACGTCCCTAC 

CCGAAAGGAG CAGTTGCTGC TGCTACTAGT ACCTTGTCTC CTATTTCTGG AAAGGATGGC 

GGCCTCCGCA ACCAGGAGGA GAGCGATGGT ATGTTGGTCT TCCCCTTATT TATATTCGGC 

AAGGAAGGTA GTCAGGACAA GTATAATGGA GCAGCTGCCC TCCGCGACCA GGAGGAGAGC 

GATGGTATGT TGATCCCCCC CTTCTTTGTC ATATTCGGCA AGGAAGGTTG TCAGGATATC 

GGCCACAAGT ATAATAATGC CGCAGCAGCT GGCGCCCTCC GCGACCAGGA GGAGAGCGAT 

GGTATACTGG TCCCCCCCTT CTTTCTCATA TTCGGCAAGG AAGGTAGTCA GGACAAGTAT 

AATGCAGCAG CAGCTGGCGG CCTCCGCGGC AAGGAGCAGC AGGGTGACAA GATGGCGGCT 

GGAGCTGAGA  ATTAG  

 
Translation of sequence g24175 into amino acid 
MAVVSSLA LTTSLVAT AAGRNNNA FPPSSSRN NKAPADLF ITPKTTTT VKAAAVSC KRPYPKGA 

VAAATSTL SPISGKDG GLRNQEES DGMLVFPL FIFGKEGS QDKYNGAA ALRDQEES DGMLIPPF 

FVIFGKEG CQDIGHKY NNAAAAGA LRDQEESD GILVPPFF LIFGKEGS QDKYNAAA AGGLRGKE 

QQGDKMAA GAEN_ 

 

 

Figure 2-6 Nucleotide and protein sequence of g24175 embedded with CLP-E  

         (MLVFPLFVI), B (MLIPPFFVI) and A (ILVPPFFLI) (linum.ca, 2010) 
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Coding sequence of g38655 

ATGGCTGTTG TGTCCTCTCT GGCTCTGACC ACTAGCCTAG TTGCTACCGC CGCCGGCCGT 

AATAATAATG CCTTCCCACC ATCCTCCTCC AGGAACAACA AGGCACCAGC AGACCTTTTC 

ATTACTCCCA AGACAACAAC AACAGTGAAA GCAGCAGCTG TCTCATGCAA ACGTCCCTAC 

CCGAAAGGAG CAGTTGCTGC TGCTACTAGT ACCTTGTCTC CTATTTCTGG AAAGGATGGC 

GGCCTCCGCA ACCAGGAGGA GAGCGATGGT ATGTTGGTCT TCCCCTTATT TATATTCGGC 

AAGGAAGGTA GTCAGGACAA GTATAATGGA GCAGCTGCCC TCCGCGACCA GGAGGAGAGC 

GATGGTATGT TGATCCCCCC CTTCTTTGTC ATATTCGGCA AGGAAGGTTG TCAGGATATC 

GGCCACAAGT ATAATAATGC CGCAGCAGCT GGCGCCCTCC GCGACCAGGA GGAGAGCGAT 

GGTATACTGG TCCCCCCCTT CTTTCTCATA TTCGGCAAGG AAGGTAGTCA GGACAAGTAT 

AATGCAGCAG CAGCTGGCGG CCTCCGCGGC AAGGAGCAGC AGGGTGACAA GATGGCGGCT 

GGAGCTGAGA  ATTAG  

 

Translation of sequence g38655 into amino acid 
MAAASSLA LATASLVA TGAGGRNN AFLPSKNK TPNLFLNP NKTTSSTV KAVVSSSS CKRPYPKG 

DASLFLGI DDVFGKDA VAGHDNDQ DAASGQEM AADDMLMP FFWIFGKE GQQQEAEE SSDDMLMP 

FFWIFGKE GQQQEAES SDDMLLPF FWIFGKEG QQQEAESS DDMLMPFF WIFGKQQQ QQGESSDD 

MLMPFFWV FGKQGDNN KGDAVEAI LKN_ 

 

Figure 2-7 Nucleotide and protein sequence of g38655 embedded with CLP-D     

         (MLLPFFWI), F (MLMPFFWV) and G (MLMPFFWI) (linum.ca, 2010) 
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2.4.4 Quantification of CLPs in different varieties of flaxseeds 

 Quantification and characterization of any compound or class of compound is 

facilitated by the use of authentic compounds and suitable internal standards (Franke et 

al., 1995; Balsevich et al., 2009; Kanduru et al., 2010). Most previous studies of CLPs 

do not describe precise quantification due to the lack of authentic standards and the 

difficult procedures required for obtaining pure individual peptides (Kaufman and 

Tobschirbel, 1959; Morita et al., 1997b; Stefanowicz, 2001; Matsumoto et al., 2002). 

The exceptional case was the publication by Brühl et al. (2007) that describes the 

measurement of CLP-E concentrations in flaxseed oil. Based on purified CLP-E from 

stored flaxseed oil obtained in a previous work of Brühl et al. (2007), an external 

calibration with a coefficient of determination R2 of 0.998 was established for the range 

from 3-900 mg/mL. Flaxseed oil (1 g) was mixed with heptane (10 mL) and loaded onto 

a C18 SPE 1000-mg cartridge. The column was eluted with heptane (5 mL, 3 times) to 

remove non-polar compounds. Polar compounds remaining on the column were 

recovered with a subsequent elution with methanol (5 mL, once). After solvent removal, 

the extract was taken in 0.5 mL methanol and injected onto an HPLC column using a 

solvent gradient that started with a mixture of methanol/water (75: 25, v/v) at a flow rate 

of 1 mL/min and then changing to 100% methanol. The peak of CLP-E was observed at 

a retention time of 12.43 min. The levels of CLP-E in different flax cultivars were 

calculated using external calibration and the results showed the amount of CLP-E varied 

from 0 to 53 mg/kg in flaxseed oils with a mean of 24 mg/kg among 21 flax varieties. 

  

2.5 Potential for commercial production of CLPs 

2.5.1 Flaxseed oil as a commercial source of peptides 

 CLPs derived from flaxseed oil may potentially be valuable bioactive molecules 

with immunosuppressive and potential anti-cancer properties. Flaxseed oil could be 

considered as an excellent commercial source for CLP recovery as these peptides are 

hydrophobic and are mainly dissolved in oil after processing. However, few studies have 

presented the levels of CLPs in flax material except that of Brühl et al. (2008). In their 

report levels of CLP-E among 21 flax varieties were analyzed and the data showed that 

flax genotype might play a role in determining the level of CLP-E. However, the levels 
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of other peptides were not measured. It is not known if the data reflects true genotypic 

differences among the flax cultivars or if the variation is due to conditions of harvesting 

and storage. Further investigation should be conducted to evaluate the levels of CLPs 

among different flax varieties in order to find a good commercial source for peptide 

recovery. 

 Methods were proposed for commercial extraction and concentration of peptides 

from flaxseed oil using either liquid-liquid or solid-liquid extraction (Reaney et al., 

2009). However, the recovery from whole seed requires methods that are more costly, 

difficult and time-consuming. These methods usually involve the use of a great amount 

of solvent, labour and energy for peptide extraction and concentration (Morita et al., 

1997a, 1999; Matsumoto et al., 2001a, 2001b, 2002; Stefanowicz, 2001; Brühl et al., 

2007). Chemical synthesis of CLPs, on the other hand, provides an alternative method of 

studying peptides. Wiezorek et al. (1991) described a synthetic method for CLP-A 

preparation on Merrifield resin using tert-butyloxycarbonyl protected amino acids. 

Trifluoro acetic acid and sulphuric acid are used to produce linear peptides, which were 

split from resin and later cyclized by Castro's agent. The final peptide was purified using 

HPLC. However, the synthetic method also had a very low product yield and peptide 

recovery was difficult.  

 

2.5.2 The potential of CLPs as cryptands 

 Cyclic peptides containing even numbers of altering D and L amino acids are 

able to self-assemble and form nanotubes by intermolecular hydrogen bonding (Ghadiri 

et al., 1993). The abundant presence of C=O and N-H functional groups of CLPs would 

introduce a binding cavity suitable for binding other compounds. Such compounds are 

called cryptands as they are members of a class of molecules with a suitably sized cavity 

for binding other molecules (Cramer, 1952; Pedersen, 1967). Cryptands could be widely 

applied in food, cosmetics, cleaning products, pharmaceuticals and agriculture products 

due to their multiple functions (Weber, 2005). For example, cyclodextrins, a group of 

cyclic oligosaccharides, can trap molecules by forming cage and channel structures to 

produce inclusion complex. This property could be used to modify the chemical 

reactivity of guest molecules, fix volatile compounds, improve solubility of substances, 
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solidify liquid substances and mask or preserve smell and taste. In the cosmetic industry, 

cyclodextrins are added into perfumes, body creams, shower gels, air refresher and 

detergent in order to control the release of aromatic oils (Prasad et al., 1999). In the food 

industry, they are used for flavour delivery or protection since most of the natural or 

artificial flavour compounds are volatile oils which could be included into cyclodextrins 

to give better performance (Szejtli, 1998). Removing undesired compounds from food 

products is another application for cyclodextrins. They are, for example, added to milk 

and egg to remove cholesterol (Hedges, 1998). For drug delivery, cyclodextrins can 

enhance delivery efficiency by increasing the solubility of hydrophobic drug compounds 

in solution and increasing their availability at the surface of the biological barrier 

(Rajewski and Stella, 1996). They are also used to mask the bitter flavour in medicine 

(Frömming and Szejtli, 1994). For environmental science, organic contaminants, organic 

pollutants and heavy metals from environment could be dissolved and removed by 

cyclodextrins (Gao and Wang, 1998). The wide applications of cyclodextrins provide an 

indication of the potential for CLPs as cryptands. 
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 3 MATERIALS AND METHODS 
3.1 Materials 

 Five licensed cultivars of flaxseed (Linum usitatissimum) including Somme, 

Vimy, Flanders, CDC Bethune and CDC Valour, were grown in field plots at two 

locations (Saskatoon, SK and Floral, SK) in 2006 and 2008. The trials were standardized 

as a randomized complete block design (RCBD) with two replications. Each plot 

contained six rows 0.30 meters apart and 3.66 meters long.  The seed was a generous 

gift of Dr. G. Rowland of the Saskatchewan Crop Development Centre. Commercial 

flaxseed was provided by Natunola Health Inc., Winchester, ON. The variety and 

growing conditions of the Natunola seed are unknown. Standards of CLP-A, B, C, D, E, 

F, G and Segtalin A (Seg-A) were prepared by Research Assistant P-G. Burnett, Food 

and Bioproduct Sciences, University of Saskatchewan. A quality report of each peptide 

is included as Appendix A. Bottles of flaxseed oil were purchased from local retail 

health food stores. Descriptions on the packaging of these oils included 100% organic 

cold pressed flaxseed oil (500 mL, Sangster Health Centers, Saskatoon, SK), flaxseed oil 

(448 mL, Omega Nutrition Canada Inc., Vancouver, BC), certified organic flaxseed oil 

(500 mL, Floral Inc, Lynden, DC), Natural BrandTM certified organic flaxseed oil (473 

mL, General Nutrition Centres Inc., Pittsburgh, PA), certified organic flaxseed oil (500 

mL, Gold Top Organics Ltd., Edmonton, AB). Chemicals used in the conduct of thesis 

research are listed in Appendix B. 

 

3.2 CLPs in flaxseed from different varieties 

3.2.1 Oil extraction from flaxseed 

CLPs, along with other hydrophobic compounds, such as TAGs, phospholipids 

and carotenoids in flaxseed were first extracted for later peptide isolation. Oil extraction 

protocol was modified from method 960.39 (a) of the A.O.A.C (1990). In the modified 

process, acetone, instead of hexane, was used as a solvent for extractions. Flaxseed was 

ground in a coffee grinder for approximately 30 s to pass through a 1.18-mm test sieve 
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(12 inch-HH-BR-SS-US-40; VWR Company, West Chester, PA). Ground material (up 

to 5 g) was wrapped in filter paper (Whatman No. 4, Whatman Inc., Piscataway, NJ) and 

folded to fit into a cellulose extraction thimble (25 × 80 mm, Ahlstrom Atlanta LLC, 

Holly Spring, PA). Extraction beakers were pre-dried in the oven for one hour at 

temperature of 100°C and cooled in a desiccator before use. Acetone (50 mL) extraction 

was conducted in a Goldfisch extractor (Model 22166B, Laboratory Construction CO., 

Kansas City, MO.) with the heat control set at high for 5 hours. After extraction, acetone 

in the oil samples was recovered in a solvent recovery glass tube. Oil was purged with 

nitrogen for 10 s and left in the fume hood for 1 h to allow for solvent evaporation 

before cooling in a Pyrex® glass desiccator (2.2 L, Corning Inc., Lowell, MA). The 

weights of the beaker, the beaker with oil and the sample were determined using an 

analytical balance (Accuracy: 1 mg, Model: PB403, Mettler Toledo, Greifensee, 

Switzerland) and two decimal places were recorded. 

The oil content of the samples was calculated according to Equation 

3.1.

 
 

3.2.2 CLP isolation from acetone extracts 

 Silica gel 60 (230-400 mesh; column size, 0.08 × 0.5 cm; Sigma-Aldrich Canada 

Ltd., Oakville, ON) flash column chromatography was utilized to adsorb CLPs and other 

relatively polar compounds (e.g., pigment, phospholipid and wax) from acetone 

extracted samples obtained as described in 3.2.1. Silica gel columns (vertical) were 

prepared as follows: a cotton ball was placed in the bottom of a 3 mL plastic syringe 

with sand (50-70 mesh; 1 cm height) added on top for support. Silica gel (0.5 g) was 

slurried in hexane (1 mL) with a glass stirring rod in a 20 mL beaker and poured onto 

the sand then covered by another layer of sand (50-70 mesh; 0.5 cm height) (Figure 3-1). 

The plastic syringes were inserted into the Luer-Lok™ fittings (Becton, Dickinson and 

Co.) of a Visiprep™ solid phase extraction vacuum manifold (Model: 12-port, Supelco, 

Bellefonte, PA). The silica gel columns were equilibrated with 2 mL of hexane for 2 min 

before a mixture of oil sample (1 mL) and hexane (1 mL) was loaded onto the gel. The  
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         (a)                                   (b) 

 

Figure 3-1 Silica gel column (a) and Visiprep™ solid phase extraction vacuum       

         manifold (with one silica gel column in place) (b) used for CLP isolation 
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column was eluted with solvents of increasing polarity under vacuum pressure (7.1×104 

Pa) : 100% hexane (10 mL), 20% ethyl acetate (EtOAc) in hexane (10 mL), 50% EtOAc 

in hexane (10 mL), 100% EtOAc (10 mL) and 10% methanol (MeOH) in 

dichloromethane (CH2Cl2) (10 mL). CLPs were known to elute with 100% EtOAc and 

10% MeOH in CH2Cl2 wash solvents according to previous studies conducted by Y-H. 

Jia (2008). This finding was re-confirmed in this study (Appendix C). The two peptide 

enriched fractions were combined in a 100 mL round bottom flask. The solvent was 

removed by evaporation under reduced pressure in a rotary evaporator (approximately 

9,000 Pa, 40°C water bath, Rotavapor R-200, Buchi, Westbury, NY). The residue in the 

flasks was collected for further analysis. 

 

3.2.3 HPLC method development for CLP quantification   

 The fractions from silica gel isolation were analyzed by reverse phase HPLC. An 

Agilent 1200 series HPLC system (Agilent Technologies Canada Inc., Mississauga, ON) 

equipped with degasser (G1322A), quaternary pump (G1311A), auto-sampler (G1316A) 

and diode array detector (DAD) (G1315D; wavelength range 190-600 nm) and a 

ZORBAX Eclipse XDB-C™ 18 column (5 µm particle size, 150 × 4.6 mm I.D.) was 

used for all analyses.  

 

3.2.3.1 Calibration curves of CLPs with internal standard  

CLP standards and Seg-A (10 mg, each) were weighed using an analytical 

balance (Accuracy: 0.1 mg, Model: P/PI-214, Denver Instrument, Bohemia, NY) and 

dissolved in 5 mL of methanol in a three-dram vial to make stock solutions of 2 mg/mL. 

The vials were sealed with Parafilm™ (Pechiney Plastic Packaging, Chicago, Il) to limit 

solvent evaporation. A mixture of CLP-A, B, C, D, E, G each at 200 µg/mL and Seg-A, 

at 100 µg/mL, was prepared by adding 100 µL of each CLP, 50 µL of Seg-A stock 

solution and 350 µL of methanol (1 mL in total) to a 1.5 mL HPLC vial using a 

graduated syringe (100 µL, Model: 810 RNW, Hamilton Company, Reno, NV). The 

sample was filtered with 0.45 µM PTFE syringe filter (Whatman Ltd., Psicataway, NJ).  

The sample (15 µL) was injected onto the HPLC column and the elution gradient 

provided in Table 3.1 was initiated. The retention times for each peptide were 



 

43 

determined by three injections each day for four consecutive days. System precision was 

determined by relative standard deviations of signal intensity of each peptide.  

 Peaks of UV absorbance were detected over the wavelength range from 190-300 

nm. Eluting peaks were detected at wavelengths of 214 nm and 244 nm with a 10-nm 

bandwidth and against a reference signal at 300 nm with a 10-nm bandwidth and at 280 

nm with a 10-nm bandwidth against a reference signal at 340 nm with a 100-nm 

bandwidth using Chemstation for LC 3D™ system software (Agilent Technologies 

Canada Inc., Mississauga, ON). Area integration of eluting peaks was obtained at 214 

nm with 10-nm bandwidth. UV spectra of the peptides were recorded by selecting the 

maximum spectrum of each LC peak in the chromatogram using Chemstation software. 

Calibration curves for CLP quantification were established between 10 and 500 µg/mL 

in the presence of Seg-A at a constant concentration of 50 µg/mL. The concentrations of 

CLP, x-axis and the area ratio of the peaks of CLP to Seg-A, y-axis were plotted as a 

standard curve. CLPs concentration was determined by calculating peak area relative to 

the internal standard using the standard curves. Three samples were prepared at each 

concentration of CLPs and injected on three consecutive days to establish the calibration 

curves.  

No standard was available for CLP-F. The concentration of CLP-F was estimated 

based on CLP-G. This assumption is based on the highly similar polarity, molecular 

weight and chromophore composition shared by the two compounds (Fig. 2-5; Appendix 

D). 

 

3.2.3.2 Accuracy of HPLC methods 

  A set of quality control solutions (blind samples) were prepared at four 

concentrations in methanol (50 µg/mL, 125 µg/mL, 200 µg/mL and 500 µg/mL) by 

Research Assistant M. Bagonluri, Plant Sciences, University of Saskatchewan. The 

accuracy of the HPLC method in measurement of the concentration of these solutions 

was determined using the calibration curves (n=3). Recovery was calculated according 

to Equation 3.2. 
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Table 3-1 Solvent program for CLP identification and quantification by HPLC 

 

 

 

 

 

 

 

 

 

 
 

 

 

   a Gradient of acetonitrile in water 

 

Time 

(min) 

Solvent composition 

(% acetonitrile)a 

Flow rate 

(mL/min) 

0 30 0.5 

3 40 0.5 

6 45 0.5 

7 65 0.5 

19 65 0.5 

22 66 0.5 

23 70 1.0 

24 100 1.0 

26 100 1.0 

31 30 1.0 
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3.2.4 Quantification of CLPs in flaxseed from different varieties 

 The aforementioned five licensed cultivars of flaxseed including Somme, Vimy, 

Flanders, CDC Bethune and CDC Valour, which were grown in a randomized complete 

block design (RCBD) in two locations (Floral and Saskatoon, SK) in 2006 and 2008, 

were selected for CLP quantification. Oil was extracted once for each seed sample and 

peptide extracts were analyzed twice by HPLC as described above.  

 

3.2.4.1 Sample preparation for CLP quantification using internal standard 

Segetalin-A  

Flaxseed oil and CLPs, were extracted by acetone from ground flaxseed as 

described in 3.2.1. Oil samples (1 mL) were then weighed in a 10 mL beaker using an 

analytical balance (Accuracy: 1 mg, Model: PB403, Mettler Toledo, Greifensee, 

Switzerland) and the weight was recorded to two decimal places. Seg-A solution (25 µL, 

2 mg/mL) and hexane (1 mL) were added to the oil. The solution was swirled by hand 

before loading onto a silica gel column. After elution from the column, as described 

previously (3.2.2), the peptide fraction was taken to dryness and dissolved in 1 mL of 

MeOH which was subsequently filtered (0.45 µM PTFE syringe filter, Whatman Ltd., 

Piscataway, NJ) prior to HPLC analysis (as described in 3.2.3). The integrated areas of 

each eluting peptide observed in the chromatograms were recorded and the 

concentrations of CLPs in flaxseed oil were calculated using calibration curves (as 

described in 3.2.3). Oil content was determined according to Equation 3.1. The 

concentration of CLPs in flaxseed was calculated using Equation 3.3. 

 

	
  

Where: calculated concentration in oil (µg/g) was obtained from the calibration curve; ρ 

(g/mL) was the density of the flaxseed oil; and oil content (%) was obtained from 

Equation 3.1.  

3.3 CLPs in flaxseed fractions 

 Flaxseed (Natunola, 2008) was chosen for the study of CLP levels in flaxseed 

fractions. The variety and growing conditions of the Natunola seed were unknown (plot 
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grown pedigreed seed was not available at the time of the study). Flax fractions 

including gum, seed coat (called “hull”), cotyledon and oil bodies were prepared for 

CLP identification and quantification using the HPLC method. The seed was separated 

into fractions and subsequently analyzed three times beginning with the same flaxseed 

sample.  

 

3.3.1 Water degumming and seed coat removal 

 Flaxseed mucilage was extracted by the method of Bhatty (1993). The seed 

samples (10.00 g) were added to hot distilled water (100 mL at 80°C) in a 250 mL glass 

beaker and extracted overnight with stirring at 400 rpm at room temperature (25°C). The 

mucilage was separated from the seeds using a 40 mesh screen (12 inch-HH-BR-SS-US-

40; VWR Co., West Chester, PA) then freeze dried (Model 77540, Labconco 

Corporation, Kansas City, MO) until the weight of the dry material (called “gum”) 

became constant. Degummed seeds were manually dissected using a stainless steel 

spatula (length: 17.8 cm, width: 0.3 cm, VWR International LLC., Arlington Heights, 

IL) by applying pressure on the seed coat. The seed coats were, thereby, separated from 

cotyledons. The cotyledon fraction was collected, water-rinsed twice with distilled water 

(10 mL) and dried overnight in a paper towel at room temperature. The seed coats from 

this separation were treated similarly to the cotyledons. The weight of each fraction 

(gum, seed coats, cotyledons and whole seeds) was determined using an analytical 

balance (Accuracy: 1 mg, Model: PB403, Mettler Toledo, Greifensee, Switzerland) and 

recorded to the nearest 10 mg. Oil was extracted from gum, seed coats, cotyledons and 

whole seeds with acetone using the method described in 3.2.1. The oil content of each 

fraction was determined according to Equation 3.1. Quantification of CLPs was 

performed as described in 3.2.4.1. 

The gum fraction contained only a trace amount of oil (0.02 g). The beaker used 

for gum extraction was directly washed with MeOH (10 mL) twice and the extract was 

placed in a 50 mL round bottom flask to ensure the recovery of peptides from this 

fraction. Methanol was removed by evaporation under reduced pressure in a rotary 

evaporator (approximately 9,000 Pa, 40°C water bath, Buchi, Westbury, NY) and the 

residue in the flasks was dissolved in MeOH (1 mL).  Subsequently Seg-A solution (25 
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µL, 2 mg/mL) was added to the MeOH and the solution was filtered (0.45 µM PTFE 

syringe filter) (Whatman Ltd., Piscataway, NJ) before HPLC analysis. HPLC 

chromatography was performed as described in 3.2.3 and the concentrations of CLPs in 

flaxseed fractions were calculated as described in Equation 3.3.  

 

3.3.2 Oil body (oleosome) isolation 

 Oil bodies were isolated using the procedure of Simpson (1989). Whole seeds 

(20 g, Natunola) were first soaked overnight in 200 mL of 0.5 M NaCl in 50 mM Tris-

HCl buffer, pH 7.2, at 4°C. After soaking, an additional 100 mL of buffer was added and 

the mixture was homogenized in a blender for 3 min at 22,000 rpm (Model 8100, 

Eberbach Corporation, Ann Arbor, MI). The homogenate was centrifuged in a chilled 

rotor (4°C) at 9,000 rpm for 60 min (14,334 × g, Model J-E, JA-10 Rotor, Beckman 

Coulter, Inc., Palo Alto, CA) to form three layers: a floating fat pad, a supernatant 

fraction and a precipitated solid bottom residue. The floating brown-white fat pad was 

removed by a flat stainless spatula (VWR International LLC., Arlington Heights, IL). 

The fat pad was homogenized again using the same conditions in five volumes of chilled 

(ice bath), fresh buffer. The centrifugation-homogenization procedure was performed 

five times and the final fat pad was transferred to a 50 mL centrifuge tube (VWR 

International LLC., Arlington Heights, IL). The supernatant (also called “serum”) was 

separated from the bottom solid residue by decanting. The fat pad and serum were 

freeze-dried (Model 77540, Labconco Corporation, Kansas City, MO) and fraction 

weights were recorded to the nearest 10 mg before oil extraction. Solid residue was 

stored at 4°C in a refrigerator (Model 153, Fisher Scientific, Dubuque, IA) before oil 

extraction. 

The oils from serum and bottom residue were extracted as described in 3.2.1 

except the samples were not ground. Oil was extracted from the dried oil bodies using 5 

volumes of hexane by shaking the hexane-oil body mixture by hand for approximately 2 

min. The hexane layer was removed to a 125 mL Erlenmeyer flask (VWR, Edmonton, 

Canada). The remaining solid was then mixed with 10 volume of EtOAC and shaken by 

hand for 2 min. After mixing the EtOAC solution was filtered (Whatman, No 2 filter 

paper, Whatman Ltd., Piscataway, NJ) and the filtrate was combined with 
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aforementioned hexane layer. Solvents (hexane and EtOAC) were removed from the 

fraction using a rotary evaporator under reduced pressure (approximately 9,000 Pa, 40°C 

water bath, Buchi, Westbury, NY). The CLPs were quantified as described in 3.2.4.1.  

 

3.4 Effects of processing on the distribution of CLPs  

3.4.1 Crude oil extraction by expeller press 

 Flaxseed (1 kg, CDC Bethune, 2006, Floral) was extracted using a continuous 

oilseed expeller press (Komet, type CA59C, IBG Monforts Oekotec GmbH & Co., 

Germany) operating at 88 rpm. No heat was applied during pressing. Expeller pressed 

oil was allowed to settle for 2 days to produce both clear crude oil and sediment which is 

also known as foots. Subsequently, the upper oil layer was decanted. The foots fraction 

was separated from the remaining oil by filtration under vacuum (approximately 9,000 

Pa) with a Buchner funnel lined with a glass-fibre filter (Whatman, Grade GF/A, 

Whatman Inc., Piscataway, NJ). The oil recovered by filtering the foots was combined 

with the crude oil that was obtained by sedimentation. Foots and pressed meal were 

dried in the fume hood at room temperature overnight and then stored at 4°C in a 

refrigerator (Model 153, Fisher Scientific, Dubuque, IA) before solvent (Goldfisch) 

extraction . The concentrations of CLPs in each fraction were calculated as described in 

Equation 3.3. Each sample was injected into the HPLC once. This experiment (including 

oil processing, settling, foots filtration, acetone extraction, silica gel isolation and HPLC 

quantification) was repeated three times and the results were presented as the average of 

these three replicates. 

Commercial flaxseed oil from local retail health food stores including Omega 

(Omega Nutrition Canada Inc., Vancouver, BC), GNC (General Nutrition Centres Inc., 

Pittsburgh, PA), Flora (Floral Inc, Lynden, DC), Sangster (Sangster Health Centers, 

Saskatoon, SK) and Gold Top (Gold Top Organics Ltd., Edmonton, AB) were selected 

for comparison of CLPs in commercial flaxseed oils and crude oil produced in the lab 

(after two days settling). Peptides from three bottles of each brand from different lots 

(purchased on three days from one retail outlet) were utilized for this experiment. The 

CLPs were quantified as described in 3.2.4.1. Every sample was subject to HPLC 

analysis once. 
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3.4.2 Acid degumming for removal of CLPs from flaxseed oil  

 The effect of acid degumming on the solubility of CLPs in lab-pressed flaxseed 

oil (CDC Bethune) was determined by treating flaxseed oil with aqueous phosphoric 

acid (H3PO4). In the first study, flaxseed oil (50 mL) was heated on a hot plate until it 

reached 80°C after which H3PO4 (5 mL, 75%) was added. The sample was mixed 

vigorously with a magnetic stirrer at 600 rpm for 5 min at room temperature then 

centrifuged in a chilled rotor (4°C, 9,800 × g, Model J-E, JA-25.50 Rotor, Beckman 

Coulter, Inc., Palo Alto, CA) for 30 min. After centrifugation, the upper oil layer was 

decanted from the bottom gum. In the second, third and fourth experiments, acid 

degumming condition was the same as described above except 1 mL of H3PO4 (75%), 

0.5 mL of H3PO4 (75%), 0.5 mL of H3PO4 (50%) were added, respectively. In the fifth 

experiment, 0.05 mL of H3PO4 (75%) was first added to the flaxseed oil (50 mL) and the 

acid degumming was performed as described above. After centrifugation, the upper oil 

was taken to perform a second acid degumming treatment using 0.05 mL of 75% H3PO4. 

The same procedure for acid degumming was followed. Experiments were repeated 

three times.  

Untreated crude oil was used as a control. The CLPs were quantified as 

described in 3.2.4.1. Every sample was subject to a single HPLC analysis. 

 

3.4.3 CLPs from phospholipid gum after acid degumming 

 After decanting oil (section 3.4.2) the phospholipid gum pellet (from 50 mL 

flaxseed oil), remaining in the centrifuge tube, was mixed with hexane (10 × volume) 

and mixed vigorously by hand. The hexane extract was filtered (Whatman, No. 2, 

Whatman Inc., Piscataway, NJ) and the filtrate was combined with an equivalent volume 

of MeOH. The mixture was transferred to a separatory funnel (125 mL) and the phases 

were allowed to separate. After 3 hours, the MeOH phase (upper layer) was recovered 

and concentrated under reduced pressure in a rotary evaporator (approximately 9,000 Pa, 

40°C water bath, Rotavapor R-200, Buchi, Westbury, NY). The concentrate was washed 

twice with diethyl ether (Et2O) (100 mL). After each wash, the upper layer was decanted 

and the residue was concentrated under reduced pressure using a rotary evaporator 

(approximately 9,000 Pa, 40°C water bath, Rotavapor R-200, Buchi, Westbury, NY). 
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The concentrate was re-suspended in acetone (10 × volume), followed by filtration 

(Whatman No. 2, Whatman Inc., Piscataway, NJ). The acetone filtrate was concentrated 

by a rotary evaporator under reduced pressure (approximately 9,000 Pa, 40°C water 

bath, Rotavapor R-200, Buchi, Westbury, NY). The collected peptides were taken into 

50 mL of MeOH. A portion of the MeOH solution (1 mL) was mixed with 25 µL of 2 

mg/mL Seg-A before filtering with a 0.45 µM PTFE syringe filter (Whatman Ltd., 

Piscataway, NJ). Each sample was injected once onto HPLC for analysis as described in 

3.2.3 and the concentration of CLPs was calculated according to Equation 3.3. This 

experiment was repeated three times. 

After elution from the column, as described previously, the peptide fraction was 

taken to dryness and dissolved in MeOH (1 mL), which was subsequently filtered (0.45 

µM PTFE syringe filter, Whatman Ltd., Piscataway, NJ) prior to HPLC analysis (as 

described in 3.2.3). 

 

3.4.4 Alkali refining for removal of CLPs from flaxseed oil 

 Lab-pressed flaxseed oil (CDC Bethune) was refined by addition of alkali into 

flaxseed oil to neutralize the FFAs (e.g., oleic acid). In the first experiment, flaxseed oil 

(50 mL) was heated on a hot plate until temperature of the oil reached 80°C and then 0.5 

mL of 4M NaOH was added. The sample was mixed vigorously with a magnetic stirrer 

at 600 rpm for 5 min at room temperature then centrifuged (9,800 × g, Model J-E, JA-

25.50 Rotor, Beckman Coulter, Inc., Palo Alto, CA) at 4°C for 30 min, to facilitate 

separation of the oil and soap that formed from the neutralization. In subsequent 

experiments, the conditions of alkali refining were the same as described above except 

0.5 mL of 4 M KOH, 0.5 mL of 2 M K2CO3, 0.5 mL of 2 M Na2CO3, 0.5 mL of 

saturated NaHCO3, 1.3 M K3PO4 and 0.5 mL of 1.3 M Na3PO4 were used, respectively. 

Experiments were repeated three times. 

 Crude oil without alkali treatment was used as a negative control. The CLPs  

were quantified as described in 3.2.4.1.  
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3.5 Statistical analysis 

  During extraction CLP oxidation was observed (CLP-B was readily oxidized to 

CLP-C, CLP-H to CLP-G, CLP-I to CLP-F). As the oxidation was not a controlled 

experimental variable, statistical analysis of each peptide separately was not possible. 

During the course of this study the genomic sequence of flax was published on the world 

wide web (linum.ca, 2010). Searches of this database have revealed that peptides CLP-

A, B, C and E are the product of a gene sequence (g24175), additionally CLP-D, F, G, H 

and I were the product of gene g38655 (linum.ca, 2010). The reliability of CLP 

quantification was improved by grouping peptides that were products of a single gene 

reading frame. Products of g24175 are hereafter referred to as CLP-24175 (total CLPs 

expressed by gene g24175) and CLP-38655 includes all CLPs expressed by gene 

reading frame g38655. These groupings were used in subsequent statistical analysis. 

All statistical analyses were conducted using the Statistical Analysis System 

(SAS for Windows®, Release 9.2, SAS Institute Inc., Cary, NC).  

One way ANOVA was used to analyze the effect of cultivar on the level of CLPs 

in flaxseed. The following second-order polynomial equation was utilized to analyze the 

differences of CLPs among different flax cultivars (Equation 3.4). 

 

Yij = µ + τi +εij             (3.4) 

 

Where Yij is the observed value for the jth replicate of the ith cultivar. µ is the grand 

mean. τi is the effect for the ith cultivar. εij is the random error associated with the Yij 

experimental unit. 

Post-hoc multiple comparison test was Tukey's test. Differences were considered 

significant at P < 0.05. Results were expressed as means ± SD (standard deviation). 

In order to analyze the effects of variety, year, location and their interactions on 

the expression of CLPs, analysis of variance by PROC MIXED procedure, Pearson 

correlation (to estimate the linear relationships between the expressions of group CLP-

24175 and CLP-38655) and variance components using PROC VARCOMP procedure 

were performed according to SAS methods. The following second-order polynomial 

equation was utilized (Equation 3.5).  
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Yijk = µ + ai+bj+abij+ck+acik+bcjk+abcijk +εk(ij)          (3.5) 

 

Where Yijk is the dependent variable observed value in level k of the ij treatment. µ is the 

grand mean. a is the effect of level i of variety. b is the effect of level j of location. c is 

the effect of level k of year. abij is the effect of using level i of variety with level j of 

location. bcjk is the effect of using level j of location with level k of year. acik is the effect 

of using level i of variety with level k of year. abcijk is the effect of using level i of 

variety with level j of location and level k of year. εk(ij) is the residual. 

The following second-order polynomial equation was utilized to analyze the 

differences of CLPs among different commercial flaxseed oils and among different 

processing treatments by one-way ANOVA(Equation 3.6). 

 

Yij = µ + τi +εij             (3.6) 

 

Where Yij is the observed value for the jth replicate of the ith treatment. µ is the grand 

mean. τi is the treatment effect for the ith treatment. εij is the random error associated 

with the Yij experimental unit. 

Post-hoc multiple comparison test was Tukey's test. Differences were considered 

significant at P < 0.05. Results were expressed as means ± SD (standard deviation). 
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 4 RESULTS AND DISCUSSION 

4.1 Oil content of flaxseed and flaxseed materials 

 Acetone (polarity index: 5.1) is a suitable solvent for extracting oil and non-oil 

compounds from a variety of plant materials. For example, acetone was used for 

extraction of fatty acids from beechwood (Demirbas, 1991). Eaves et al. (1952) 

observed that the crude oil yield of cottonseed obtained by acetone extraction was 

comparable to that recovered by hexane extraction. In addition, non-oil materials 

including pigments and gossypol were found in the acetone extract (Eaves et al., 1952). 

Stefanowic (2001) used acetone to isolate CLPs from ground flaxseed (1:20, w/v) at 

room temperature. In this project, acetone was chosen for simultaneous extraction of 

flaxseed oil and CLPs due to the solubility of CLPs in acetone, as well as the better 

extraction power of acetone in the presence of water in analyzed samples. The oil 

contents of flaxseed and flaxseed materials including seed coat (hull), gum, cotyledon, 

oil bodies, serum, residue, crude oil, meal and foots, are listed in Table 4-1. The oil 

content of flaxseed from different varieties varied from 38.0% to 42.4%. The variance 

may be caused by the genetic or environmental differences among flaxseed samples, 

moisture difference among flaxseed samples and/or experimental errors during 

processing (Flax Council of Canada, 2011). It was worth noting that these data were 

lower than the oil contents published by the Flax Council of Canada for the same 

varieties (42.5%-45.7%) (2011). The difference could be explained by the fact the oil 

content obtained in this project was based on flaxseed determined on an “as is” basis 

while the reported data from the Flax Council of Canada was calculated on a dry matter 

basis.  

In flaxseed fractions, the oil content of the cotyledon (46.3%) was higher than 

that of the seed coat (25.5%) or gum (1.9%). These results correspond with previous 

studies where 51.0% and 22.9% oil content (dry basis) were found in cotyledons and 

seed coat, respectively (Dorrell, 1970). The trace oil found in the gum fraction might be 
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Table 4-1 Oil content of flaxseed and flax materials, as is basis (n means the number of 

the tested samples) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   (n=4)  Weight (g) Oil content (%) 

Somme Mean 5.0 41.5 
SD - 2.1 

CDC 
Valour 

Mean 5.0 38.0 
SD - 1.41 

Flander Mean 5.0 40.7 
SD - 2.9 

CDC 
Bethune 

Mean 5.0 42.4 
SD - 0.7 

Vimy Mean 5.0 41.7 
SD - 1.1 

  (n=3) Natunola 

Whole seed Mean 10.0 40.9 
SD - 0.2 

Cotyledon Mean 5.2 46.3 
SD 0.1 0.7 

Seed coat Mean 4.1 25.5 
SD 0.1 0.3 

Gum Mean 0.7 1.9 
SD 0.1 0.8 

  (n=3) Natunola 

Whole seed Mean 20.0 40.9 
SD - 0.2 

Oil bodies Mean 4.9 88.7 
SD 0.1 1.2 

Serum Mean 2.7 24.3 
SD 0.2 0.6 

Residue Mean 11.0 28.0 
SD 0.3 2.0 

(n=3) CDC Bethune 

Whole seed Mean 1000.0 42.4 
SD - 0.3 

Crude oil Mean 343.9 100.0 
SD 6.4 - 

Meal Mean 575.4 14.9 
SD 10.5 3.6 

Foots Mean 35.4 54.1 
SD 4.0 4.3 
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due to contamination during processing. Oil bodies are the main organelle for oil 

storage in the plant seed (Huang, 1996). In this project, the oil content of the oil body 

fraction was 88.7%. The oil contents of serum (24.3%) and residue (28.0%) were 

much lower. This is typical as the low density of the oil bodies causes them to mostly 

distribute in the fat pad after homogenization and centrifugation. 

Flaxseed meal produced by pressing had an oil content of 14.9%. The remaining 

oil was found in sedimented foots (oil content of 54.1%).  

 

4.2 CLP isolation  

 Silica gel was used by Brühl et al. (2007) to isolate cyclolinopeptides from 

flaxseed oil. In this project, silica gel columns were also used for CLP isolation from 

flaxseed oil at the ratio of 1:2 (w/v, silica to oil). Less polar solvent washes (such as 

hexane, 20% EtOAC in hexane, 50% EtOAC in hexane) were used to elute low polarity 

neutral compounds of flaxseed oil (e.g., TAG, wax and pigments), while 100% EtOAC 

and 10% MeOH in Dichloromethane (DCM) eluted CLPs from the silica gel. 

 

4.3 CLP identification and quantification by HPLC 

Brühl et al. (2007) determined the CLP-E concentration in flaxseed oil using an 

external standard method. In their study, an external calibration curve was established 

from 3-900 µg/mL CLP-E with a coefficient of determination of 0.998. However, the 

calibration curve or equation was not included in their publication. CLP standards have 

not been available to previous researchers and, therefore, there is no other literature 

available on the CLP concentration in flaxseed tissues. In the current study, a HPLC 

method for CLP detection and quantification was developed using Seg-A as an internal 

standard. Seven peaks were observed in HPLC chromatograms of flaxseed oil extracts 

after addition of the standard including Seg-A, CLP-G, CLP-C, CLP-E, CLP-D, CLP-B 

and CLP-A respectively, (Figure 4-1). Absorption of ultraviolet light by chromophores 

in the CLPs provided a signal that was readily detected by a diode array detector. These 

chromophores include peptide bonds (214 nm), phenylalanine (260 nm) and tryptophan 

(280 nm) which are useful for peptide detection, characterization and quantification 

(Marshak, 1996; Pace et al., 1995). In HPLC chromatograms, all six CLPs at 0.2 mg/mL  
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Figure 4-1 HPLC chromatograms of CLP-A, B, C, D, E, G (0.2 mg/mL, each) and  

         Seg-A (0.1 mg/mL) at the wavelengths of (a) 214, (b) 244 and (c) 280       

         nm with a bandwidth of 10 nm. Defaulted reference signals were used    

         (300 nm with 10 nm bandwidth for 214 and 244 nm, 340 nm with 100  

         nm bandwidth for 280 nm). HPLC conditions are provided in Table 3-1.  
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presented useful absorbances (over 150 mAU) at 214 nm due to the strong absorption of 

peptide bonds and conjugated double bonds in aromatic amino acids. Comparatively 

weaker absorbance (less than 20 mAU) at 244 nm was found in all peptides. Three 

standards (CLP-D, G and Seg-A) all had weak absorbances (around 40 mAU) at 280 nm 

due to the presence of the indole group of tryptophan (Trp) in their structure. The 

complete UV spectra of Trp-containing peptides (190 nm-300 nm) obtained from HPLC 

chromatograms confirmed this observation (Figure 4-2).  

In a previous report of chromatographic conditions for separation of 

cyclolinopeptides, Brühl et al. (2007) separated five peptides (CLP-F, G, C, E and A) 

with elution times at 20-30 min. They reported that crude extracts (4.4 mg) were 

dissolved in water/ethanol (1:1, v/v; 1.5 mL) and 100 µL of the aliquots were injected 

onto a 250 mm × 4 mm, 5 µm LiChrospher 100 RP-18 column. Chromatography was 

performed using a mixture of methanol/water (from 75/25 to 100/0, v/v; within 25 min). 

In the current study, a shorter column (150 mm × 4.6 mm, 5 µm) and a different solvent 

system (acetonitrile/water) were employed. The same CLPs were more evenly 

distributed throughout the chromatogram, eluting between 12 and 25 min (Table 4-2).  

The coefficient of variation (CV) of HPLC elution time was less than 3% for all 

CLP measurements, which indicated good reproducibility of HPLC. Calibration curves 

for each peptide were established with the origin (0, 0) included in each standard curve 

(Appendix E). The equations extracted from calibration curves were used to calculate 

the concentrations of CLPs of unknown samples (Table 4-3). 

Quality control solutions of CLPs were made by another analyst in the lab to test 

the accuracy of HPLC for CLP determination. The recovery of CLPs ranged from 92% 

to 115% for a concentration of 50 µg/mL and from 95% to 118% at 125 µg/mL. The 

apparent high recovery of 115-118% could be explained by human and systematic errors 

when dilute samples were handled. At higher concentrations, the coefficient of variation 

of recovery was reduced and the range of results was consistent with 100% recovery; 

94%-104% at 200 µg/mL and 95% to 103% at 500 µg/mL (Table 4-4). 

 

4.4 CLPs content of flaxseed from different flax cultivars 

With the exception of the report by Brühl et al. (2007), the concentration of  
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Figure 4-2 Comparison of UV spectra of Seg-A, CLP-G and CLP-D (Trp-containing         
         peptides) and CLP-C, B, A and E (Trp-free peptides) (in methanol) extracted    
         from HPLC chromatograms using Chemstation. HPLC conditions are listed  
         in Table 3-1. Elution times: Seg-A (8.86 min), CLP-G (12.91 min), CLP- C     
         (13.77 min), CLP-E (15.84 min), CLP-D (17.31 min), CLP-B (21.74 min)  
         and CLP-A (24.22 min).  
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Table 4-2 Retention times of Seg-A and CLPs 

 

 
  Retention time1 

(min) 

CV2 

(%) 

Area3 

(mAU×s) 

CV2 

(%) 

Seg-A  8.79 1.41 4203 1.49 

CLP-G 12.83 0.46 5945 1.00 

CLP-C 13.61 1.95 3875 1.43 

CLP-E 15.72 0.77 3507 2.72 

CLP-D 17.22 0.99 6705 1.32 

CLP-B 21.55 1.02 2453 2.34 

CLP-A 24.05 0.84 2080 2.74 
1 Mean of retention time for 12 runs (three runs/day for four days) 
2 Coefficient of variance=standard deviation/mean×100% 
3 Mean of peak area for 12 runs (three runs/day for four days) 
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Table 4-3 Quantification equations for CLPs using Seg-A as internal standard  

 

CLPs Equation R squared 

CLP-A Yb=(Xa+0.0398)/5.6897 0.9984 

CLP-B Y=(X-0.0104)/5.9165 0.9998 

CLP-C Y=(X+0.0015)/9.6736 0.9999 

CLP-D Y=(X-0.0125)/15.672 0.9997 

CLP-E Y=(X+0.0477)/9.848 0.9990 

CLP-G Y=(X+0.0349)/16.313 0.9993 
aX=Area ratio of CLP/Seg-A from the HPLC chromatogram 
bY= Concentration of CLP (mg/mL) in analyzed sample 
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Table 4-4 Accuracy for assay solutions using HPLC quantification 

 

 
Calculated concentration 

(µg/mL) 

Reported concentration 

(µg/mL) 

Recovery 

(%) 

CLP-A 

57 50 114 

123 125 99 

197 200 99 

491 500 98 

CLP-B 

46 50 92 

136 125 109 

208 200 104 

475 500 95 

CLP-C 

58 50 115 

119 125 95 

188 200 94 

515 500 103 

CLP-D 

56 50 113 

147 125 118 

188 200 94 

499 500 100 

CLP-E 

55 50 110 

125 125 100 

190 200 94 

495 500 99 

CLP-G 

51 50 102 

116 125 93 

204 200 102 

473 500 95 
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CLPs in flaxseed has not been reported. In Brühl et al. (2007), CLP-E was determined 

in the oil of 25 flaxseed varieties during storage. This study provided analysis of single 

samples of each flax variety. A study involving repeated sampling of the same varieties 

grown in plots might overcome the limitations of the previous study and determine the 

range of flaxseed peptide content. In the current research, flaxseed samples of five 

cultivars grown at two locations in two growing seasons were analyzed to study the 

possible effects of both genotype and environment on the concentration of CLPs in 

flaxseed. The CLP content of flaxseed differed significantly among varieties (Table 4-

5).  

The one-way ANOVA analyses showed there were significant differences in 

single and overall CLP levels among the five varieties. Somme had the highest levels of 

CLP-A (65.9 µg/g), D (42.5 µg/g), F (16.6 µg/g), G (50.0 µg/g) and overall CLPs (302.9 

µg/g). The peptide levels of CDC Bethune and CDC Valour were similar; CLP-A 

concentrations found in this study were lower than the literature report for whole seed 

(44-66 µg/g vs. 70 µg/g) (Morita et al., 1999). CLP-B, CLP-H, CLP-I were not found in 

any of the flaxseed samples, which may be consistent with the trace amounts (2 µg/g, 2 

µg/g and 0.7 µg/g, respectively) previously reported (Matsumoto et al., 2001b). Higher 

concentrations of CLP-C were found in oil samples than in flaxseed (54-80 µg/g vs. 37 

µg/g). CLP-D concentrations varied among different varieties, in which CDC Valour 

and Flanders had comparable concentrations (12-43 µg/g vs.15 µg/g). CLP-E 

concentrations also showed significant variability, where CDC Valour shared similar 

results with the literature (46 µg/g-71 µg/g vs. 58 µg/g). Equal or higher concentrations 

of CLP-F and G were found in this study than previous literature reports (8 µg/g -17 

µg/g vs. 8 µg/g, 24 µg/g -51 µg/g vs. 24 µg/g). The levels of CLP-C, CLP-F and CLP-G 

in all of the analyzed samples were higher than in those published previously. This 

observation may be due to methionine oxidation of CLP-B, CLP-H, CLP-I, or genetic 

and/or environmental differences among different flaxseed cultivars. 

Analysis of CLPs was complicated by methionine oxidation. According to the 

literature, methionine can be transformed to its oxidized forms (methionine sulfoxide 

and methionine sulfone) by chemical and biological means (Cuq et al., 1973; Shechter, 

1986). Hydrogen peroxide proved to be effective in oxidizing methionine in an acid 
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environment (Shechter, 1986). The superoxide anions produced in oxidative metabolism 

in biological systems could oxidize methionine to the sulfoxide (Vogt, 1995). Brühl et 

al. (2007) found a rapid increase in CLP-E in flaxseed oil (from 0 mg/kg to 843 mg/kg) 

stored over 150 days due to oxidation. In all the samples analyzed, the methionine-

containing peptides, including CLP-B, CLP-H and CLP-I, were not observed. These 

methionine containing peptides were possibly oxidized by the extraction procedure 

(Appendix F). They were likely converted to CLP-C, CLP-G and CLP-F, respectively 

with the exposure to heat and oxygen during oil extraction (Figure 4-3). 

High intraspecific variation of secondary metabolites might be the other reason 

for the difficulty in measuring CLP levels in multiple samples from the same flaxseed 

variety. Unlike primary metabolites (such as protein, carbohydrate and lipid) that are 

indispensable, uniform and conserved for plant growth and development, secondary 

metabolites (such as flavonoids, lignan, CLPs, etc.) are often unique, diverse and 

adaptive to their environment (Hartmann, 1996). The variance in CLP concentration in 

different flaxseed varieties has not been thoroughly studied, except for the study of CLP-

E changes during storage by Brühl et al. (2007). CLP-E levels in that study showed great 

variance from 0 mg/kg to 53 mg/kg among 25 flaxseed varieties at the beginning of the 

study. After a 150-day storage period, the levels of CLP-E increased to above 600 mg/kg 

without other obvious changes noticed in flaxseed oil. The large intraspecific variance of 

CLP-E content at the beginning of the study and the corresponding increase in CLP-E in 

the sample over time indicated uncertainty in measuring CLPs in flaxseed oils, 

especially where single samples and measurements were considered.  

Due to the transformation of CLPs during processing (CLP-B could be oxidized 

to CLP-C, CLP-H to CLP-G, CLP-I to CLP-F), statistical analysis of each peptide 

separately may not be meaningful. As it was recently discovered that cyclolinopeptides 

are encoded in genes that have several peptides in one gene, it is proposed that CLP-A, 

B, C and E be grouped (CLP-24175) for statistical analysis as the products expressed by 

gene g24175, whereas CLP-D, F, G, H and I are also grouped (CLP-38655) as the 

products of gene g38655. The contents of CLP-24175 and CLP-38655 differed among 

varieties (Table 4-6). 
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Figure 4-3 Transformation of CLP by oxidation of methionine to methionine    

         sulfoxide
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Table 4-6 CLP content (µg/g) of flaxseed varieties grown at two locations for two   

         years 

 

Variety 
Mean1 of CLP-

241752 Range 
Mean1 of CLP-

386553 Range 

CDC 
Bethune 

200.85a 123.60-257.90 72.11b 29.40-129.20 

Flanders 152.05c 89.30-208.80 50.45c 18.20-91.10 

Somme 192.73a 138.90-243.10 110.15a 88.30-124.40 

CDC 
Valour 

167.05b 113.20-235.20 54.05c 25.60-75.30 

Vimy 205.11a 122.30-303.50 76.85b 52.60-140.30 

1 Means followed by the same superscript were not significantly different by Tukey’s      

 multiple comparison test at 5% level. 
2 CLP-24175 was the total CLP production (CLP-A, B, C and E) by gene g24175 
3 CLP-38655 was the total CLP production (CLP-D, F, G, H and I) by gene g38655
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 The standard deviation obtained from Table 4-5 in the levels of CLPs and the 

wide range of CLP-24175 and CLP-38655 (Table 4-6) in the same flax varieties 

indicated that not only genotype, but the environment played a role in the concentration 

of CLPs observed in flaxseed. Analysis of variance was conducted to determine the 

effect of variety (V), year (Y), location (L) and their interaction on the concentration of 

CLP-24175 and CLP-38655 in flaxseed grown at two locations for two years (Table 4-

7). While there was no impact of year alone on the concentration of CLP-24175 

(p=0.68), other effects were all significant (p<0.0001) in contributing to variation. The 

interaction of V × Y × L (96%) suggested the variety responded differently to year for 

each location. For CLP-38655, the effects of variety, location, year and their interaction 

all were significant to the expression of CLP-38655. Variance of CLP-24175 was mostly 

caused by V × Y × L interactions, whereas the variance observed in CLP-38655 content 

was contributed by variety, location, V × Y, L × Y and V × Y × L, which accounted for 

27%, 8%, 10%, 23% and 30% of the total variability respectively.  

The complex interaction of variety and environment on CLP levels is shown in 

Figure 4-4. Influence of variety on the production of CLPs in each environment was 

plotted against four environment means. No obvious pattern was found to conclude the 

relationship between environmental effect (growth location, climate, etc.) on the 

production of CLPs in different flax varieties. This study was restrained due to the 

limited accessibility of flaxseed and the time-consuming processing protocols. Large 

scale studies of flaxseed with greater genetic differences from different locations and 

years should be done in the future when more rapid quantification methods have been 

developed.  

 

4.5 Correlation between CLPs 

A whole genome shotgun assembly of Linum usitatissimum L. (var. CDC 

Bethune) has been published online by the University of Alberta (linum.ca, 2010). 

Searches of the annotated database generated from the sequences has revealed that CLP-

A, B and E are expressed as motifs in a single gene sequence (g24175, Figure 2-6), 

while CLP-D, F and G occur as motifs in another gene (g38655, Figure 2-7) present in 

the flax genome (linum.ca, 2010, Reaney Pers. Commun.). There is just one copy of the  
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Table 4-7 Analysis of variance for CLP-24175 and CLP-38655 of flaxseed grown    

        at two locations for two years 

 

Source DF Mean square P 
Variance  

Component (%) 

CLP-241751 

Variety (V) 4 4225.82 < 0.0001 0 

Year (Y) 1 12.88 0.6817 0 

Location (L) 1 8079.80 < 0.0001 0 

V × Y 4 3039.04 < 0.0001 0 

V × L 4 6219.46 < 0.0001 0 

L × Y 4 16880 < 0.0001 1.30 

V × Y × L 4 9921.31 < 0.0001 95.97 

Error 20 82.42 < 0.0001 2.73 

Total 39 3083.15   

CLP-386552 

Variety (V) 4 4525.90 < 0.0001 27.07 

Year (Y) 1 5605.05 < 0.0001 0 

Location (L) 1 9348.30 < 0.0001 7.71 

V × Y 4 1280.58 < 0.0001 10.15 

V ×L 4 434.17 < 0.0001 0 

L × Y 4 2710.96 < 0.0001 23.21 

V × Y × L 4 1145.93 < 0.0001 30.37 

Error 20 19.75 < 0.0001 1.49 

Total 39 1220.67   
1 CLP-24175 was the total CLP production (CLP-A, B, C and E) by gene g24175 
2 CLP-38655 was the total CLP production (CLP-D, F, G, H and I) by gene g38655 
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(a) 

 
(b) 

Figure 4-4 Influence of environment (L × Y) on variety performance of (a) CLP-   

   24175 and (b) CLP-38655 production           
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sequence for each of CLP-E, B and A in sequence g24175. The gene that includes the 

motifs for CLP-D, G and F includes one copy of D and F and three copies of the motif 

that encodes CLP-G. All amino acids of the peptides are given in the sequence they 

occur in the peptide gene. The correlation among CLP concentrations found in flaxseed 

was evaluated using the data from the study of genotype by environment (n=20) on 

peptide levels. This data may be used to determine the relationship of the expression 

levels of CLPs in flaxseed. The Pearson's product momentum correlation coefficients (r, 

p) between CLPs are listed in Table 4-8. It is worth noting that the relationship between 

individual and total CLPs was highly significant (p <0.0001) meaning there was a linear 

relationship between these compounds. The highest correlations between individual 

CLPs occurred amongst peptides on the same gene. For example, the correlations of 

CLPs within g38655 were high [CLP-F and CLP-G (r=0.996), CLP-D and CLP-F 

(r=0.851) and CLP-D and CLP-G (r=0.869)] and significant (at p<0.0001). In 

comparison, the relationship between the CLPs on g38655 and g24175 was weaker 

[CLP-F with CLP-A (r=0.4847, p=0.0015), CLP-G with CLP-A (r=0.5176, p=0.0006), 

CLP-D with CLP-A (r=0.3999, p=0.0106), CLP-D with CLP-C (r=0.5180, p=0.0006)]. 

For peptides in g24175, CLP-C and CLP-E (r=0.9634, p<0.0001) were strongly 

correlated; however the correlations between CLP-A and the other peptides were weaker 

[CLP-A with CLP-C (r=0.6575, p<0.0001), CLP-A with CLP-E (r=0.7019, p<0.0001)]. 

The observed lower correlations between peptide CLP-A levels and other CLPs may be 

due to incomplete recovery of CLP-A, random error or a real difference in the 

expression of this compound. The correlation between CLP-24175 (CLP-A, B, C and E) 

and CLP-38655 (CLP-D, F, G, H and I) was significant (r= 0.7439, p<0.0001). 

It is generally accepted that plant primary and secondary metabolites arise as 

products of a multitude of enzymes involved in metabolism. The concentration of any 

individual metabolite is controlled by a number of factors related to metabolic 

processes (Waterman and Mole, 1989; Rolin, 2006). These metabolites make up the 

metabolome. Enzymes and other protein products are produced as the result of 

ribosomal translation of mRNA. These compounds would be seen as belonging to the 

proteome. The concentration of a cyclic peptide is determined by transcription, 

translation and post-translational modification, typical components of the proteome 



 

71 



 

72 

(linum.ca, 2010). The structure of cyclolinopeptide genes could lead to as many as 

three peptides being produced by the post-translational modification of the pre-

peptide protein g24175 and five peptides being produced from the modification of 

g38655 (Figure 2-6, 2-7). Although there is no reason to assume that each translated 

g24175 or g38655 would produce three or five cyclolinopeptides, respectively, lower 

numbers of cyclolinopeptides arising from sequence translation is possible. 

Nevertheless, the strong correlation between the cyclolinopeptides arising from the 

same gene is interesting. With additional research this unique discovery may shed 

light on the post-translational modification of peptides. 

 

4.6 The levels of CLPs in flaxseed fractions 

 The distribution of compounds in seeds can aid in the development of processes 

for enrichment. Flaxseed lignan is found primarily in the seed coat and indeed isolation 

of flaxseed lignan from seed coat or whole flaxseed provides significant advantages over 

isolation from ground whole seed or seed meal (Bhatty and Cherdkiatgumchai, 1990; 

Bhatty, 1993). The commercial availability of a flaxseed seed coat product from 

Natunola (Natunola Health Inc., Winchester, ON, Canada) makes it a popular source for 

research of seed coat composition (Oomah and Sitter, 2009; Petit et al., 2009; Kazama et 

al., 2010). 

The distribution of cyclic peptides in plant tissues is broad with many known 

seed borne peptides (Tan and Zhou, 2006). For instance, CLP-A was the first 

cyclolinopeptide isolated from seeds of Linum usitatissimum (Kaufmann and 

Tobschirbel, 1959). The bicyclic peptides Moroidin, celogentins D–H and celogentin-J 

were extracted with MeOH from the seeds of Celosia argentea (Morita et al., 2000; 

Suzuki et al., 2003). There are no reports of the distribution of CLPs in flaxseed in the 

scientific literature. Therefore, research was conducted to determine the distribution of 

CLPs in flaxseed. Natunola sells a commercial flax product that consists primarily of 

flaxseed seed coats. This product was chosen for studies of the concentration of CLPs in  

flax seed coat and seed coat free materials. Natunola flaxseed had a CLP concentration 

(total, 268.3 µg/g) (Table 4-9) comparable to those observed in CDC varieties (Table 4-

6). The seed coat removing process used by Natunola is a trade secret. Also, we found  
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that the seed coat fraction contained a significant content of oil, which was likely 

transferred to the seed coats during the seed coat removing process. As such, the 

fractions (cotyledons and seed coat) provided by Natunola were not used in further 

studies. 

 Manual seed coat removal was conducted to provide more reliable results. 

Flaxseed gum (0.7 g) was obtained from flaxseed (10.0 g). A flaxseed seed coat fraction 

(4.1 g) and seed coat free seed (5.2 g) were separated from the water-degummed 

flaxseed (Figure 4-5). The concentration of CLPs in each fraction is presented in Table 

4-9. No CLPs were detected by HPLC analysis of gum extracts (Figure 4-6). CLPs are 

relatively more hydrophobic than the seed gum, which is a hydrophilic mixture of 

polysaccharides which yield rhamnose, fucose, arabinose, xylose, galactose, 

galacturonic acid and glucose after acid-catalyzed hydrolysis (Erskine and Jones, 1957; 

Fedeniuk and Biliaderis, 1994). Similarly, previous researchers have not determined the 

presence of cyclic peptides in flaxseed gum. 

 CLP-B was not detected in any samples, likely due to the oxidation of 

methionine to methionine sulfoxide (Table 4-9). This oxidation is similar to the 

oxidation of CLP E' to E noted in bottled flaxseed oil by Brühl et al. (2007). The 

concentrations of CLP-A (25.2 µg/g), C (98.8 µg/g), D (13.1 µg/g), E (80.2µg/g), F 

(19.6 µg/g), G (55.0 µg/g) and overall CLPs (291.9 µg/g) were higher in the cotyledon 

than in the seed coat fraction, where the concentrations were CLP-A (19.3 µg/g), C (31.0 

µg/g), D (15.6 µg/g), E (30.7 µg/g), F (6.7 µg/g), G (19.8 µg/g) and total CLPs (123.1 

µg/g). Due to the possible oxidation of CLPs expressed by the same gene (Figure 4-3), 

the levels of CLP-24175 (the group of all products produced by gene g24175: CLP-A, B, 

C and E) and CLP-38655 (the group of all products produced by gene g38655: CLP-D, 

F, G, H and I) were utilized to reduce statistical variation and to obtain a measure of the 

products of post-translational processing of these genes. The levels of CLP-24175 and 

CLP-38655 in the cotyledon were more than two times those in the seed coat (204.2 

µg/g vs.81.0 µg/g and 87.7 µg/g vs.42.2 µg/g, respectively). The prevalence of CLPs in 

the cotyledon fraction might be explained if the peptides are present in oil storage bodies 

as cotyledons are the major location for oil storage. The CLPs observed in the seed coat 

fraction were possibly contributed by the endosperm attached to the seed coats, which 
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Figure 4-5 Flaxseed fractions after water degumming and manual dissection 

 

 

a. Flax gum after water degumming b. Cotyledon 

c. Seed coat d. Whole flaxseed  
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Figure 4-6 HPLC chromatograms of CLPs from flaxseed fractions at 214 + 10 nm  

         Fractions: a. Whole seed, b. cotyledon, c. seed coat, d. gum
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also contributed oil to the seed coats. Overall CLP recovery from seed coats and 

cotyledons was 75.1% of the recovery from whole seed. The loss could be explained by 

incomplete extraction, systematic errors and loss of material during processing, which 

could happen during processing without the observation of loss of total weight because 

the water degumming process could change the moisture content of the seed fractions. 

This is the first report of the distribution of CLPs in flaxseed fractions.  

 The distribution of CLPs in different parts of the flaxseed led us to study the 

location of CLP storage in flaxseed fractions. The observation that the majority of CLPs 

were found in flaxseed oil after conventional processing indicated the possibility that the 

peptides were stored in oil bodies or oleosomes, the main oil-bearing structure in 

flaxseed. 

 The diameter of oil bodies isolated from flaxseed was approximately 1.3 µm and 

the major components were TAG (97.7%), protein (1.3%), phospholipid (0.9%) and free 

fatty acids (0.1%) (Tzen et al., 1993). The diameter of oil bodies obtained in this study 

varied from 0.5-2.0 µm, with an average of approximately 1.0 µm, which agreed with 

the literature (Figure 4-7, c). A brownish crude oil body pad (oil body-1, 9.3 g) was 

isolated from flaxseed (20.0 g) by homogenization and centrifugation. After repeated 

homogenization and centrifugation (six times), the oil body pad (oil body-2, 7.5 g) was 

substantially reduced in contaminants. The resulting fractions were freeze dried, yielding 

three dried fractions of oil body (4.9 g), serum (2.7 g) and residue (11.0 g) (Figure 4-7). 

Subsequently, the levels of CLPs were quantified by HPLC (Figure 4-8 and Table 4-10). 

Extraction conditions led to the oxidation of methionine containing peptides, as CLP-B, 

CLP-H and CLP-I were not found in any of the fractions (Figure 4-3). After the initial 

homogenization/centrifugation treatment, a higher concentration of CLPs are detected in 

crude oil bodies (643.9 µg/g) than in serum (99.5 µg/g) or residue (15.7 µg/g). After five 

more homogenization/centrifugation treatments, the concentration of CLPs were reduced 

in the crude oil body fraction (153.1 µg/g). The overall recovery of CLPs (from oil 

bodies, serum and residue) was 93.1% after the first time homogenization/ centrifugation 

and was reduced to 28.0% after the sixth homogenization/centrifugation due to the loss 

of CLPs associated with the oil bodies. All of the CLP-C, E, F and G and 68% of CLP-A  
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Figure 4-7 Products after oil body isolation from flaxseed  

a. Flaxseed serum b. Flaxseed oil body pad 

c. Micrograph of oil bodies taken at a magnification of 400X 

10 µm 
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Figure 4-8 HPLC chromatograms of CLPs flaxseed fractions at 214 nm. 

         Fractions: a.residue, b. serum, c. oil body-1 (crude oil bodies isolated     

         after one time homogenization/centrifugation), d. oil body-2 (pure oil     

         bodies isolated after six times homogenization/centrifugation), e. whole   

         seed
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from oil bodies were removed by homogenization/centrifugation, whereas the CLP-D in 

oil bodies remained basically unchanged. The lower polarity of CLP-A and CLP-D 

might explain their presence in oil bodies when other CLPs with higher polarity were 

redistributed into the aqueous layer during centrifugation. It is possible that CLPs were 

stored in oil bodies along with TAGs before processing and they were removed from oil 

bodies by homogenization/centrifugation, but further confirmation of this is not possible 

at this time.  

 

4.7 Effects of processing on the distribution of CLPs in flaxseed products 

4.7.1 CLP distribution after expeller-pressing  

 The extraction of natural products with vegetable oil occurs during oilseed 

pressing (Jung et al., 1989). Phospholipids, phytosterols, tocopherols are all found in 

crude oil after pressing and and it is often necessary to remove these compounds with 

further refining processes (Verhe et al., 2008). Crude oil (380.9 g) and flaxseed meal 

(575.4 g) were obtained after cold pressing of 1000.0 g of flaxseed. The weight loss 

observed (43.7 g) was likely due to residues remaining in the expeller after pressing. The 

oil content of flaxseed (38.1%) obtained by cold pressing was in agreement with a prior 

study (Dedio and Dorrel, 1977), whereas the oil content of flaxseed grown in different 

locations in Canada was reported to range between 25% and 41%. The crude oil was 

allowed to settle overnight in a 500-mL graduated cylinder to separate suspended "foots" 

(sediments commonly found in flaxseed oil after settling). Foots (35.4 g) were separated 

from oil by filtration under vacuum (Figure 4-9). The filtered oil was combined with 

clarified oil from the upper layer after settling, to obtain 343.9 g of oil that was used for 

further studies of CLP levels. The concentration of CLPs in crude oil (after settling), 

foots and meal are shown in Figure 4-10 and Table 4-11. CLP-B was detected in crude 

oil (98.0 µg/g) but not in other fractions. Met-containing peptides were oxidized during 

acetone extraction (Figure 4-3, Appendix F). CLP-A, CLP-C, CLP-D and CLP-E, which 

had lower polarity than other peptides based on their later emergence from reverse phase 

chromatography, were found in greater concentration in crude oil (466.7 µg/g, 368.6 

µg/g, 227.5 µg/g and 462.7 µg/g, respectively), whereas the concentrations of CLP-F 

(92.2 µg/g) and CLP-G (266.2 µg/g), which had relatively higher polarity were higher in  
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Figure 4-9 Products after cold pressing of flaxseed 

         Fractions: a. whole flaxseed, b. flaxseed meal, c. crude oil without  

         settling, d. crude oil after settling, e. foots separated from crude oil 
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Figure 4-10 HPLC chromatograms (214 nm) of CLPs flaxseed products after processing. 

Fractions: a. crude oil, b. meal, c. foots 
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the foots fraction. A higher concentration of total CLPs produced by gene g24175 (CLP-

24175) was found in crude oil (1972.6 µg/g) than in meal (67.4 µg/g) and foots (710.5 

µg/g). The concentrations of total CLPs produced by gene g38655 (CLP-38655) were 

similar in crude oil (576.5 µg/g) and foots (544.9 µg/g), but significantly higher than that 

in meal (31.6 µg/g). The concentration of CLPs in meal was relatively low (total 98.9 

µg/g), which was expected after cold pressing as the polarity of CLPs allowed them to 

dissolve in the oil during processing. It is worth noting that the overall CLPs found in 

crude oil, meal and foots from flaxseed (0.78 mg/g) were higher than the amount of 

CLPs recovered from flaxseed by Goldfisch extraction (0.37 mg/g). This observation 

might be a result of improved extraction of CLPs, including reduced ones (e.g., CLP-E’, 

CLP-F’ and CLP-G’) after oxidation by the applied shear force and heat generated from 

screw-pressing. Oxidation has been noticed in the different stages of vegetable oil 

processing (such as soybean oil and flaxseed oil) and their co-products (such as meal 

and cake, etc) (Jung et al., 1989; Wanasundara and Shahidi, 1998; Wiesenborn et al., 

2005). 

A painty and bitter flavour of flaxseed oil appeared after 15 weeks of storage at 4 

°C. The breakdown of ALA was suspected as the cause of the unpleasant flavor 

(Wiesenborn et al., 2005). In 2007, Brühl et al. isolated the bitter compound from stored 

flaxseed oil and proved that oxidation of a CLP to CLP-E produced the observed 

bitterness. Five brands of flaxseed oil from local health stores were chosen for CLP 

analysis. The levels of CLPs varied among the brands (Table 4-12). Omega had the 

highest levels of CLP-B (112.2 µg/mL) among all the flaxseed oils tested whereas 

Sangster and Gold Top had none. Flora had the highest amounts of CLP-C (263.1 

µg/mL), CLP-D (165.3 µg/mL) and CLP-F (29.1 µg/mL), but they all had lower peptide 

levels compared to that of flaxseed oil prepared in the lab, where CLP-A (397.7 µg/mL), 

CLP-B (83.3 µg/mL), CLP-C (310.6 µg/mL), CLP-D (197.0 µg/mL), CLP-E (393.9 

µg/mL), CLP-F (70.8 µg/mL), CLP-G (219.7 µg/mL) and total CLPs (1,673.0 µg/mL) 

were found. Flora had the highest level of the bitter peptide CLP-E (270.1 µg/mL) 

among five commercial flaxseed oils, which implied more bitter intensity in this oil. 

Lab-produced crude oil contained more CLP-E (393.9 µg/mL) than any of the 

commercial flaxseed oils. Significant differences of CLP-24175 were found among the
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commercial oils. Crude oil and Floral flaxseed oil had the highest concentrations 

(1,185.5 µg/mL and 881.5 µg/mL respectively), whereas GNC, Sangster, Gold Top and 

Omega samples had lower concentrations of these peptides (580.4 µg/mL, 580.7 µg/mL, 

537.3 µg/mL and 652.2 µg/mL, respectively). The concentration of CLP-38655 among 

different oils also differed significantly. A higher concentration was found in crude oil 

and Flora (487.5 µg/mL and 278.5 µg/mL), whereas the remaining products were lower 

in these peptides. The lower levels observed in some commercial products might have 

been caused by additional processing of the commercial products such as acid 

degumming and alkali refining. The effects of processing on CLP removal are described 

below.  

 

4.7.2 Effects of acid degumming on removal of CLPs from flaxseed oil 

 Crude flaxseed oil contains minor components such as phospholipids, FFAs and 

metal containing compounds (Green and Drimbinenke, 1994). Concentrations of minor 

constituents of vegetable oils, such as phospholipids, phytosterols, tocopherols and 

phytosterol esters, are reduced during refining processes (Ferrari et al., 1996). 

Degumming of crude soybean oil removed 76.4% of phosphorus, 73.1% of iron and 

51.4% of FFAs (Jung et al., 1989). The phosphorus in degummed flaxseed oil was 

reduced from 325 mg/kg to 0.5 mg/kg without obvious loss of sterols and tocopherols 

(Green and Drimbinenke, 1994; Hosseinian et al., 2004). Other minor compounds from 

vegetable oil could also be partly removed by acid degumming. For instance, 1.1% of 

oryzanol was removed from degummed rice bran oil (Krishna et al., 2001).  

Acid degumming with H3PO4 effectively removed CLPs from crude flaxseed oil 

(Table 4-13). Degumming with 1%, 2% or 10% (v/v) of 75% H3PO4 to flaxseed oil 

removed all of the peptides. Lower concentrations of acid are commonly used in 

industrial settings for degumming. Sullivan (1955) reported the use of 0.13-0.53% of 

75% H3PO4 in industry. Two-stage degumming was tested using two treatments with 

just 0.1% of 75% H3PO4 (v/v) to mimic an acid-conserving degumming protocol 

(Reaney, Pers. Commun.). The two-stage acid degumming treatment removed all of 

CLP-B, C, D, F and G, leaving trace amounts of CLP-A (8.6%) and E (5.8%) in crude 

oil. Acid degumming with a lower concentration of acid [1% (v/v) of 50% H3PO4]
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removed all peptides from the oil except CLP-A (44.8%).  

 Phospholipids found in crude soybean oil are not dissolved but are mostly in 

micelles that encapsulate sugars and metals (Sengupta, 1986). Non-hydratable 

phospholipids (NHP), phosphatidic acid (PA) and part of the phosphatidyl ethanolamine 

(PE) are present as Ca2+ and/or Mg2+ salts, which could be removed by addition of 

strong acid into crude oil at elevated temperature (Sullivan, 1955; Young et al., 1994). 

In this experiment, acid degumming using H3PO4 proved to be an effective way of 

removing CLPs from crude flaxseed oil. The absence of CLPs after degumming may 

indicate that CLPs are entrained in phospholipid micelles that are removed during acid 

degumming treatment. It is also possible that CLP solubility in oil may require binding 

to metals that are also removed by acid degumming. These observations may also 

explain why CLPs were primarily found in the serum of the oleosome extracts, as both 

phospholipid micelles and metal complexes are more likely to be present in the aqueous 

phase. Degumming treatments with H3PO4 would be considered a safe and practical 

approach for CLP removal from flaxseed oil as it is commonly used to remove the 

phospholipids from crude oil in industrial oil refining. Larger scale testing of acid 

degumming on the peptides in flaxseed oil should be conducted in the future. 

 

4.7.3 CLPs from gum after acid degumming 

 It was not certain if the gum from acid degumming could be used as a source of 

peptides or the amide bonds of peptides are susceptible to hydrolysis by acid. It is 

possible that acid degumming of flaxseed oil leads to the hydrolysis of CLPs, as the 

concentration of acid and temperature of processing were relatively high (up to 75% 

H3PO4 at 80°C). Therefore, gums from acid degumming treatments were tested to 

determine CLP levels (Figure 4-11 and Table 4-14). CLP-B was not found in the gum. 

The yield of CLPs from extracted gums varied by peptide type. Peptides CLP-A, CLP-C 

and CLP-E (54.5%) were recovered with reasonable efficiency (55%, 74% and 55%, 

respectively). The trp-containing peptides CLP-D, CLP-F and CLP-G were recovered in 

low yields of 0%, 17% and 10%, respectively. Overall, 71.6% of CLP-24175 and 10.5% 

of CLP-38655 were recovered. The partial loss of these peptides and the absence of 

CLP-D might be caused by hydrolysis under the strongly acidic conditions.  
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Figure 4-11 HPLC chromatogram of CLPs in gum from 1 mL flaxseed oil
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 The recovery of CLPs from gums was difficult, requiring significant amounts of 

solvent and labour. Recovery procedures could be improved in the future by using 

liquid-liquid partitioning of CLPs in different solvents. However, this study did prove 

the gum from acid degumming was a good source of CLP-24175 and by future 

engineering, it could be used for industrial scale isolation of CLPs. 

 

4.7.4 Effect of alkali refining on CLPs in flaxseed oil 

 The solubility of non-polar peptides in oil and organic solvents was reported by 

Iqbal and Balaram (1982). A non-polar decapeptide Boc-Aib-Pro-Val-Aib-Val-Ala-Aib-

Ala-Aib-Aib-OMe (Aib=α-aminoisobutyric acid), aggregates and adopts a 310 helical 

conformation in organic solvents [CDCl3 and (CD3)2SO] stabilized by eight 

intramolecular hydrogen bonds. They also found that peptides containing the 

hydrophobic amino acid residue, leucine, are very soluble in vegetable oils (commercial 

olive oil or safflower oil), as well as in mineral oil.  

Free fatty acids (FFAs) are amphiphilic and may have the potential to stabilize 

CLPs in flaxseed oil or even increase their oil solubility. These compounds may be 

removed from oil by alkali refining (Handrix, 1990; Markley and Feuge, 1954). Alkali 

refining reduced FFAs from 0.74% to 0.02% in crude soybean oil (Jung et al., 1989).  

The FFAs of flaxseed oil were neutralized by a number of alkali treatments to 

evaluate the impact of alkali refining on CLPs in oil. HPLC data suggested that the 

alkalinity and chemistry of the alkali used in alkali refining influenced CLP removal 

from flaxseed oil (Table 4-15). All alkaline solutions removed substantial amounts of 

CLPs. However, none of them removed all of the peptides. CLP-B was not found in any 

sample because of its oxidation to CLP-C during heating. The stronger alkalis, sodium 

hydroxide (NaOH), potassium hydroxide (KOH), potassium carbonate (K2CO3) and 

sodium carbonate (Na2CO3), appeared more effective at removing CLP-D, F, G whereas 

sodium bicarbonate (NaHCO3), tripotassium phosphate (K3PO4) and trisodium 

phosphate (Na3PO4) removed only CLP-D and F. Alkali refining removed most of CLP-

38655 (0-4.1% recovery) and some CLP-24175 (21.1%-51.9% recovery). Therefore, 

Trp-containing peptides (CLP-D, F and G) were effectively removed during alkali 

refining, whereas Trp-free CLPs (CLP-A, C and E) were not. The higher polarity of
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the indole group of Trp compared to other CLP amino acids (e.g., Val, Leu, Ile and 

Phe) may have increased the water solubility of CLP-38655. The total CLPs 

remaining after NaOH, KOH, K2CO3, Na2CO3, NaHCO3, Na3PO4 and K3PO4 alkali 

refining were 14.9%, 17.4%, 20.5%, 21.7%, 24.1%, 30.3% and 41.0%, respectively.  

 The experiment showed stronger alkalis were more efficient than weaker ones 

(NaOH > KOH > K2CO3 > Na2CO3 > NaHCO3 > Na3PO4 > K3PO4) at CLP removal. 

The removal of only a portion of the CLPs during alkali refining process might be 

caused by: 1) a change in the solubility of CLPs in the presence of ions; 2) a change 

in the solubility of CLPs in the presence of soap; and/or 3) release of CLPs from 

FFAs. In the future, the solubility of CLPs in soap solutions, binding between CLPs 

and different ions and binding between CLPs and FFAs can be studied to test these 

hypotheses.
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5 SUMMARY AND CONCLUSIONS 
 

 Flax is widely grown in western Canada. CLPs in flaxseed, along with lignan and 

linolenic acid, are drawing increased attention due to their potential health benefits 

(Cunnane et al., 1993; Jenkins et al., 1999; Clark et al., 1995; Wieczorek et al., 1991). 

The study of CLPs, in particular, has been increasing since their immunosuppressive 

activity was first discovered (Wieczorek et al., 1991). The present project investigated: 1) 

methods for CLP extraction, isolation, detection and quantification, 2) the concentration 

of CLPs in flaxseed from different flaxseed cultivars, 3) the distribution of CLPs in 

different parts of the flaxseed, 4) the concentration of CLPs in lab-pressed flaxseed oil 

and commercial flaxseed oils and 5) the effects of acid degumming and alkali refining 

on the level of CLPs in cold-pressed flaxseed oil. 

 CLP-A was first found in the sediment of standing flaxseed oil. The low polarity 

of the peptides is responsible for their tendency to concentrate in seed oil after crushing. 

In this study, acetone was chosen for CLP extractions from flaxseed due to their high 

solubility in this solvent. Solid phase extraction (silica gel column) followed by solvent 

elution was used to separate crude peptides from other low polarity hydrophobic 

compounds. HPLC was utilized for CLP separation, isolation, identification and 

quantification, whereas MS was used as an alternative method for CLP identification.  

 Prior to this study, the level of CLPs in domestic flaxseed cultivars and the effect 

of the growth environment on the concentrations of CLPs in flaxseed had not been 

reported. The concentration of peptides in five cultivars grown in two locations over two 

years were analyzed. The concentration of CLPs varied, with Somme having the highest 

levels of CLP-A, D, F, G and total CLPs. Cultivar, environment and their interaction 

proved to be significant variables that influenced the production of CLPs in flaxseed 

even though no pattern was found in the relationship between the effect of environment 

and the concentration of CLPs in different flax cultivars. 
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The distribution of CLPs in flaxseed was studied using the HPLC quantification 

method that was developed in this work. It was found that the water-soluble gum 

contained no peptides. The cotyledon had the highest concentration of CLPs, whereas 

seed coat had lower levels. Oil bodies, the main oil storage organelles, were found to be 

the main location for CLPs after one time homogenization/centrifugation; while residues 

and serum also contributed a small proportion of the CLPs. More 

homogenization/centrifugation steps caused large losses of CLPs, which might be due to 

the redistribution of CLPs in the aqueous solution. The main organelle for CLP storage 

was not determined in this study and further study is required to determine the 

distribution of peptides in flaxseed tissues. 

 Compared to the meal, CLPs were found in greater amounts in crude oil and 

solid foots from expeller-pressed flaxseed. The concentration of CLPs in crude flaxseed 

oil produced on a lab scale was much higher than those in commercial oils, which led us 

to test the effect of oil refining on the removal of CLPs. Acid degumming using H3PO4 

proved to be effective for removal of all CLPs from crude flaxseed oil. Alkali refining 

was also effective at removing CLPs, even though this treatment failed to remove all 

peptides equally. 

 This work developed systematic methods for CLP extraction, isolation, 

separation, detection and identification. It increased our knowledge of CLPs from 

flaxseed, including their levels in flaxseed and flaxseed fractions, their distribution after 

oil processing and methods for removing and recovering peptides from flaxseed oil. This 

work has demonstrated the presence of CLPs in flaxseed and flaxseed oil, which led to 

the consideration of flaxseed as a good source for CLP recovery. The presence of CLPs 

in flaxseed assures that CLPs will also be found in flax-related food products (flaxseed 

oil, flaxseed meal, flaxseed bread, etc.). This work also illustrated ways that CLPs may 

be extracted from flaxseed oil and could lead to large-scale industrial extraction 

processes. The ability to extract CLPs at a larger scale should allow faster exploration of 

the potential applications of these molecules and provide the flaxseed industry with 

potential value-added co-products. 
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7 APPENDIX A 

 

 

Quality reports for standard CLP-A, B, C, D, E, F, G and Seg-A 
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Figure 7-1 NMR spectra of standard CLPs and Seg-A. a. The 1H NMR of CLP-A     

         in CDCl3, b. The 1H NMR of CLP-B in CDCl3 (Con’t). 
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Figure 7-1 NMR spectra of standard CLPs and Seg-A. c. The 1H NMR of CLP-C     

         in CDCl3, d. The 1H NMR of CLP-D in CDCl3 (Con’t). 
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Figure 7-1 NMR spectra of standard CLPs and Seg-A. e. The 1H NMR of CLP-E     

         in CDCl3, f. The 1H NMR of CLP-F in CDCl3 (Con’t). 
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Note: The standard peptides CLP-A, CLP-B, CLP-C, CLP-D, CLP-E, CLP-F, CLP-G 
and Seg-A were diluted in deuterated chloroform (CDCl3) respectively and 
measurements were performed using a 500 MHz NMR equipped with TXI and BBO 
probe (Bruker, Bremen, Germany, SSSC, Saskatoon). All spectra were measured in 
solution 500 MHz for 1H NMR. Manual baseline correction and integration were 
applied in the software of XWIN-NMR 3.0. 
 
 
Figure 7-1 NMR spectra of standard CLPs and Seg-A. g. The 1H NMR of CLP-G     

         in CDCl3, h. The 1H NMR of Seg-A in CDCl3. 
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ESI-MS spectra for CLP-A, B, C, D, E, F, G and Seg-A 

 

 
 

 

Figure 7-2 ESI-MS spectra of standard CLPA, B, C, D, E, F, G and Seg-A. a. ESI-   

          MS of CLP-A, b. ESI-MS of CLP-B (Con’t) 
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Figure 7-2 ESI-MS spectra of standard CLPA, B, C, D, E, F, G and Seg-A. c. ESI-   

          MS of CLP-C, d. ESI-MS of CLP-D (Con’t) 
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Figure 7-2 ESI-MS spectra of standard CLPA, B, C, D, E, F, G and Seg-A. e. ESI-   

          MS of CLP-E, f. ESI-MS of CLP-F (Con't) 
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Note: The standard peptide was prepared in a solution containing 90% methanol, 10% 
water and 0.1% formic acid in a total volume of 1 mL for MS analysis. MS analysis was 
performed on a Hybrid Quadrupole-TOF LC/MS/MS system. The solution was 
introduced into the turbo ion electrospray spectrometer source by loop injection at a rate 
of 5 µL per min. Ion scanning experimental data was acquired with the pulsing function 
turned on, using a dwell time of 50 ms and the step size of one Dalton. All signals were 
created and analyzed by the Analyst QS 1.1 software.  

 

Figure 7-2 ESI-MS spectra of standard CLPA, B, C, D, E, F, G and Seg-A. g. ESI-   

            MS of CLP-G, h. ESI-MS of Seg-A  
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8 APPENDIX B 

LIST OF CHEMICALS 
Purchased from EMD chemicals Inc (Gibbstown, NJ)   

 Acetone    GR ACS grade 

 Acetonitrile     HPLC grade 

 Dichloromethane   GR ACS grade 

 Diethyl ether   GR ACS grade 

 Ethyl acetate   GR ACS grade 

 Hexane   GR ACS grade 

 Methanol   GR ACS grade 

 Methonal     GR ACS grade 

 Phosphoric acid    GR ACS grade 

 Potassium carbonate      GR ACS grade 

 Potassium hydroxide      GR ACS grade 

 Sodium bicarbonate      GR ACS grade 

 Sodium carbonate      GR ACS grade 

 Sodium hydroxide      GR ACS grade 

 Sodium chloride        GR ACS grade 

 Tripotassium phosphate      GR ACS grade 

 Trisodium phosphate      GR ACS grade 

Purchased from Sigma-Aldrich (St. Louis, MO) 

 Sand  

 Silica gel 60 Flash chromatography/preparative liquid chromatography         

                   grade 

Purchased from Bio-Rad laboratories (Hercules, CA) 

 Tris-HCL buffer       1.5 M, PH 8.8 
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9 APPENDIX C 
Solvent fractions from silica gel isolation 

 

 

 

 
 

 
Figure 9-1 Fractions from peptide isolation using Silica gel column. Fraction a,    

         oil, fraction b, 20% EtOAC in hexane, fraction c, 50% EtOAC in    

         hexane (Con’t)  
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Note: Silica gel isolation of CLPs from flaxseed oil was conducted as described in 3.2.1 
and 3.2.2. HPLC separation was followed as described in 3.2.3. CLPs were enriched in 
Fraction d (100% EtOAC) and e (10% MeOH in DCM) while other Fraction a (oil), b 
(20% EtOAC), c (50% EtOAC), or f (EtOH) did not contain any of the peptides.  

Figure 9-2 Fractions from peptide isolation using Silica gel column. Fraction    

         d, 100% EtOAC, fraction e, 10% MeOH in DCM, fraction f, EtOH 
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 10 APPENDIX D 
 

 

 

 

 

min5 10 15 20 25 30

mAU

0

100

200

300

400

500

600

700

 DAD1 A, Sig=214,10 Ref=300,10 (NOV 18D 2010\CLP-F G (40).D)

 1
2.

25
1

 1
2.

72
1

min5 10 15 20 25 30

mAU

0

5

10

15

20

25

30

35

40

 DAD1 B, Sig=244,20 Ref=300,10 (NOV 18D 2010\CLP-F G (40).D)

min5 10 15 20 25 30

mAU

0

10

20

30

40

50

60

70

80

 DAD1 E, Sig=280,16 Ref=360,100 (NOV 18D 2010\CLP-F G (40).D)

 1
2.

25
0

 1
2.

72
2

 
 

Figure 10-1 HPLC chromatogram of CLP-F (0.6 mg/mL) and CLP-G (0.7    

          mg/mL) under the wavelengths of (a) 214, (b) 244 and (c) 280 nm 
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 11 APPENDIX E 

 

 

Calibration curves of CLPs using internal standard Seg-A  
 

  
 

  
 

Figure 11-1 Calibration curves of CLPs using internal standard Seg-A (0.05  

         mg/mL) (Con’t)
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Figure 11-1 Calibration curves of CLPs using internal standard Seg-A (0.05  

          mg/mL) (Con’t) 
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Figure 11-1 Calibration curves of CLPs using internal standard Seg-A (0.05  

          mg/mL)   
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12 APPENDIX F 
 

 

 

 

 
 

Figure 12-1 Transformation of CLPs during processing 

a: CLPs isolated from degummed flaxseed by directly stirring in 10 ×    

(W/V) 70% methanol in water for 2 hrs at room temperature 

    b: CLPs isolated from flaxseed oil extracted by goldfisch extraction  

 


