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Bio-Dodecanedioic Acid (DDDA) Production

Abstract
The demand for dodecanedioic acid (DDDA) is steadily increasing each year with demand expected to exceed
90.4 kilotons per month in 2023.1.1 DDDA is an intermediate chemical used in a variety of end products.
Thus, the increase in DDDA demand can largely be attributed to increasing demand for manufacturing nylon,
paints, adhesives, and powder coatings. Regionally, Asia Pacific has been observing the fastest growth of all
regions at over 6% CAGR.1.2 The robust manufacturing base for nylon, along with a growing automotive
industry in India and China, will propel DDDA growth into the next decade. The current synthesis process for
DDDA relies on a multi step butadiene process. This pathway has large price volatility and supply/demand
imbalances due to using a petrochemical feedstock. This proposed process outlines a biologically-sourced
alternative to conventional DDDA production, and would be located in Malaysia to access regional organic
feedstocks. The proposed DDDA plant is designed to produce 14,000 metric tons per year of DDDA using
palm oil, and would be strategically located near rapidly expanding Asia Pacific markets. This project has an
estimated IRR of 24.12%, ROI of 18.20%, and a NPV of approximately $54.1 MM.
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University of Pennsylvania, School of Engineering and Applied Science 

Department of Chemical and Biomolecular Engineering 

220 South 33​rd​ Street 

Philadelphia, PA 19104 

April 17, 2018 

Dear Dr. Raymond Gorte and Professor Bruce Vrana, 

Enclosed is a a design for the industrial production of dodecanedioic acid (DDDA) using 
biological feedstocks. This design is based off of patented process technology developed by 
biotechnology company Verdezyne, Inc. The proposed plant is to be located in an industrial 
complex in Malaysia with adequate access to palm oil production and treatment infrastructure. 
The plant is designed to produce 14,000 metric tons of DDDA per year that is competitive with 
conventionally produced DDDA at a weight purity greater than 99%.  

In order to produce DDDA, a genetically altered strain of ​Candida ​yeast will be grown on 
a glucose feed of 70.5 g/L within progressively larger fermentation vessels. This cell mass will 
then be transferred into one of six production fermentation vessels and induced to convert the 
long chain fatty acids present in a palm oil feedstock into diacid products via changes in 
environmental pH. Palm oil is to be fed at 120.5 g/L in line with lab-scale patent information. 
After 24 hours in each of three growth fermenters and 120 hours converting feedstock to diacid 
products in the production fermenter, the fermentation broth is fed to a surge tank for feed to 
continuous downstream filtration of biomass. The resulting biomass cake, rich with DDDA and 
other diacid impurities, is then dried and enters a dissolution stage to solubilize the desired 
product. The ethyl acetate is the filtered and sent to the crystallization process. Ethyl acetate is 
evaporated to crystalize the diacids, and is then condensed for recycle back to the dissolution 
stage. The diacids are then separated using melt crystallization, where liquid DDDA is separated 
from unmelted diacid impurity. The liquid DDDA is then cooled and fed to a flaker for final 
collection of 99% pure DDDA crystals. 

This report contains detailed process designs and descriptions, equipment and utilities 
costing, economic analysis, and recommendations for the implementation of the proposed 
design. The proposed plant was found to be economically viable, with an estimated IRR of 
24.12% and a total NPV of approximately $54.1 MM. We recommend investing in this project. 
The upstream batch processes were modeled using Excel mass balance and process scheduling, 
while the continuous downstream processes were modeled using Aspen Plus v10. Cost estimates 
for all equipment were obtained using ​Process Design Principles 3​rd ​Edition, by Seider, Seader​. 

Sincerely, 

 

Brandon Mills Meghavi Talati Greg Winter 

__________________ ___________________ __________________ 
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The demand for dodecanedioic acid (DDDA) is steadily increasing each year with 

demand expected to exceed 90.4 kilotons per month in 2023.​1.1​ DDDA is an intermediate 

chemical used in a variety of end products. Thus, the increase in DDDA demand can largely be 

attributed to increasing demand for manufacturing nylon, paints, adhesives, and powder coatings. 

Regionally, Asia Pacific has been observing the fastest growth of all regions at over 6% 

CAGR.​1.2​ The robust manufacturing base for nylon, along with a growing automotive industry in 

India and China, will propel DDDA growth into the next decade. 

The current synthesis process for DDDA relies on a multi step butadiene process. This 

pathway has large price volatility and supply/demand imbalances due to using a petrochemical 

feedstock. This proposed process outlines a biologically-sourced alternative to conventional 

DDDA production, and would be located in Malaysia to access regional organic feedstocks. The 

proposed DDDA plant is designed to produce 14,000 metric tons per year of DDDA using palm 

oil, and would be strategically located near rapidly expanding Asia Pacific markets. This project 

has an estimated IRR of 24.12%, ROI of 18.20%, and a NPV of approximately $54.1 MM.  
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DDDA is a C12 dicarboxylic acid that is an intermediate in the production of antiseptics, 

top-grade coatings, painting materials, corrosion inhibitors, and surfactants. Most notably, 

DDDA is a major component of engineering plastics such as nylon 6,12.​2.1​ Driven by growth in 

these industrial goods, especially in Asian Pacific markets, the demand for DDDA is projected to 

grow by approximately 6% through 2023.​2.2 

DDDA’s conventional synthesis pathway requires butadiene. Butadiene is first converted 

to cyclododecatriene through a cyclotrimerization process. Additional multi-step chemical 

processes including hydrogenation, air oxidation in the presence of boric acid, and further 

oxidation by nitric acid, are required to reorganize and cleave the cyclic compound to produce 

DDDA. This conventional petrochemical synthesis, while the industry standard, has several 

negative externalities. As a feedstock, butadiene suffers from price volatility tied to crude oil 

pricing. Low oil prices, expensive shipping costs, and supply-demand imbalances have serious 

repercussions on the butadiene and elastomers markets. Roughly 98% of butadiene is produced 

as a coproduct of ethylene, another major petrochemical product.​2.3​ Therefore, trends in 

petrochemical product markets, such as softening demand in automotive-ethylene markets 

compared to the rubber-butadiene markets, result in constant supply imbalances. Additionally, 

butadiene rubber is used as a major feedstock in tires, with over 70% of available polymer 

produced going into sidewalls and treads.​2.4​ This results in high prices for DDDA producers who 

must compete with the automotive sector for feedstock. Bill Hyde, senior director of olefins and 

elastomers for IHS Markit, points out of butadiene prices surges that “(it is) a combination of 

planned or unplanned outages at butadiene plants, with strong demand at a time when inventories 
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were low… I wouldn't say there was panic buying, but there was desperation throughout the 

industry to get the material and do whatever they had to do to get it”.​2.5  

Competition for available butadiene supply raises prices and ultimately drives up the 

production cost of downstream products. As the demand for DDDA increases, conventional 

synthesis pathways using butadiene are not expected to meet demand in a cost-effective manner. 

This has driven interest in decoupling DDDA production form petrochemical pricing and 

regional availability. Renewably sourced DDDA using plant-oil feedstocks has emerged as a 

viable industrial alternative  

This project proposes a Malaysian-based plant using fermentation processes to produce 

DDDA using regionally sourced palm oil as a feedstock.  Palm oil contains a combined 89% 

Palmitic saturated acid, oleic monounsaturated acid, and linoleic polyunsaturated acid.​2.6​ These 

fatty acids are specifically desirable for this fermentation pathway due to the need for long chain 

fatty acids (C16-C18) for breakdown into to DDDA (C12 saturated diacid). The fermentation 

pathway is discussed in greater detail in Section 10.2.  

Palm oil is an ideal feedstock for this process, being a readily available and commercially 

produced carbon source in the region. The project aims to situate the DDDA production plant 

close to growing Asian markets via Malaysia. Considering that Malaysia currently accounts for 

39% of the world’s palm oil production and 44% of exports, much of the processing, 

distribution, and treatment infrastructure for this renewable process is already in place and ready 

to be utilized.​2.7​ The creation of a DDDA production hub situated in these markets serves to 

extract added value from existing agricultural development.  
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The size of the global DDDA market is predicted to reach $450MM-$600MM by the year 

2022​2.8​. Considering the growing demand for DDDA-derived products in rapidly expanding East 

Asian markets, and the relative availability and lower cost of palm oil compared to butadiene, the 

economic opportunities become apparent. Additional macro trends that this project’s 

biosynthesis pathway addresses include flexible production, food vs. fuel/bio-materials 

mitigation, and “green” manufacturing. The genetically engineered yeast used in the 

fermentation can theoretically be fed any long chain fatty acid feedstock (coconut oil, corn oil, 

palm kernel oil, soybean oil, etc.). This flexibility then allows for feedstocks not largely 

consumed by humans to be strategically utilized. This further enables low-value byproducts of 

palm oil processing to become a high-value “green” products, while reducing the demand for and 

use of fossil resources.  

The process begins with aerobic fermentation. Three growth fermenters are placed in 

series and feed genetically engineered ​Candida sp, ​a yeast strain that displays high yield and 

selectivity for DDDA production, into three production fermenters. Multiple fermenter trains are 

required to meet the project’s annual production output of 14,000 metric tons (MT) per year. The 

fermentation broth containing the secreted DDDA product is then fed to a surge tank for 

continuous downstream separation and processing. 

To achieve the desired product purity of 99%, several separation operations are done to 

extract the DDDA from the fermentation broth and separate it from the biomass and diacid 

coproducts that are produced. The fermentation broth is first filtered for cake, biomass and 

insoluble DDDA. This cake is then dried and mixed with ethyl acetate to solubilize and separate 

the valuable diacids. This feed is then processed to ensure only DDDA and no other diacids are 

13 



 

present in the final crystallized product. The final product is of industrial-use purity and is sold at 

a competitive price point to Asia Pacific markets. The proposed plant is to be located close to 

sustainably sourced palm oil extraction and processing farms due to feedstock viability and 

wastewater treatment.  
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Project Name Bio-Dodecanedioic Acid (DDDA) Production 

Project Champions Dr. Sean Holleran, Professor Leonard Fabiano, Dr. Stephen Tieri 

Project Leaders Meghavi Talati, Greg Winter, Brandon Mills 

Specific Goals Develop a bio-based DDDA plant with a capacity of 14,000 MT/year 
using regionally sourced palm oil as a feedstock 

Project Scope In-scope: 

● Cell growth 
● Sterilization of media and water fermenter feeds and fermenter 

sterilization 
● Design of fed-batch fermentation processes 
● Design of continuous separation process to meet 99% DDDA purity  
● Market and profitability analysis 
Out-of-scope: 

● Procurement of genetically engineering yeast strain 
● Packaging/distribution of DDDA powered product 

Deliverables Business Opportunity Assessment 

● Examine the market for DDDA 
● Comparison of bio-DDDA to conventionally produced competitors  

Manufacturing Capability Assessment: 

● Is the capital investment for plant development/construction 
reasonable? 

Timeline Complete design and economic analysis due by April 17,  2018 
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The global commercial market for DDDA is expected to significantly grow over the next 

decade due to its variety of applications and the expansion of Asian markets. In 2015, the total 

market size for DDDA was 58.8 kilotons; by 2023, this market is expected to reach 90.4 

kilotons, driven by estimated 5.5% CAGR.​4.1​ On a USD basis, this represents $599.5MM in 

sales. Figure 4.1 shows the projected increase in the global DDDA market broken down by 

market sector.​4.2​ DDDA is used in a wide variety of chemical applications, and growth across 

industrial chemicals markets including coatings, adhesives, corrosion inhibitors, and plastics all 

contribute to the growth of demand for DDDA. Specifically, growth in markets for resins 

constituted the majority of the DDDA market share, making up roughly 60% of the total 

production on a mass basis in 2015.​4.3 

Global DDDA Market, by Product, 2012-2022 (Kilotons) 

 

Figure 4.1: DDDA market size and growth projections  

One specific resin, nylon 612 is a leading driver in DDDA market growth due to 

increasing demand and wide applicability in end-use industries such as fragrances, detergents, 

greases, polyesters, coatings and adhesives. Nylon 612 is known to have optimal heating 
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properties, allowing it to also be used in the production of engineering thermoplastics. Powder 

coating and paint applications have also largely influenced DDDA market growth; these markets 

are projected to grow at a 6.2% CAGR over the next decade, largely driven by expansion in 

construction and automobile industries in emerging markets.​4.4 

Regionally, North America and Europe are the largest consumers of DDDA; collectively, 

these regions accounted for 45% of the total mass of DDDA consumed in 2014.​4.5​ The North 

American market is expected to see substantial growth, while the European market expects only 

modest growth due to the high manufacturing cost of nylon curbing manufacturing in Italy, 

Germany and France.​4.6​ Growth in the Asia Pacific market is anticipated to have the greatest 

growth potential of all regional markets. The emergence of industrial manufacturing hubs in 

China and India and the rapid growth in demand for industrial paints and powder coatings are 

responsible for this global trend.​4.7​ Due to its proximity to these markets, Malaysia was selected 

as the location of the plant described in this project.  

Trends toward environmentally-conscious manufacturing practices have emerged within 

the chemical intermediates industry. This allows for innovations in biologically-sourced DDDA 

to be both economically favorable, as well as forward-thinking in regards to regulatory 

constraints. The first-mover advantage in regards to sustainably-sourced DDDA can be expected 

to be of much interest within this market sector in near future. 

The principal competitors present in the DDDA market are Invista, Cathay Industrial 

Biotech, Sigma-Aldrich, Evonik, Santa Cruz Biotechnology, UBE Industries and Verdezyne.​4.8 

Traditionally, these incumbent manufacturers produce DDDA from butadiene using a multi-step 

chemical process. Some disadvantages associated with this feedstock serve to highlight the 
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benefits of a biologically-sourced alternative. Butadiene is a material that competes with fuel 

applications; thus, petrochemical synthesis of DDDA competes for raw materials. Therefore, 

butadiene faces extreme price volatility driven by its constrained supply and increasing demand 

across other markets. Lastly, because petrochemicals are inherently unsustainable and energy 

independence is becoming a topic of increased discussion, butadiene may not be the most 

reliable and secure feedstock in decades to come. 

Recently, government subsidies and consumer demand are shifting towards bio-based 

and sustainable production. The proposed process of producing DDDA using renewable 

feedstocks and a yeast catalyst, is more sustainable and has the opportunity to be economically 

viable. This process is competitive with traditional butadiene production. In addition, the 

possibility to utilize different commercial feedstocks (not examined in this report), offers added 

flexibility that conventional production lacks. Feedstock flexibility further allows for the 

elimination of  food versus fuel conflicts should they arise and further isolation from price 

volatility and supply constraints. Lastly, the proprietary biological engineering technology allows 

for a high level of selectivity of the diacid produced.​4.9​ Should market trends cause increased 

price in short length diacids, a yeast strain selective to that diacid can be selected for with 

minimal changes to downstream plant operations. With this in mind, bio-based DDDA is 

projected to replace about 30% of the butadiene-based industry in the next few years.​4.10 

One potential disadvantage of using this bio-based route is deforestation and high water 

usage. This process will incorporate palm oil as a main feedstock and the use of palm oil is a 

leading cause of tropical deforestation. To combat claims of unsustainable practices, palm oil 

should be purchased from vendors that are certified by the Roundtable on Sustainable Palm Oil 
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(RSPO). RSPO Certification ensures that producers limit the land that may be developed for 

palm oil, curbing deforestation according to the RSPO principles and Criteria (P&C) 

standards.​4.11 
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Section 5 

Customer Requirements 
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The objective of this project is to produce 14,000 metric tons of DDDA per year. Several 

co-products of DDDA, including adipic acid, suberic acid, and sebacic acid, are created as 

undesired products of the fermentation process. While the genetically altered yeast strains can be 

highly selective for the DDDA pathway, shorter length diacids (C6, C8, and C10 respectively) 

will be made as well. The standard product purity of competitors for DDDA are as follows: 

Cathay Industrial Biotech and Sigma-Aldrich, two major current incumbents, produce DDDA 

with product purities of  >99%.​5.1,5.2​ The remaining <1% of the product remain as unspecified 

impurities. Thus, it can be concluded that the industry standard of DDDA purity using the 

traditional butadiene method appears to be greater than 99%. In order to compete with 

established competitors and meet customer requirements, it is essential that the bio-based 

production route also have product purity near 100%. 

The bio-DDDA produced in this process has a projected purity of approximately 99.8%. 

The anticipated main impurities would consist of the other diacid by-products (suberic acid, 

sebacic acid, and adipic acid) that were not successfully separated from the DDDA in the 

crystallization operation, which is seen in Figure 12.7 - Section 500 

This constructed process will produce an estimated 14,211 metric tons of DDDA per 

year, meeting the target production goal of 14,000 metric tons of DDDA per year. This meets the 

production target, while also building in a 1% buffer should there be unexpected downtime in the 

batch operations.  

Another general customer consideration includes the sustainability of DDDA. The 

traditional butadiene pathway is non-renewable, while the palm oil pathway discussed is both 
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biomass-derived and renewable. While not without its environmental impacts, which are 

discussed in Section 21.1, this production pathway has several transportational and sourcing 

benefits. Sustainable production allows governments and companies to address their ecological 

impact while sourcing the same quality of material from their prior petrochemical-reliant 

process. Should governments require the incorporation of more biomass-derived and sustainable 

materials, this newly developed process more appropriately fits customer requirements than the 

traditional butadiene process does. 
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Section 6 
 

Critical-to-quality (CTQ) Variables  
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Section 6.1: Fermentation Temperature, Pressure, pH and Dissolved Oxygen 
 

Patented information demonstrates the optimal fermentation conditions to be roughly 37 

°C, 1 atm, and 0.5 -1.0 VVM.​6.1​ The fermentation process utilizes a genetically modified 

Candida sp.​ yeast strain that can be fragile and susceptible to temperature, pressure, and 

dissolved oxygen level changes. Deviations from ideal reactor conditions could lead to excessive 

loss of yeast biomass due to death. Deviating from ideal conditions has been also been shown 

from patented data to largely decrease the yield of DDDA while increasing the yield of other 

unwanted diacids such as suberic acid, sebacic acid and adipic acid.​6.2​ This decrease in reaction 

selectivity in the fermentation process is undesirable, as this would significantly raise energy 

requirements and capital expenditures in the downstream filtration processes, which intend to 

separate DDDA from unwanted byproducts.  

Maintaining pH is also extremely important in the fermentation process, as yeast strains 

typically have an optimal operating pH range. The patented data recommends operating at a pH 

between about 5.5 to 7.5, while our specific production process is in the range of 5.8 to 6.0 using 

a pH inducer.​6.3​ pH largely affects the metabolic processes of enzymes that are used in breaking 

down sugars; thus, deviating from ideal pH conditions would significantly reduce the resulting 

fermentation rate. pH is also used as the inducer for the metabolic switch from production of 

biomass in the more grow fermenters (more basic) to production of diacid metabolites in the 

production fermenter. This ability to transition metabolic conversion is due to the selective 

engineering of the yeast strains. The process is detailed in patent US9517996B2, ​Purification of 

Polycarboxylic Acids.​6.4 
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Section 6.2: Palm Oil Feed 

Palm oil composition is important in order to ensure that an adequate supply of highly 

saturated long-chain fatty acids is available for the biomass in the production fermenter. As 

shown in Figure 10.1, palm oil is made up of largely saturated and monosaturated fatty acids 

presented as triglyceride esters.​6.5​ This allows for high availability of carboxylic acids for 

conversion to dicarboxylic acids. Due to the variability in biological feed stocks influenced by 

conditions such as temperature, nutrient availability, and age at harvest, the distribution of 

saturated versus unsaturated alkane chains can vary. Less saturated feedstocks would ultimately 

require additional metabolic activity to hydrogenate, and can influence DDDA yields relative to 

other diacid impurities. In order to ensure optimal conversion of palm oil, various feedstocks 

should be sourced and distributor requirement sheets should be utilized. All feedstock deliveries 

are to be homogeneously mixed prior to feed into the fermenters in order to further reduce 

variation between batches. Mixing and aeration would also ensure that the water-palm oil 

interface is increased and would prevent it from simply separating into distinct layers. This 

ensures interfacial interactions between the biomass and the feedstock; for the purposes of this 

process, the biomass can be thought of as a biocatalyst on which conversion of palm oil to 

diacids occurs.  

Section 6.3: Ethyl Acetate Recycle 
 

Downstream crystallization vessels are optimized with design specifications. These 

specifications specify a recycle stream that contains 99% of the condensed ethyl acetate and an 

accompanying purge stream to stop accumulation. This is vital because the upstream 

fermentation process requires a large amount of ethyl acetate in order to solubilize DDDA. 
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Specifically, the total amount of ethyl acetate fed in is 27,809 kg/hr, with 11,830 kg/hr of new 

ethyl acetate and 15,979 kg/hr of recycled ethyl acetate, indicating that recycled ethyl acetate 

accounts for 57.4% of the total ethyl acetate required. In order to avoid the cost of purchasing 

large amounts of fresh ethyl acetate upstream, an ethyl acetate recycle stream is utilized. 

 
Section 6.4: Filtration 

 
In between the fermentation and crystallization processes, filtration steps are included to 

ensure optimal recovery of DDDA from biomass. The process includes two separate filtration 

steps to recover the optimal amount of DDDA. 

The first of the two steps involves drying the cake of all water content. The water present 

in the slurry must be removed for the dissolution step later in the process. Water removal is 

accomplished via vacuum rotary drum filters and evaporators. The vacuum rotary drums account 

for 91.5% of water removal and the evaporator accounts for the remaining 8.5%. Specifically, 

the water inlet to the drums is 12,822 kg/hr and the waste water outlet is 11,735 kg/hr. The 

remaining 1,087 kg/hr of water left in the cake is removed by the evaporator. A dissolution step 

is required to simplify the second step of the process, removing the biomass. 

The dissolution step adds a substantial amount of ethyl acetate to convert DDDA and 

other diacids from their solid state to their liquid state. The liquid diacids allow for the 

centrifugation required to remove the remaining biomass. Design specifications require the ethyl 

acetate flow rate to be 7 times greater than that of the diacids flow rate at 70​°​C to convert them 

from the solid to liquid state.​6.6​ The diacids flow rate after the removal of water is 2,375 kg/hr; 

therefore, the ethyl acetate needed is 16,625 kg/hr. The ethyl acetate flow rate meets design 
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specifications, as the stream is 16,629 kg/hr. After the dissolution step, the stream is fed through 

a decanter centrifuge to remove the biomass. 

The decanter centrifuge is assumed to be 99.5% efficient in separating the diacids from 

the biomass based on advice from industry consultants. The diacids flow rate out of the 

centrifuge (liquid outlet) is 2,363 kg/hr with no biomass, while the solid outlet has all of the 

biomass and a small percentage of diacids. The small percentage of diacids in the solid outlet 

stream are passed through another centrifuge to recover as much DDDA and other diacids as 

possible to meet production goals. The addition of a second centrifuge requires another 

dissolution step prior to feeding into the centrifuge. The dissolution step falls under the same 

design specifications as previously explained.  The ethyl acetate recycle stream from 

crystallization is mixed with a smaller ethyl acetate stream that is heated via heat exchanger. The 

combined stream is split to provide at least 7 times ethyl acetate flow rate for dissolution. The 

second decanter centrifuge is also assumed to be 99.5% efficient and removes all biomass from 

the diacids. The two liquid outlets from the centrifuges are combined and fed into the 

downstream crystallization process. 
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Section 7 

Product Concepts 

N/A 
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Section 8 
 

Superior Product Concepts 
 

N/A 
  

31 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

Section 9 
 

Competitive Patent Analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

32 



 

DDDA is an intermediate chemical used in a variety of end products, such as antiseptics, 

top-grade coatings, surfactants, painting materials, plastics and more. As previously mentioned, 

the global DDDA growth is expected to grow 5-6% annually, with much of this growth 

stemming from increased demand for nylon 6,12.​9.1​ Traditionally, the synthetic route of 

production has been the predominant method to produce DDDA, which is based on using 

butadiene as the starting material. This synthesis is a multi-step chemical process. Outlined in a 

patent owned by Invista Technologies, the process begins with a cyclotrimerization step, in 

which butadiene is contacted with a catalyst which is responsible for trimerization and formation 

of cyclododecatriene.​9.2​ Next, a reagent that contains oxygen oxidizes the cyclododecatriene into 

epoxycyclododecatriene. Then, this substance undergoes reduction and rearrangement steps to 

form a mixture of alcohol and ketone, or cyclododecanol and cyclododecanone, respectively. 

Finally, another catalyst is introduced to the process with nitric acid, which together react with 

the aforementioned products to form dodecanedioic acid (DDDA) and other unwanted 

byproducts such as adipic acid, etc.​9.3​ Similarly, other patents outlining this process from 

companies such as Exxon Mobil and DuPont have been in existence since 1959 and 1972 

respectively.​9.4,9.5 

The main disadvantage associated with the traditional synthesis process is the utilization 

of butadiene as a starting material. As previously mentioned, butadiene is a petrochemical that 

suffers extreme price volatility and uncertainty of supply because of a serious supply-demand 

imbalance. In addition, butadiene is a material that competes with fuel applications, further 

limiting the supply that is available for processes like DDDA synthesis. Lastly, the butadiene 

pathway presents a large environmental burden as it is associated with fossil fuel resources and 
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higher greenhouse gas emissions. It is clear that the traditional DDDA synthesis is not the ideal 

method of production in a climate where consumer demand is shifting to favor more sustainable 

and bio-based chemicals. 

To meet the consumer requirements of chemicals that are more sustainably produced and 

renewable, a company called Verdezyne developed the first-ever DDDA production process that 

does not utilize butadiene as a starting point. This fermentation process utilizes a microorganism 

or yeast as the basis for the bio-based production route. Outlined in a patent filed in 2014 by 

Verdezyne, the yeast can be used across a multitude of different commercial feedstocks.​9.6​ This 

allows the flexibility to choose feedstocks that do not compete with food or fuel applications, 

leading to the utilization of feedstocks that cost less and are not subject to price volatility or 

uncertainty of supply. This flexibility also allows for the use of renewable and bio-based 

feedstocks, which provides a huge competitive advantage over the traditional petrochemical 

process. Ensuring the performance of the technology, Verdezyne’s patent also claims to target 

DDDA with exceptionally high selectivity.​9.7​ Lastly, the DDDA produced from this process is 

identical in functionality and structure to the DDDA produced from the traditional butadiene 

process.​9.8​ Thus, there is no change required to the downstream equipment or processes for 

filtration and crystallization. If time were available for further economic analysis, the recovery of 

adipic acid, suberic acid and sebacic acid from this process could be investigated in order to sell 

these byproducts for profit. From both a chemical and an economic standpoint, the process 

developed by Verdezyne has extreme advantages over the traditional process. This report will 

further investigate the economic viability of scaling up and utilizing this process to produce 

14,000 metric tons of DDDA per year. 
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Section 10.1: Growth Fermenter 

 In order to produce DDDA through metabolism of palm oil, cell biomass must first be 

accumulated in the preceding three growth fermenters. All three growth fermenters (1m​3​, 10m​3​, 

and 100m​3​) rely on the same assumptions regarding metabolism and conversion of the glucose 

feed stock into biomass. It was determined that conventional dry mass conversion rates of 

glucose substrate to cell mass would apply for the genetically modified ​Candida sp​ yeast strain. 

Therefore the consumption of glucose was modeled using the stoichiometric balances below, 

with a 0.4 selectivity towards Metabolic Pathway (1) and a 0.6 selectivity toward Metabolic 

Pathway (2). Metabolic Pathway (2) represents conversion to biomass, where biomass is 

modeled as . These balances were developed with the aid of Professor Vrana.OCH2  

O O CO O     Selectivity .4Metabolic P athway (1)     C H:  6 12 6 + 6 2 → 6 2 + 6H2 = 0  

O O                  Selectivity .6Metabolic P athway (2)                C H:  6 12 6 → CH2 = 0  

It is assumed that all nitrogen needs of the cell mass are met by the media and solubilized 

gases supplied to the fermentation vessel via the agitator.  

Section 10.2: Production Fermenter 

Once adequate cell mass has accumulated in the growth fermenter and is transferred into 

the 500m​3​ production fermenter, the pH of the broth can be set to approximately 5.8 using NaOH 

and a feed of long chain fatty acid feedstock (in this case palm oil) in order to induce a metabolic 

shift towards diacid production.​10.1​ Unlike the consumption of glucose, information surrounding 
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the stoichiometric conversion of palm oil is not readily available. Additional complications arise 

when taking into consideration the inhomogeneous nature of this feed stock.  

 

Figure 10.1: Table of palm oil fatty acid content 

Palm oil is composed of a variety of fatty acids esterified with glycerol to form 

triglycerides. These fatty acids concentrations vary depending on a multitude of environmental 

factors. Therefore, in order to produce stoichiometric conversions, palm oil was modeled as 

being a triglyceride consisting of its major component, the 16-carbon saturated fatty acid, 

palmitic acid.​10.2​ As shown in Figure 10.1, palm oil also has high concentrations of 

monounsaturated C18 oleic acid, but for clarity and due to these fatty acids’ similarity, this was 

omitted in the calculations. As seen in Figure 10.2, the fractional conversion of palm oil to diacid 

products was based upon available patent information that highlight the yeast strains’ high level 

of specificity surrounding conversion to an individual diacid.​10.4​ Through inhibition of 

β-oxidation metabolic pathways, the mixed chain-length fatty acid feedstock can be converted to 

a single diacid product with a specificity of upwards of 90%.​10.5 
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Figure 10.2: Diacid Product Distribution. Graph indicating the high fractional conversion of mixed chain-length 
fatty acid feedstock to the desired diacid. In this case C14 diacid was selected, however this can changed through 
selective genetic engineering of the inoculated yeast strain.  

The production of DDDA and associated diacid coproducts was modeled using four 

reactions, which are shown in Figure 10.3. The production of DDDA makes up the majority 

(>90%) of the reactions taking place in the vessel once the diacid production has been induced 

via the the pH change. The remaining coproduct reactions were determined by patent 

information to be relatively evenly distributed.​10.6​ It is important to note that the production of 

additional biomass is considered to be negligible within the production fermenter and was thus 

omitted. These reactions outlined in Figure 10.3 are believed to provide an adequate 

approximation of palm oil conversion and are consistent with the extremely aerobic nature of the 

process. 

 

38 



 

 

Figure 10.3: Indication of fermentation stoichiometry used for feedstock conversion  

Section 10.3: Biomass Separation & Dissolution 

Due to the nature of the yeast strain used, all polycarboxylic acids formed in production 

fermenter are produced extracellularly and precipitate into the fermentation broth. This broth is 

then fed into a surge tank for continuous downstream processing. Determined from ASPEN data, 

DDDA’s solubility in water is extremely low at 30 mg/L at 25​°C. This is consistent for all 

diacids within the broth. Therefore, the first stage of continuous downstream processing is the 

filtration of the broth in order to cake the diacids and biomass. This was accomplished through 

the use of two vacuum rotary drum filters operated in parallel. The resulting cake is roughly 30% 

by weight water, and thus is conveyered to an evaporator operation in order to produce dry cake 

for the dissolution operation. This water is can be vented to the atmosphere, while the filtered 

water from the fermentation broth is safe for downstream sterilization and disposal in line with 

industry standards for palm oil extraction and processing. This will be discussed in greater depth 

in later sections.  

While the diacids in this operation are extremely insoluble in water at all tempe​ratures, 

their solubility is much higher in heated organic solvents, as seen from ASPEN data in Figure 
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10.4. By mixing the dry cake with 70​°C ​ethyl acetate, the desired product is solubilized and then 

the non-diacid impurities and cell mass are filtered off. This ethyl acetate can then be processed 

to recover the final DDDA product. Further processing is required to purify the DDDA from 

other diacid impurities.  

Figure 10.4: Graph of diacid solubility in ethyl acetate as a function of temperature 

Section 10.4: Evaporative Crystallization 

The downstream processing of the ethyl acetate and solubilized diacid relies on the 

evaporation of the organic solvent in order to crystallize out the product from a supersaturated 

solution. The boiling point of ethyl acetate is 77​°C at 1 atm. Using a evaporative crystallizer, the 

mixture is heated to produce ethyl acetate vapor to be condensed and recycled, and a 

supersaturated ethyl acetate slurry is fed to a direct heat rotary drier to fully dry the powered 

ethyl acetate.  Ths crystal mixture contains DDDA and quantities of  sebacic acid, suberic, acid, 
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and adipic acid. Unfortunately, due to the extremely similar solubilities of all four diacids, it was 

infeasible to purify the DDDA during the evaporative crystallizer process. In order to produce 

the desired >99% purity DDDA required of the project statement, a final downstream unit 

operation is required to separate the various diacids by melting point. 

Section 10.5: Melt Crystallization 

As stated above, solubility variations were not deemed as an adequate or feasible method 

by which to separate the diacid impurity (sebacic acid, suberic, acid, and adipic acid). The 

cross-over between the DDDA and adipic acid solubility curves in Figure 10.4 further illustrates 

this point. Therefore, the diacid separation took inspiration from the separation of para-xylene 

from xylene mixture via crystallization as discussed by H.A. Mohameed.​10.7​ By taking advantage 

of the melting point variation between the diacids, liquid DDDA can be separated from the 

higher melting point diacids. As shown in Table 10.1, DDDA has the lowest melting point of the 

four diacids of interest. This runs opposite the para-xylene separation process (paraxylene has the 

highest melting point); however, the same principle applies.  

Table 10.1: Illustrates the variation of diacid melting temperatures 

Diacid Melting Point [​°​C] 

DDDA 127 

Suberic Acid 141 

Adipic Acid 152 

Sebacic Acid 268 
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The melt crystallizer tank receives the powered diacids via conveyer belt and 

continuously agitates them while heating them to a homogenous temperature of 135°C. This 

allows for the DDDA to melt while minimizing the diacid impurity. However, this relies on the 

assumption that the solubility of the other diacids in the liquid DDDA is negligible. While this is 

a large assumption, no readily available information contradicts this statement. For the purposes 

of the DDDA separation to achieve >99% purity, additional lab scale research is required. 
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Section 11.1: Input Costs 

In order to produce DDDA through this process, palm oil, glucose, water and media are 

required as inputs. The water purchase price was obtained from Chapter 16 of ​Seider et. al, 

2017​.​11.1​ The prices of palm oil and glucose were found to be $0.696 per kg and $0.180 per kg 

from commodity markets.​11.2,11.3​ The price of media was priced as $0.027 per kg, as derived from 

patent data​11.4​. In addition, we found the palm oil price through online markets to range between 

$5/kg to $10/kg, and utilized a middle price of $7/kg to provide a more realistic estimation.​11.4  

Section 11.2: Aspen Simulation Specifications 

This process required modeling of the upstream fermentation process in Excel, whereas 

the downstream filtration and crystallization processes were modeled in ASPEN Plus v10. Our 

team first modeled the upstream batch process with SuperPro Designer v7.5; however, due to the 

lack of kinetic information, it was more appropriate to model the process stoichiometry in Excel. 

Our team then used ASPEN Plus v10 to model the entire continuous downstream process 

consisting of filtration and crystallization. In order to account for non-ideal properties in the 

simulation, the non-random two-liquid model (NRTL) was used. Following a guide to choose the 

correct model from​ Separation Process Engineering​ written by Wankat, NRTL was chosen 

because of the presence of water as a second liquid phase, the higher molecular weight 

compounds present in our process, and the polar interactions that exist between the 

compounds.​11.6​ Our process consists of solid, liquid and gaseous interactions. For example, 

DDDA product is recovered as a solid, the slurry entering the crystallization unit is in the liquid 

phase, and the ethyl acetate is in the vapor phase after being evaporated from the crystallization 
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unit. Because of all of these considerations, the equations of state generated by the NRTL model 

most accurately match and represent the phase equilibria considerations in our process.​11.7 

The downstream design simulation is broken up into a filtration and crystallization 

section. The filtration section mainly consists of four rotary drum filters and an evaporator in 

order to separate out water and biomass from the mixture and recover DDDA into the ethyl 

acetate stream; the final stream leaving this ASPEN simulation thus contains diacids solubilized 

in ethyl acetate. Primarily, the four rotary drum filters are modeled by SSplit blocks. The first 

SSplit block B1 models two rotary drum filters in series, in which water is separated out of the 

incoming stream. The evaporator modeled by Flash2 block B2 is then necessary to remove all of 

the remaining water after the first SSplit block. The heat exchanger used to model the heating up 

of the ethyl acetate temperature to its optimal temperature is modeled by the Heater block B11. 

The RStoic block B4 is used to model the solubilization of diacids into the ethyl acetate. The last 

two SSplit blocks B5 and B7  then effectively separate the biomass out of the process and help 

recover any DDDA that did not solubilize into the ethyl acetate in the previous steps.  

The operating conditions for the rotary filters and the incoming ethyl acetate streams are 

determined by the utilization of design specifications. The vacuum rotary drum filter is set to 

operate so that the resulting wet cake contains 30% water by mass flow. The fresh ethyl acetate 

stream is set to feed at a rate that will allow the combined ethyl acetate stream to be at a mass 

flow rate that is seven times the flow of the solubilized diacids. This allows our team to control 

for the solubility of diacids in the ethyl acetate stream.  
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The downstream crystallization portion mainly is modeled by an initial evaporation stage, 

an additional evaporation stage, a melting stage, a filtration step, and a cooling step. The primary 

evaporative crystallization step is modeled mainly by RStoic block B1, Flash2 blocks B3 and B9 

and SSplit block B7. These blocks collectively model the evaporation of most of the ethyl acetate 

in the process and the subsequent crystallization of the DDDA and other diacids. Additionally, 

Flash2 block B10 accounts for the condensation of the ethyl acetate vapor into liquid so that it 

may be recycled earlier in the upstream filtration process. The next step contains another 

evaporation process, in which the remaining ethyl acetate is vaporized from the remaining wet 

cake of diacids. This process is modeled primarily by Flash2 blocks B13 and B14. After all of 

the ethyl acetate is separated from the solid diacids, it is essential to separate DDDA from the 

remaining diacids. This is depicted by the melt tank stage, in which RStoic block B18 models the 

phase change of DDDA from solid to liquid. The tank is at a temperature in between the melting 

point of DDDA and the other three diacids, which allows for the melting of solid DDDA into a 

liquid. Next, the direct-heat rotary drum filter is modeled by SSplit block B20, which separates 

the liquid DDDA from the rest of the diacids which are in solid form. Lastly, the flaker is 

modeled by RStoic block B24. The main purpose of this block is to cool the DDDA liquid into a 

solid to recover it as a final solid product. The reactor is set at 60​°C. In addition to these main 

blocks, there are several other pumps throughout the process to carry the streams through pipes. 

These pipes are all operating at 3 bar.  

Operating conditions for the evaporative crystallizers were determined by utilization of 

design specifications and specifying the temperature. The evaporative crystallizer blocks were 

modeled so that the resulting slurry contained 25% solid and 75% liquid ethyl acetate, in order 
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for the mixture to be transported. The temperature was also specified to be 86 °C to be above the 

boiling point of ethyl acetate and ensure evaporation of the substance. 
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Section 12 

Process Flow Diagrams and Material Balance 
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The process flow diagrams presented in the below Figures illustrate the process of 

DDDA production and purification. Figures 12.1 through to 12.5 illustrate the batch-wise 

production of biomass and DDDA and associated media sterilization process. Figures 12.1-12.3 

shows a closeup of a single fermentation train, including all equipment required for a single seed 

fermenter and pair of production fermenters. Figures 12.3-12.4 indicate how these batches are 

scheduled and integrated into a continuous downstream purification process. Figures 12.6-12.7 

outline the downstream purification and crystallization of DDDA. Associated Tables outlining 

flow rate information are also included. 
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Section 13 

Process Description 
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Section 13.1: Feed & Feed Storage 

Storage tanks are employed in order to ensure adequate supply of water and feedstock to 

the fermentation process. The storage tanks were sized in such a way to ensure a one and a half 

days supply of water, glucose solution, and palm oil to the process. This sizing ensures that with 

a 24 hour cycle time, the storage tanks should never be much more than 50% depleted. This is 

vital for ensuring that the annual batch goal is not affected by a shortage of available feedstock to 

the  fermenters. All feedstocks are mixed prior to feed to the fermenter in order to ensure 

homogenous distribution of metabolites. All fermenters are filled prior to inoculation and are 

supplied with the appropriate quantities of media and salts. See the scheduling Gantt chart in 

Figure 12.5 for more information around the staggered nature of the batch feeding.  

Section 13.2: Growth Fermenters 

The fermentation process begins with the loading of 2.0 kg of genetically modified 

Candida sp.​ yeast with appropriate media into the 1 m​3 ​fermenter. For the purposes of this report, 

this supply of starting biomass is assumed to be an upfront cost of lab scale production in rotary 

flasks that does not factor into plant-scale production. This biomass is inoculated into a 

continuously-agitated fermenter with a cooling jacket to ensure a stable temperature of 37°C and 

adequate aeration of the vessel. Ambient air passes continuously through a multistage air 

compressor at a rate of 34 m​3​/hr. This equates to just upwards of 0.57 VVM and is in line with 

lab scale aeration rates outlined in patent material. These flow rate were analyzed to ensure 

adequate supply of solubilized oxygen for conversion by the yeast strain; ten times the required 

stoichiometric requirement of oxygen was bubbled into the fermenter at the advice of industry 
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consultants. Biomass was considered to act as a biocatalyst and oxygen and substrate conversion 

rates were determined to be within expected ranges for the yeast strain selected. Based on 

lab-scale patent information, the feed concentration of solubilized glucose fed was 70.5 g/L.​13.1 

This supply was expected to be nearly fully depleted at the onset of unloading from the current 

tank to the loading of the next growth fermenter. 

 These conditions, as well as the feedstock and air flow rates were maintained for each 

subsequent growth fermenter. That is, each ten times scale up of the fermenter was accompanied 

by a ten times scale up of the ambient air and glucose feed. The 1m​3 ​growth fermenter, as well as 

the 10m​3​ and 100m​3 ​growth fermenter, has a holding time of 24 hours and produces biomass, 

carbon dioxide, and water as outlined in Section 10.1. The growth rates in each of the fermenters 

fell within the expected specific growth rate range (0.4-0.6 hr​-1​) for yeast strains. In addition to 

the 24-hour fermentation time, the Gantt chart in Figure 12.5 accounts for the loading, unloading, 

and cleaning/steaming time for each fermenter.  The heat produced as a product of aerobic 

combustion is managed by cooling jackets supplied with chilled water. This is vital for ensuring 

adequate temperature control on vessels due to the relative fragility of the genetically altered 

yeast strain used. Each batch, these chilled water jackets remove, 3.6 kW, 35.9 kW, and 358.9 

kW of heat from the 1m​3​, 10m​3​, and 100m​3​ fermenter respectively. These three fermenters 

cumulative produce 3,608 kg for feed to the production fermenter. This mass, along with an 

accompanying 83,295 kg of fermentation broth, is then pumped into the production fermenter for 

conversion of palm oil feedstock into diacid feed stock. As shown in Figure 12.4 and Figure 

12.5, two of these growth trains provide biomass to three production fermenter trains each. This 
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is made possible due to the relative holding time of the growth fermenters compared to the 

production fermenters.  

Section 13.3: Production Fermenters 

Each 500 m​3​ production fermenter is inoculated with 3,608 kg of cell mass supplied by a 

100 m​3 ​growth fermenter. Using pH control, these genetically engineered yeast cells can be 

induced to convert carbon feed stocks into specific metabolites.​13.2​ As seen in patent data, long 

chain fatty acids such as palm oil can be metabolized into extracellular diacid metabolites as a 

product of pH induction to more basic conditions.​13.3​ Keeping  in line with lab scale reports, 

conversion to biomass is bypassed within the production fermenter and the cells are modeled to 

exclusively convert palmitic triglyceride to diacids, carbon dioxide, and water as outlined in 

Section 10.2. The fermentation holding time is approximately 120 hours, over which ambient air 

is fed at approximately 0.6 VVM (See Table 12.2). Similarly to the growth fermenters, the 

feedstock/water mixture is continuously agitated and bubble in order to provide adequate mixing. 

This is especially important for the palm oil/water interface due to their low solubility in each 

other. For the purposes of modeling the fatty acid conversion within the fermenter, it is presumed 

that the mass transfer interface between the yeast cell and the feedstock is adequate for full 

conversion of palm oil during the 120 hour fermentation period. Further research to validate this 

interfacial assumption should be done prior to project implementation. Should the palm oil not 

fully be consumed, it is reasonable to assume, due to their relative specific gravities that 

unconverted palm oil could be skimmed off the surge tank for recycle. After fermentation, the 

diacid-rich broth of the six production trains is pumped to a surge tank for continuous 

downstream filtration. These fermentation trains are scheduled in such a way that the surge tank 
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is sized to accommodate two full batches while as the same time discharging broth at a rate of 

one batch per 24 hours.  This allows for accumulation variability and adds a volume buffer 

should upstream or downstream complications arise.  

Section 13.4: Separations/Filtration 

The effluent stream from Section 300 is seen as a slurry and enters section 400 to remove 

water and biomass. In practice, there is a high possibility the slurry contains monoacids and 

hydroxy acids in addition to the biomass and diacids impurities. More data and equipment is 

needed to remove all these impurities so for simplicity, it is assumed biomass, adipic acid (C6), 

suberic acid (C8), and sebacic acid (C10) are the only impurities that need to be filtered from the 

DDDA product.  

Stream 1 is split evenly into two vacuum rotary drum filters. The drum filters collectively 

remove 11,734 kg/hr of water out of the initial 12,822 kg/hr. In practice, a sample of the slurry is 

tested to optimize what size drum and material is needed to perform the necessary filtration. 

These drums can also be accompanied with a filter aid (diatomaceous earth or perlite) but we 

have chosen not to utilize a filter aid due to the unknown effects of filter resistance, cake 

resistance, and cake thickness.​13.4​ The drums also remove a small amount of biomass and diacids, 

0.7 kg/hr and 12 kg/hr respectively. The diacids lost will try to be recovered further downstream 

in the centrifuges. Stream 2 and Stream 3 are recombined into Stream 4 and are now seen as a 

wet cake. The wet cake is transported on a conveyor through an evaporator where it removes the 

remaining 1,088 kg/hr of water (Stream 5). The now dried cake (Stream 6) is transported into a 

mixing vessel to undergo dissolution. 
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    Stream 7 is introduced into Stream 6 in accordance with the design specifications 

explained in Section 6.4. The ethyl acetate solubilizes DDDA and other diacids leaving the 

biomass as the only solid left in the stream to be filtered A similar process occurs between 

streams 11 and 15. Stream 7 is the result of the splitting of stream 14. The split on stream 14 is 

0.99 to stream 7 and 0.01 to stream 15. The ethyl acetate in the process is a mix of the recycle 

stream from section 500 (Stream 24) and an external feed passing through a heat exchanger 

(Streams 12, 13). The pure ethyl acetate streams in this process after the heat exchanger are all at 

70​°​C (Streams 7, 13, 14, 15, 24). 1,469.9 kg/hr of steam is required at 186 C to heat 737.26 kg/hr 

of ethyl acetate from 25​°​C (Stream 12) to 70​°​C (Stream 13). The steam temperature is reduced 

163​°​C after passing through the heat exchanger. Stream 14 is split to add ethyl acetate into 

streams 6 and 11 before centrifugation.  

After the dissolution step streams 8 and 16 are passed through a centrifugal pump 

to prepare for centrifugation. Streams 9 goes through a large decanter centrifuge that separates 

99% of the product DDDA from the biomass. Specifically, 2,126.6 kg/hr of DDDA is recovered 

from the initial 2,137.8 kg/hr. The lost 11.2 kg/hr of DDDA goes through another dissolution 

step (stream 15) and passes through a similar smaller centrifugal pump (stream 16). Stream 17, 

the stream entering the decanter centrifuge effectively separates similarly to stream 9. The 

centrifuge that stream 17 goes through is much smaller than the centrifuge stream 9 goes through 

due to the lower flow rate. The total flow rate of stream 9 is 19154.5 kg/hr while stream 17 is 

336 kg/hr. It is assumed both centrifuges operate equally efficient despite their different sizes.  

The larger decanter centrifuges separates stream 9 into stream 10 (liquid outlet) and 

stream 11 (solid outlet). The liquid outlet has ethyl acetate and now liquid DDDA and other 
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diacids. The solid outlet has all the biomass and a small percentage of DDDA and diacids. The 

option to recover this small percentage of diacids are considered due to the losses in the vacuum 

rotary drum filters and the market price DDDA and its byproducts. The solid biomass in stream 

11 is fed to the minor mixing tank in order to solubilize any remaining  DDDA before treatment 

in the smaller decanter centrifuge. The liquid outlets of both centrifuges (Stream 10, 18) are 

combined (Stream 19) and sent downstream to the crystallization process (section 500). Stream 

19 has a flow rate of 19,090 kg/hr. This flow rate is required to solubilize the 2,132 kg/hr of 

DDDA that is leaving this process. The solubility of DDDA in this stream is  upwards of 130 

g/L. This is comparable to available patent regarding polycarboxylic acid purification 

techniques.​13.5 

Section 13.5: Crystallization 

The effluent stream from Section 400, Stream 19, enters Section 500 in order to initiate 

crystallization and separate the DDDA from the ethyl acetate and three other diacids. Stream 19 

enters the kettle evaporator and is heated to 86​°C​ to evaporate 16,622 kg/hr ethyl acetate in 

Stream 20 and send forward a 189,524 kg/hr mixture in Stream 21 containing crystallized 

DDDA, suberic acid, sebacic acid and adipic acid in ethyl acetate. A temperature of 86​°C was 

used to ensure that the ethyl acetate in the mixture would sufficiently vaporize. Stream 20 is then 

passed through a condenser in order to liquify the ethyl acetate into Stream 22 to allow it to be 

recycled into Section 400 for reuse in filtration. Prior to recycling, Stream 22 first is combined 

with Stream 40, which will be discussed later in this section; these two streams combine into 

Stream 41 which is stored in a storage tan​k. The storage tank is maintained at 70°C and ambient 

pressure in order to ensure the ethyl acetate remains in liquid form. Each tank is constructed so 
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that it can contain two days flow to account for variability in upstream and downstream 

production. The stream effluent, Stream 23, fro​m the storage tank is then passed through a pump 

at 3 bar, and this resulting Stream 24 is sent to Section 400 for recycle in filtration section.  

Stream 21 is then split into two streams, ​95% of  which is recycled to the kettle 

evaporator via Stream 25, and 5% continues onto the rotary filter via Stream 26. The purpose of 

the recycle stream is to provide sufficient liquid to allow for 25% solids slurry in the effluent of 

the kettle evaporator (Stream 21) so that it can transport co-product diacid solids. The recycle is 

also present to provide a stream to pass the heat exchanger and heat the kettle evaporator. Next, 

the rotary filter is intended as a secondary method to further separate out ethyl acetate before the 

slurry is sent to the diacid dryer, recuing energy requirements needed to vaporize off more ethyl 

acetate. Leaving the rotary filter as supernatant, there is 5,528 kg/hr of ethyl acetate that is 

recycled via Stream 27 into the kettle evaporator. The purpose of this recycle stream is also to 

provide sufficient liquid to allow for a 25% solids slurry in the effluent of the kettle evaporator 

(Stream 21) so that it can transport co-product diacid solids. Next, Stream 28 also leaves the 

rotary filter and contains a 3,948 kg/hr slurry of diacids and ethyl acetate which continues onto 

the diacid dryer. 

Stream 28 continues to the diacid dryer, where it is at a temperature of 115​°C​ and 

pressure of 1 bar. This diacid dryer is present in order to evaporate off the remaining ethyl 

acetate from the wet cake of solid diacids. The vaporized ethyl acetate leaves in Stream 38, most 

of which is combined with nitrogen gas in Stream 36 to create Stream 37. This incoming stream 

commences the drying operation to evaporate the remaining ethyl acetate from the wet cake; it is 
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used as a gentle nitrogen sweep to help keep the ethyl acetate flowing out of the dryer. The dry 

cake of solid diacids leaves the diacid dryer in Stream 29.  

The melt tank is intended to take advantage of the diacid melting points in order to 

separate the DDDA from the other diacids. The melt tank is kept at a temperature of 135​°C​, 

which, as mentioned previously, is maintained because it is between the melting points of DDDA 

and the other diacids (see Table 10.1).Then, Stream 28, the slurry of solid diacids in liquid 

DDDA, is pumped forward to the rotary filter in order to separate the two phases. The rotary 

filter results in two streams, Stream 31 and Stream 32. Stream 31, containing the solidified diacid 

impurities leaves the system. Stream 32 leaves the rotary filter as liquid DDDA. It is split into 

Stream 34 that is then sent forward to the flaker in order to chill the liquid DDDA into solid 

DDDA and Stream 33 which is recycled to the melt tank in order to allow for enough liquid to 

carry the solid co-product diacids. Stream 34 enters the flaker as a liquid and exits as solidified 

DDDA in Stream 35 by maintaining the stream at a temperature of 60​°C. The flow rate of solid 

DDDA leaving the flaker for packaging and distribution is 1974 kg/hr. These meets the yearly 

production goal of 14,000 MT/year assuming full plant capacity and a 300 day production year.  
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Section 14 

Energy Balance and Utility Requirements 
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Section 14.1: Process Utilities 

Table 14.1: Net utility requirements per batch/hour (where applicable) and per operating year by process unit and 
utility type 

 

Utility Process Equipment ID Quantity  
(per hour) 

Quantity 
(per year) 

Quantity 
(Annual Cost) 

Electricity P-001 42.9 (kWh) 154,486 (kW) $10,814 

($0.07/kWh) P-002 4.5 16,043 $1,123 

 P-003 47.4 170,529 $11,937 

 P-004 178.0 640,939 $44,866 

 P-005 41.0 147,673 $10,337 

 P-006 219.1 788,612 $55,203 

( 2 fermentation trains) P-101 1.8 x2 6,466 x2 $905 

( 2 fermentation trains) P-102 18.0 x2 64,937 x2 $9,091  

( 2 fermentation trains) P-204 180.4 x2 649,619 x2 $90,947 

( 6 fermentation trains) P-205 872.4 x6 3,140,706 x6 $1,319,097 

 P-301 191.4 688,912 $48,224 

 P-401 238.6 859,105 $60,137 

 P-402 4.2 15,070 $1,055 

 P-501 2,361.2 8,500,357 $595,025 

 P-502 49.2 177,077 $12,395 

 P-503 199.1 716,699 $50,169 

 P-504 54.1 194,795 $13,636 

( 2 fermentation trains) CP-101 3.4 x2 12,402 x2 $1,736 

( 2 fermentation trains) CP-102 34.6 x2 124,667 x2 $17,453 

( 2 fermentation trains) CP-103 346.3 x2 1,246,561x2 $174,519 

( 6 fermentation trains) CP-201 979.2 x6 6,119,424 x6 $2,570,158 

 CP-501 979.2 3,523,996 $246,750 

 M-001 3.7 13,482 $944 

 M-002 17.3 62,346 $4,364 

 M-401 3,086.6 11,111,679 $777,818 

 M-402 0.7 2,685 $188 

 RF-401 8.2 29,530 $2,067 
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 RF-402 8.2 29,530 $2,067 

 RF-501 8.2 29,530 $2,067 

  RF-502 3.0 10,738 $752 

 CB-401 11.2 40,268 $2,819 

 CB-402 11.2 40,268 $2,819 

 CB-501 7.5 26,845 $1,879 

 CF-401 14.9 53,690 $3,758 

 CF-402 11.2 40,268 $2,819 

 FL-501 8.9 32,214 $2,255  

 Total   $6,152,192  

Nitrogen RD-501 7.33 (lb/hr) 52,780 (lb/year) $590  

($0.01/lb) Total   $590  

Low Pressure Steam E-001 183 (lb/hr) 1,319,137 (lb/year) $7,915 

(50 psig) E-002 2,549 18,352,002 $110,112 

($7/1000 lb) E-401 2,850 20,517,039 $123,102 

 E-402 70 506,483 $3,039 

 KE-501/E-501 6,022 43,355,801 $260,135 

 RD-501 632 4,551,280 $27,308 

 MT-501 360  2,588,613  $15,532 

 Total   $547,142  

Chilled Water F-101 (x2) 98 (gal/hr) 7.03E+05 (gal/year) $70 

(gal) F-102 (x2) 980 7.06E+06 $706 

($0.1/1000 gal) F-103 (x2) 9,803 7.06E+07 $7058 

 F-201 (x6) 48,120 3.46E+08 $34647 

 C-501 43,073 3.10E+08 $31013 

 C-502 5,010  3.61E+07 $3607 

 Total (cost w/duplicates)  $258,168  
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Section 15 

 Equipment List and Unit Descriptions  
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Section 15.1: Seed/Growth Fermenters 

F-101, F-102 & F-103 

Each seed fermenter (1m​3​) and both the small and large growth fermenters (10m​3​ and 

100m​3​) were designed to ensure appropriate scale-up to avoid stationary phase cell growth. 

Following specifications in the patented processes, the growth retention time in each fermenter 

was set to 24 hours.​15.1​ This is in line with the the accepted specific growth rate of 0.5 hr​-1​ and 

results in an approximate 10 times scale up in total biomass. The working volume for each 

fermenter was set to 85% of its total capacity and was sized in such as way that the water 

produced in fermentation did not exceed these threshold. The glucose feedstock was fed into the 

process at 70.5 g/L water and air was continuously feed at 0.5-0.6 VVM. The pH of the 

fermenter is maintained at 5.8 using pH control systems and NaOH salts found in the 

fermentation media. The conversational yield of glucose to biomass using the stoichiometry and 

selectivity discussed in Section 10.1 was found to be 0.62 g dry cell mass/g glucose fed. The 

exhaust gas (excess air and produced carbon dioxide) were vented to the atmosphere. 

The heat produced via metabolism of the glucose feed was calculated based upon oxygen 

consumption rates in each fermenter. The temperature of the seed fermenters were maintained at 

37°C using an appropriately sized heating jacket fed with 98 gal/hr of chilled water entering at 

7.22°C (45°F) and leaving at 15.56 (60°F). The area of the cooling jacket for the seed fermenter 

was sized and found to require 4.12 ft​2​ for appropriate heat transfer. This area supports the use of 

a jacket to maintain temperature and did not require additional cooling coils to meet required 
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heat transfer. This was found to be the case for all fermenters, and the 10 times scale up of each 

growth fermenter was associated with a 10 times scale up of associated utilities.  

The seed fermenters (F-101) are 2 feet in diameter by 14 feet tall. The first growth 

fermenters (F-102) are 4 feet in diameter by 33 feet tall. The second growth fermenters (F-103) 

are 12 feet in diameter by 33 feet tall. All fermenters are constructed of stainless steel 316 in 

order to prevent against rust and corrosion.​15.2​ The total bare module cost of the fermenters 

indicated on their Unit Specification Sheet and in the Equipment Costing Summary (Table 17.1) 

include the agitator and chilled water jackets. The combined total bare module cost for all growth 

fermenter trains is roughly $5MM. 

Section 15.2: Production Fermenters 

F-201 

In order to meet project production output, six production fermentation vessels are 

utilized. Three production fermenters are fed using a single growth fermentation train and are 

scheduled (see Figure 12.5) in such a way to produce an average of one batch per 24-hour 

period. The growth retention time for the production fermenter set to 120 hours. This increased 

length of time relative to the growth fermenters allows for the biomass present in the 500 m​3 

production vessels to consume and convert 79,000 kg/batch of palm oil into the diacid products 

outlined in Section 10.2. The conversion of palm oil to DDDA was determined to be 0.75 g 

DDDA/g palm oil fed and produced a diacid yield of approximately 130 g/L of diacid in the 

fermentation broth. This represents a productivity of 0.9 g DDDA/L-hr over the 144 run time for 
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a single production fermenter. This is in line with the expected fermentor productivity of 1 

g/L-hr indicated by industry consultants.  

Similar to the growth fermenters, the production fermenters were sized to ensure working 

volume that did not exceed 85% total capacity. The palm oil feedstock was fed into the process 

at 120.5 g/L water and air was continuously feed at 0.5-0.6 VVM. The pH of the fermenter is 

maintained at 6.0 using pH control systems and NaOH salts found in the fermentation media. 

The exhaust gas (excess air and produced carbon dioxide) were vented to the atmosphere. 

The heat produced via metabolism of the glucose feed was calculated based upon oxygen 

consumption rates in each fermenter. The temperature of the production fermenters were 

maintained at 37°C using an appropriately sized heating jacket fed with 48,120 gal/hr of chilled 

water entering at 7.22°C (45°F) and leaving at 15.56 (60°F). The area of the cooling jacket for 

the production fermenter was sized and found to require 2,814 ft​2​ for appropriate heat transfer. 

This area supports the use of a jacket to maintain temperature and did not require additional 

cooling coils to meet required heat transfer. Each production fermenter (F-201) is 18.6 feet in 

diameter and 65 feet tall. All fermenters are constructed of stainless steel 316 in order to prevent 

against rust and corrosion.​15.3​ The total bare module cost for each production fermenter includes 

the associated cost of its agitator and chilled water jackets. As indicated in the Unit Specification 

Sheet and in the Equipment Costing Summary (Table 17.1), each production fermenter costs 

$5.9MM. The combined total bare module cost for all production fermenter trains is 

approximately $35.4MM. 

 

77 



 

Section 15.3: Air Compressors 

CP-101, CP-102, CP-103, & CP-201 

The air compressors for the fermenters are required to feed air into each fermenter at 3.0 

bar absolute. Pressure losses located between the air compressors and fermenters due piping, 

control systems, filters, and the air spargers are accounted for and are estimated to represent a 1 

bar pressure drop. This results in each compressor to have a requirement of 4.5 bar. Each 

compressor was modeled as a multistage (two-stage) compressor. The air compressors in the 

fermentation sections serve to sterilize and feed their associated volumetric flow rate of air into 

the fermentation vessels via the agitators. In this section, air compressors CP-101, CP-102, 

CP-103, and CP-201 each serviced two fermentation trains. Thus, each of these pumps was 

costed for requiring twice the amount of utilities. In total, CP-101 requires 6.9 kWh, CP-102 

requires 69.3 kWh, and CP-103 requires 692.5 kWh. This utility requirement is associated to the 

required 10 times volumetric scale up of flow of air sparged into each fermentation tank. 

Similarly, Pump-201 services the six production fermentation trains and was costed for requiring 

six times the amount of utilities for a single production fermenter. In total, P-205 requires 4,000 

kWh. Total, compressors account for approximately $3.5MM annually in utilities.  Stainless steel 

316 was selected for reliability and resistance to weathering.​15.4 

Section 15.4: Mixers 

M-001 & M-002 

These two mixing vessels create a stream of water and glucose (M-001) and palm oil and 

water (M-002). The mixing vessels were sized and cost as pressure vessels with agitators made 
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of stainless steel due to high corrosion and rust resistance.​15.5​ The maximum volume in M-001 

and M-002 is 500 gallons and 2300 gallons respectively. M-001 is 7 feet in diameter, 33 feet in 

length, and costs $21,6000. M-002 is 10 feet in diameter, 40 feet in length, and costs $3,84,500.  

M-401 & M-402 

These two mixing vessels are used to solubilize the diacids from the biomass. The mixing 

vessels contain diacid and ethyl acetate at 70​°C per operation recommendations.​15.6​ These mixing 

vessels also contain agitators to ensure the proficient mixing of the cakes. The vessels were sized 

and cost as vertical pressure vessels made of stainless steel. Both of these mixing tanks will be 

constructed out of stainless steel to avoid corrosion from the heated ethyl acetate.​15.7​ The 

maximum volume in M-401 and M-402 is 100 gallons and 2 gallons respectively. The M-401 is 

3.3 feet in diameter, 16.4 feet in length, and costs  $66,700. M-402 is 2 feet in diameter, 8 feet in 

length, and costs $28,430.  

Section 15.5: Storage Vessels 

TK-001, TK-002, TK-003, TK-004, TK-501 

Upstream storage vessels TK-001, TK-002, TK-003, and TK-004 were all sized in order 

to ensure one and a half days supply of water, glucose solution, and palm oil. These sizes were 

based upon the required volumes of associated feed required for the three growth ferments 

(F-101, F-102, and F-103) and the production fermenter (F-201) and the cycle time of 24 hours. 

The total storage of the four upstream tanks are 130m​3​, 15m​3​, 530 m​3​, and 145 m​3​ respectively. 

Each tank was constructed from 316 stainless steel to ensure minimal corrosion.​15.8​ TK-501, the 

ethyl acetate recycle tank, is insulated and sized to feed 15,979 kg/hr of ethyl acetate back to the 
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dissolution process in M-401. This vessel assumes a retention time of 30 min and is 7.7 feet in 

diameter and  77 feet in height. The cost of all associated storage tanks in this plant is just under 

$20MM. 

Section 15.6: Rotary Drum 

RF 401 & RF 402 

The purpose of these two drums is to remove 70% of the water from the incoming slurry. 

Professor Vrana recommended a capacity of 6,000 lb solids/ft​2​/day to calculate the size of the 

drums. Although only a fraction of the drum is full at a given time the whole drum area is used 

for estimated size. Calculations can be found in Appendix A. The filtering area was found to be 

26 ft​2​. Two drums made of stainless steel will be purchased that meet the criteria of the 

calculated filter area. In the event of failure, the drums are large enough where one drum can 

remove the water from the slurry. Alar Corp. model AV330 was selected for these two drums.​15.9 

Because this model is a self-cleaning rotary filter, dead time to clean the drum is not considered. 

This model drum cost is $116,900.  

RF-501 

The purpose of this drum is to remove a majority of ethyl acetate from the stream to 

purify the DDDA before crystallization. A capacity of 6,000 lb solids/ft​2​/day was used to 

calculate the size of the drum. The filtering area was found to be 35.4 ft​2​ and Alar Corp model 

AV340 was selected for this drum.​15.10​ The cost of this drum is $127,700. 
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RF 502 

The purpose of this drum is to remove liquid DDDA from the other diacid impurities. 

Similarly to RF-401 and RF-402, a capacity of 6,000 lb solids/ft​2​/day was used to calculate the 

size of the drum. See the Appendix for this calculation. The filtering area was found to be 2.4 ft​2 

and Alar Corp model AV110 was selected for this drum.​15.11​ This model drum cost is $114,850. 

Section 15.7: Centrifuges 

CF-401 & CF-402 

These two centrifuges are used to filter off the biomass from the diacids. The streams 

introduced into these centrifuges contain diacids in the liquid state due to dissolution as well as 

solid biomass. The models for the centrifuges were selected based upon a volumetric flow rate 

capacity. The volumetric flow rate into CF-401 is 97 gpm so a centrifuge with capacity of 120 

gpm was selected. The model for CF-401 is Alfa Laval NX 418 Decanter.​15.12​ Similarly, the 

volumetric flow rate into CF-402 is 1.5 gpm so a centrifuge with a capacity of 40 gpm was 

selected. The 40 gpm capacity is the smallest decanter centrifuge Dolfin Centrifuge provides.​15.13 

The model for CF-402 is Alfa Laval NX 314 Decanter. The costs of CF-401 and CF-402 are 

$312,600 and $126,200 respectively. 

Section 15.8: Heat Exchangers 

E-001 & E-002 

These two heat exchangers heat streams from 25​°C to 37°C, the recommended 

fermentation temperature.​15.14​ The design of the heat exchangers is fixed head shell-and-tube. 
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Both sides are constructed with stainless steel to prevent rusting from the high temperature 

steam.​15.15​ E-001 heats a stream containing water and glucose and E-002 heats a stream 

containing water and palm oil. The steam required for both of these heat exchangers is calculated 

as utility costs and can be found in Appendix A. The costs of E-001 and E-002 are $88,100 and 

$38,900 respectively.  

E-402 

The purpose of this heat exchanger is to heat the ethyl acetate from 25​°C ​to 70 ​°C​ so the 

diacids can be dissolved in mixing vessel M-401 and M-402. This is accomplished with a fixed- 

head shell-and-tube heat exchanger. Both sides were constructed of stainless steel to prevent rust. 

Steam at 168​°​C would be introduced on the shell side of the exchanger. The heat duty required to 

heat ethyl acetate was calculated was found to be 65000 BTU/hr. The log mean temperature 

calculated was found to be 126.7 ​°​C. Assuming an overall heat transfer coefficient of 120 

BTU/hr-ft​2​-​°​F the heating area required was found to be 2.4 ft​2​. The cost of this equipment is 

$150,800. 

Section 15.9: Kettle Evaporator 

KE-501 

The kettle evaporator KE-501 is intended to evaporate ethyl acetate from the mixture of 

diacids in ethyl acetate and to correspondingly crystallize the diacids. The kettle evaporator was 

maintained at 86​°C to be above the boiling point of ethyl acetate. In addition, the evaporator was 

designed on ASPEN to result in an effluent stream that is at least 75% liquid ethyl acetate in 

order to allow for the transport of diacid solids. This was designed on the advice of industry 
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consultants. The evaporator was costed as a shell-and-tube heat exchanger. The total heat duty 

required for evaporation of ethyl acetate was determined to be 1,629 kW and the log mean 

temperature was found to be 174°​F.​ Taking these two values into account and ​assuming an 

overall heat transfer coefficient of 120 BTU/hr-ft​2​-​°​F, the heating area required was found to be 

267 ft​2​.​ 6,022 lb/hr of low pressure 50 psig steam was condensed at 137°​C​ in order to meet the 

heat duty required. The material of construction used was stainless steel because of its high 

resistance to rusting and corrosion. The calculations for heat transfer associated with this piece of 

equipment can be found in Appendix A and the total fixed and variable costs can be found in 

Sections 17 and 14 respectively. 

Section 15.10: Diacid Dryer 

RD-501 

The purpose of the diacid dryer is to evaporate the remaining ethyl acetate from the wet 

cake of diacids. The dryer is maintained at a temperature of​ 115​°C and atmospheric pressure. 

The diacid dryer was modeled as a direct-heat rotary dryer and the cost was determined based on 

guidelines in Chapter 16 of ​Seider et. al.​15.16​ ​The total heat duty required to evaporate the ethyl 

acetate was 171 kW and the heat transfer coefficient was ​120 BTU/hr-ft​2​-​°​F. ​Based on these 

values, the surface area and log mean temperature were found to be 28 ​ft​2​ and 173°​F​. In addition, 

632 lb/hr of 50 psig low pressure steam were supplied to meet the heat duty required for 

evaporation. These calculations can be found in Appendix A. Lastly, the material of construction 

was stainless steel because of its high resistance to corrosion and rusting.​15.17  
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Section 15.11: Melting Tank 

MT-501 

The input to the melting tank consists of dry diacid solids. The purpose of the melting 

tank is to melt the solid DDDA into liquid, while retaining the rest of the diacids as solids. In 

order to maintain a temperature in between the diacid melting points, the melting tank is 

maintained at 135°C and 3.4 bar. Based on the advice of Professor Vrana, the melting tank was 

modeled as a vertical pressure vessel with an agitator. The diameter and length of the pressure 

vessel were determined to be 1 and 10 meters based on a volumetric flow rate through the vessel 

of 3.8 m​3​/hr and a length to diameter ratio of 10:1 . The agitator was modeled as a turbine and 

was also costed according to the volumetric flow rate through the tank and a residence time of 30 

minutes. In order to maintain the melting tank at the specified conditions, 360 lb/hr of 50 psig 

low pressure steam were utilized. Lastly, the material of construction was chosen to be stainless 

steel 316 because of the high resistance to corrosion and rusting.​15.18 

Section 15.12: Flaker 

FL-501 

The purpose of the flaker was to allow the liquid DDDA to cool to solid DDDA in order 

to recover it as a final product. The flaker was maintained at a temperature of 60°C and 

atmospheric pressure in order to ensure that the equipment was appropriately below the freezing 

point of DDDA. Based on the advice of Professor Vrana, the flaker was modeled as a conveyor 

belt with a bare module factor of 10 in order to account for the costs all of the peripheral 

equipment. The volumetric flow rate of solids through the belt was 2.04 m​3​/hr and a residence 
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time of 15 minutes was assumed. The length and width of the conveyor belt were then 

determined to be 46 ft and 4.6 ft respectively based on the volumetric flow rate, the residence 

time, and a length to width ratio of 10:1. Lastly, the electrical requirement was associated with 

the motors to run the flaker and was approximated to be 8.9 kWh.  

Section 15.13: Conveyor Belt 

CB-401, CB-402 & CB-501 

The three conveyor belts used in this process are CB-401, CB-402 and CB-501. These 

conveyor belts are used in the transportation of solids. CB-501 is used in in order to transfer the 

dry cake of diacids from the diacid dryer to the melt tank. It was maintained at 115​°C​ and 

atmospheric pressure. CB-401 is used to transfer the diacid cake from the rotary drums to the 

evaporator and CB-402 is used to transfer the cake from the evaporator the mixer in the filtration 

process. CB-401 was designed at a temperature of 37​°C and pressure of 3.43 bar. CB-402 

transports evaporator effluent and thus was designed to operate at a temperature of 70°C and 

atmospheric pressure. ​The conveyor belts were costed according to Chapter 16 of ​Seider et. al, 

2017​; a residence time of 15 minutes was assumed in order to find the length and width of each 

belt.​15.19​ These calculations can be found in Appendix A. The electrical requirement for CB-501, 

CB-401 and CB-402 were found to be 7.5 kWh, 11.2 kWh and 11.2 kWh respectively. 

Section 15.14: Pumps 

P-001, P-002, P-003, P-004, P-005, P-006, P-101, P-102, P-204, P-205 & P-301 

The pumps involved in fermentation were intended to maintain a specific flow rate of 

fluid through the pipes. In this section, Pumps P-101, P-102 and P-204 each serviced two 
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fermentation trains. Thus, each of these pumps was costed for requiring twice the amount of 

utilities. In total, P-101 requires 3.6 kWh, P-102 requires 36 kWh and P-204 requires 361 kWh. 

Similarly, Pump-205 serviced six fermentation trains and was costed for requiring six times the 

amount of utilities. In total, P-205 requires 5,234 kWh. A material of stainless steel 316 was 

selected as it is more rust and corrosion resistant than most metals. In order to cost the pumps, 

guidelines in ​Seider et. al​ were followed and centrifugal pump of Horizontal Split Case (HSC) 

with 1 stage and a shaft rpm of 3,600 was chosen.​15.20​ The total fixed and variable costs of each 

pump are outlined in sections 17 and 14 respectively.  

P-401 & P-402 

The pumps P-401 and P-402 were also intended to maintain a specific flow rate of fluid 

through the pipes in the filtration portion of the process. Pump P-401 was modeled with ASPEN 

to maintain a flow of 84 gpm using 239 kWh of electricity.  Pump P-402 was also modeled with 

ASPEN to maintain a flow rate of 1.5 gpm using 4.2 kWh of electricity. A material of stainless 

steel 316 was selected as it is more rust and corrosion resistant than most metals. In order to cost 

the pumps, guidelines in ​Seider et. al​ were followed and centrifugal pump of Horizontal Split 

Case (HSC) with 1 stage and a shaft rpm of 3,600 was chosen.​15.21​ The total fixed and variable 

costs of each pump are outlined in sections 17 and 14 respectively.  

P-501, P-502, P-503 & P-504 

The pumps P-501, P-502, P-503 and P-504 were intended to maintain a specific flow rate 

of fluid through the pipes using a specific amount of electricity in the crystallization portion. For 

example, pump P-503 was modeled with ASPEN to maintain a flow of 86 gpm in the 
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crystallization process using 200 kWh of electricity. A material of stainless steel 316 was 

selected as it is more rust and corrosion resistant than most metals. In order to cost the pumps, 

guidelines in ​Seider et. al​ were followed and centrifugal pump of Horizontal Split Case (HSC) 

with 1 stage and a shaft rpm of 3,600 was chosen.​15.22​ The total fixed and variable costs of each 

pump are outlined in sections 17 and 14 respectively.  
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Section 16 

Unit Specification Sheets 
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Water Storage Tank 

Identification: Item Storage Tank 

 Item No. TK-001

 No. Required 1 

Function: Store Supply Water 

Operation: Batch  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID Supply 1 

Temperature (°C)  25 

Pressure (bar)  1 

Mass Flow (kg/hr)  3444.4 

Component Mass Flow (kg/hr)   

Water  3444.4 

Glucose  0 

Palm Oil  0 

Design Data: Material of Construction:  316 Stainless 

 Diameter (ft) 8 

 Length (ft) 90 

 Total storage volume (ft​3​) 4523.9 

Purchase Cost  $482,300 

Bare Module Cost  $2,006,300 

Comments:  
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Water Storage Tank 

Identification: Item Storage Tank 

 Item No. TK-002

 No. Required 1 

Function: Store Supply Water 

Operation: Batch  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID Supply 25 

Temperature (°C)  25 

Pressure (bar)  1 

Mass Flow (kg/hr)  14290.3 

Component Mass Flow (kg/hr)   

Water  14290.3 

Glucose  0 

Palm Oil  0 

Design Data: Material of Construction:  316 Stainless 

 Diameter (ft) 13 

 Length (ft) 140 

 Total storage volume (ft​3​) 18582.5 

Purchase Cost  $1,313,200 

Bare Module Cost  $5,463,000 

Comments:  
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Glucose Solution Storage Tank 

Identification: Item Storage Tank 

 Item No. TK-003

 No. Required 1 

Function: Store Supply Glucose Solution 

Operation: Batch  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID Supply 3 

Temperature (°C)  25 

Pressure (bar)  1 

Mass Flow (kg/hr)  357.7 

Component Mass Flow (kg/hr)   

Water  107.3 

Glucose  250.4 

Palm Oil  0 

Design Data: Material of Construction:  316 Stainless 

 Diameter (ft) 4 

 Length (ft)  40 

 Total storage volume (ft​3​) 502.7 

Purchase Cost  $131,500 

Bare Module Cost  $546,900 

Comments:  
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Palm Oil Storage Tank 

Identification: Item Storage Tank 

 Item No. TK-004

 No. Required 1 

Function: Store Supply Palm Oil  

Operation: Batch  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID Supply 27 

Temperature (°C)  25 

Pressure (bar)  1 

Mass Flow (kg/hr)  3292.5 

Component Mass Flow (kg/hr)   

Water  0 

Glucose  0 

Palm Oil  3292.5 

Design Data: Material of Construction: 316 Stainless 316 Stainless 

 Diameter (ft) 8 

 Length (ft) 100 

 Total storage volume (ft​3​) 5026.5 

Purchase Cost  $508,900 

Bare Module Cost  $2,117,200 

Comments:  
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Water Pump 

Identification: Item Pump 

 Item No. P-001

 No. Required 1 

Function: Pump Water from TK-001 

Operation: Batch  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 1 2 

Temperature (°C) 25 

Pressure (bar) 1 3 

Mass Flow (kg/hr) 3444.4 

Component Mass Flow (kg/hr)   

Water 3444.4 

Glucose 0 

Palm Oil 0 

Design Data: Material of Construction:  316 Stainless 

 Head (ft) 100 

 Max Motor HP: 1560 

Cost of Utilities/year: 42.9 kWh electricity $10,800 

Purchase Cost  $12,100 

Bare Module Cost:  $39,900 

Comments:  
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Water Pump 

Identification: Item Pump 

 Item No. P-004

 No. Required 1 

Function: Pump Water from TK-002 

Operation: Batch  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 25 26 

Temperature (°C) 25 

Pressure (bar) 1 3 

Mass Flow (kg/hr) 14290.3 

Component Mass Flow (kg/hr)   

Water 14290.3 

Glucose 0 

Palm Oil 0 

Design Data: Material of Construction:  316 Stainless 

 Head (ft) 100 

 Max Motor HP: 1560 

Cost of Utilities/year: 178.0 kWh $44,900 

Purchase Cost  $8,900 

Bare Module Cost:  $29,400 

Comments:  
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Glucose Pump 

Identification: Item Pump 

 Item No. P-002

 No. Required 1 

Function: Pump Glucose Solution from TK-003 

Operation: Batch  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 3 4 

Temperature (°C) 25 

Pressure (bar) 1 3 

Mass Flow (kg/hr) 357.7 

Component Mass Flow (kg/hr)   

Water 107.3 

Glucose 250.4 

Palm Oil 0 

Design Data: Material of Construction:  316 Stainless 

 Head (ft) 100 

 Max Motor HP: 1560 

Cost of Utilities/year: 4.5 kWh $1,100 

Purchase Cost  $40,700 

Bare Module Cost:  $134,200 

Comments:  
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Palm Oil Pump 

Identification: Item Pump 

 Item No. P-005

 No. Required 1 

Function: Pump Palm Oil from TK-004 

Operation: Batch  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 27 28 

Temperature (°C) 25 

Pressure (bar) 1 3 

Mass Flow (kg/hr) 3292.5 

Component Mass Flow (kg/hr)   

Water 0 

Glucose 0 

Palm Oil 3292.5 

Design Data: Material of Construction:  316 Stainless 

 Head (ft) 100 

 Max Motor HP: 1560 

Cost of Utilities/year: 41.0 kWh $10,300 

Purchase Cost  $12,300 

Bare Module Cost:  $40,600 

Comments:  
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Growth Feed Mixing Vessel 

Identification: Item Vertical Vessel 

 Item No. M-001

 No. Required 1 

Function: Mix water and glucose solution 

Operation: Batch  

Materials Handled: Inlet Outlet 

Stream ID 2,4 5 

Temperature (°C) 25 25 

Component Mass Flow (kg/batch)   

Water 85242 85242 

Glucose 6010 6010 

   

Design Data: Material of Construct 316 Stainless 

 Vessel Diameter (ft) 7 

 Vessel Height (ft) 33 

 Final Working Volume (ft​3​) 1109.4 

 Pressure at Vessel Base (psia) 115 

 Resonance Time (hr) 0.5 

Cost of Utilities/year: 3.7 kWh $944 

Purchase Cost  $205,400 

Bare Module Cost:  $854,600 

Associated Cost:   Agitator $126,100 

Total Bare Module Cost:  $980,700 

Comments:  
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Production Feed Mixing Vessel 

Identification: Item Vertical Vessel 

 Item No. M-002

 No. Required 1 

Function: Mix Water and Palm Oil 

Operation: Batch  

Materials Handled: Inlet Outlet 

Stream ID 26,28 29 

Temperature (°C) 25  

Component Mass Flow (kg/batch)   

Water 342967 342967 

Palm Oil 79020 79020 

   

Design Data: Material of Construct 316 Stainless 

 Vessel Diameter (ft) 10 

 Vessel Height (ft) 40 

 Final Working Volume (ft​3​) 2995.5 

 Pressure at Vessel Base (psia) 115 

 Resonance Time (hr) 0.5 

Cost of Utilities/year: 17.3 kWh $4,400 

Purchase Cost  $359,900 

Bare Module Cost:  $1,497,000 

Associated Cost:   Agitator $302,000 

Total Bare Module Cost:  $1,799,000 

Comments:  
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Growth Fermenter Feed Pump 

Identification: Item Pump 

 Item No. P-003

 No. Required 1 

Function: Pump Water/Glucose Mixture to E-001 

Operation: Batch  

Type: Centrifugal  

Materials Handled: Feed (Stream Out) 

Stream ID 5 

Temperature (°C) 25 

Pressure (bar) 3 

Mass Flow (kg/hr) 3802.1 

Component Mass Flow (kg/hr)  

Water 3551.7 

Glucose 250.4 

Palm Oil 0 

Design Data: Material of Construction 316 Stainless 

 Head (ft) 100 

 Max Motor HP: 1560 

Cost of Utilities/year: 47.4 kWh $11,900 

Purchase Cost  $11,700 

Bare Module Cost:  $38,700 

Comments:  
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Production Fermenter Feed Pump 

Identification: Item Pump 

 Item No. P-006

 No. Required 1 

Function: Pump Palm Oil/Water Mixture to E-002 

Operation: Batch  

Type: Centrifugal  

Materials Handled: Feed (Stream Out) 

Stream ID 29 

Temperature (°C) 25 

Pressure (bar) 3 

Mass Flow (kg/hr) 17582.8 

Component Mass Flow (kg/hr)  

Water 14290.3 

Glucose 0 

Palm Oil 3292.5 

Design Data: Material of Construction 316 Stainless 

 Head (ft) 100 

 Max Motor HP: 1560 

Cost of Utilities/year: 219.1 kWh $55,200 

Purchase Cost  $8,800 

Bare Module Cost:  $28,900 

Comments:  
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Growth Feed Heat Exchanger 

Identification: Item Shell and tube heat exchanger 

 Item No. E-001

 No. Required 1 

Function: Heat Water/Glucose Mixture 

Operation: Batch  

Type: Shell and Tube  

Materials Handled: Tube Side Shell Side 

Stream IN 5 
Steam 

Stream OUT 6 

   

Mass Flow Rate (kg/hr) 3802.1  

Inlet Temp (°C) 25  

Outlet Temp (°C) 37  

Design Data: Heat Transfer Coefficient (BTU/°F-ft​2​-hr): 120 

 LMTD (°F): 258.2 

 Surface Area (ft​2​) 5.5 

 Heat Duty (BTU/hr): 169141.9 

 Material of Construction: 316 Stainless 

Cost of Utilities/year: 183 lb/hr steam $7,900 

Purchase Cost  $88,100 

Bare Module Cost:  $279,400 

Comments:  
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Production Feed Heat Exchanger 

Identification: Item Shell and tube heat exchanger 

 Item No. E-002

 No. Required 1 

Function: Heat Palm oil/Water Mixture 

Operation: Batch  

Type: Shell and Tube  

Materials Handled: Tube Side Shell Side 

Stream IN 29 
Steam 

Stream OUT 30 

   

Mass Flow Rate (kg/hr) 17582.8  

Inlet Temp (°C) 25  

Outlet Temp (°C) 37  

Design Data: Heat Transfer Coefficient (BTU/°F-ft​2​-hr): 120 

 LMTD (°F): 98.6 

 Surface Area (ft​2​) 76 

 Heat Duty (BTU/hr): 2482676 

 Material of Construction: 316 Stainless 

Cost of Utilities/year: 2549 lb/hr steam $110,100 

Purchase Cost  $38,900 

Bare Module Cost:  $123,300 

Comments:  
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Seed Fermenter [1m​3​] 
Identification: Item Vertical Vessel 

 Item No. F-101 

 No. Required 2 

Function: Initial growth of biomass and media 

Operation: Batch  

Materials Handled: Inlet Outlet 

Stream ID S7,S10, S12 S13,S14 

Temperature (°C) 37 37 

Component Mass Flow (kg/batch)   

Water 850 820 

Glucose 54 0 

Media 11 11 

Biomass 2 34 

Gas Flow Rate (m​3​/hr)   

Air 0 0 

Oxygen 0 7.5 

Nitrogen 0 26.0 

Carbon Dioxide 0 1.15 

Water Vapor 0 1.55 

Design Data: Material of Construct Stainless Steel 316 

 Vessel Diameter (ft) 2  

 Vessel Height (ft) 14  

 Final Working Volume (ft​3​) 44  

 Pressure at Vessel Base (psia) 115 

Cost of Utilities/year: 98 gal/hr cooling water $70 x2 

Purchase Cost  $36,400 x2 

Bare Module Cost:  $158,000 x2 

Associated Cost:  Agitator & Cooling Jacket $6,600 x2 

Total Bare Module Cost:  $164,600 x2 

Comments:  
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Growth Fermenter [10m​3​] 
Identification: Item Vertical Vessel 

 Item No. F-102

 No. Required 2 

Function: Continued growth of biomass and media 

Operation: Batch  

Materials Handled: Inlet Outlet 

Stream ID S8,S15,S17 S18,S19 

Temperature (°C) 37 37 

Component Mass Flow (kg/batch)   

Water 8500 8203 

Glucose 541 0 

Media 125 125 

Biomass 34 339 

Gas Flow Rate (m​3​/hr)   

Air 345.8 0 

Oxygen 0 75.6 

Nitrogen 0 260.7 

Carbon Dioxide 0 11.6 

Water Vapor 0 15.5 

Design Data: Material of Construct 316 Stainless  

 Vessel Diameter (ft) 4  

 Vessel Height (ft) 33  

 Final Working Volume (ft​3​) 414.7  

 Pressure at Vessel Base (psia) 115 

Cost of Utilities/year: 980 gal/hr cooling water $700 x2 

Purchase Cost  $111,000 x2 

Bare Module Cost:  $486,500 x2 

Associated Cost:   Agitator & Cooling Jacket $24,500 x2 

Total Bare Module Cost:  $511,000 x2 

Comments:  
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Growth Fermenter [100m​3​] 
Identification: Item Vertical Vessel 

 Item No. F-103

 No. Required 2 

Function: Continued growth of biomass and media 

Operation: Batch  

Materials Handled: Inlet Outlet 

Stream ID S9,S20,S22 S23,S24 

Temperature (°C) 37 37 

Component Mass Flow (kg/batch)   

Water 85000 82033 

Glucose 5415 0 

Media 1262 1262 

Biomass 359 3608 

Gas Flow Rate (m​3​/hr)   

Air 3457.7 0 

Oxygen 0 756.2 

Nitrogen 0 2606.7 

Carbon Dioxide 0 115.5 

Water Vapor 0 115.2 

Design Data: Material of Construct 316 Stainless 

 Vessel Diameter (ft) 12 

 Vessel Height (ft) 33 

 Final Working Volume (ft​3​) 3732.2 

 Pressure at Vessel Base (psia) 115 

Cost of Utilities/year: 9803 gal/hr cooling water $7,000 x2 

Purchase Cost  $400,600 x2 

Bare Module Cost:  $1,966,300 x2 

Associated Cost:  Agitator & Cooling Jacket $412,500 x2 

Total Bare Module Cost:  $2,378,800 

Comments:  
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Production Fermenter [500m​3​] 
Identification: Item Vertical Vessel 

 Item No. F-201 

 No. Required 6 

Function: Conversion of Palm Oil to Diacids 

Operation: Batch  

Materials Handled: Inlet Outlet 

Stream ID S24, S30, S32 S33,S34 

Temperature (°C) 37 37 

Component Mass Flow (kg/batch)   

Water 425000 341816 

Glucose 0 0 

Media/Salts 8773 8773 

Biomass 3608 3608 

DDDA 0 59358 

Sebacic Acid 0 2198 

Suberic Acid 0 2198 

Adipic Acid 0 2198 

Gas Flow Rate (m​3​/hr)   

Air 16974 0 

Oxygen 0 3712.3 

Nitrogen 0 12796 

Carbon Dioxide 0 360.2 

Water Vapor 0 752.5 

Design Data: Material of Construction 316 Stainless 

 Vessel Diameter (ft) 18.6 

 Vessel Height (ft) 65 

 Final Working Volume (ft​3​) 17661.6 

 Pressure at Vessel Base (psia) 115 

Cost of Utilities/year: 48120 gal/hr cooling water $34,600 

Purchase Cost  $1,180,400 x6 

Bare Module Cost:  $5,910,400 x6 

Associated Cost:  Agitator and Cooling Jacket $1,000,000 x6 

Total Bare Module Cost:  $6,910,400 x6 

Comments:  
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F-101 Air Compressor 

Identification: Item Multi-stage compressor

 Item No. CP-101 

 No. Required 1 

Function: Pressurize air fed to F-101 

Operation: Continuous  

Type: 2-Stage Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 11 12 

   

Air Flow Rate (m​3​/hr) 34.4 34.4 

Temperature (°C)  37 

Pressure (bar)  3 

Design Data: Material of Construction 316 Stainless 

 Head (ft) 10 

 Drive Type Electrical 

Cost of Utilities/year: 6.9 kWh $1,700 

Purchase Cost  $34,100 

Bare Module Cost:  $73,400 

Associated Cost:   HEPA Filters $ 

Comments: Cost of HEPA filters included in bare module cost 
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F-102 Air Compressor 

Identification: Item Multi-stage compressor

 Item No. CP-102 

 No. Required 1 

Function: Pressurize air fed to F-102 

Operation: Continuous  

Type: 2-Stage Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 16 17 

   

Air Flow Rate (m​3​/hr) 345.8 345.8 

Temperature (°C)  3 

Pressure (bar)  37 

Design Data: Material of Construction 316 Stainless 

 Head (ft) 10 

 Drive Type Electrical 

Cost of Utilities/year: 69.3 kWh $17,500 

Purchase Cost  $82,000 

Bare Module Cost:  $176,300 

Associated Cost:   HEPA Filters $ 

Comments: Cost of HEPA filters included in bare module cost 
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F-103 Air Compressor 

Identification: Item Multi-stage compressor

 Item No. CP-103 

 No. Required 1 

Function: Pressurize air fed to F-103 

Operation: Continuous  

Type: 2-Stage Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 21 22 

   

Air Flow Rate (m​3​/hr) 3457.7 3457.7 

Temperature (°C)  37 

Pressure (bar)  3 

Design Data: Material of Construction 316 Stainless 

 Head (ft) 10 

 Drive Type Electrical 

Cost of Utilities/year: 692.5 kWh $174,500 

Purchase Cost  $196,700 

Bare Module Cost:  $422,800 

Associated Cost:   HEPA Filters $ 

Comments: Cost of HEPA filters included in bare module cost 

  

109 



 

 

F-201 Air Compressor 

Identification: Item Multi-stage compressor

 Item No. CP-201 

 No. Required 1 

Function: Pressurize air fed to F-201 

Operation: Continuous  

Type: 2-Stage Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 31 32 

   

Air Flow Rate (m​3​/hr) 16974 16974 

Temperature (°C)  37 

Pressure (bar)  3 

Design Data: Material of Construction 316 Stainless 

 Head (ft) 10 

 Drive Type Electrical 

Cost of Utilities/year: 3399.7 kWh $856,700 

Purchase Cost  $360,000 

Bare Module Cost:  $773,900 

Associated Cost:   HEPA Filters $ 

Comments: Cost of HEPA filters included in bare module cost 
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F-101 Products Pump 

Identification: Item Pump 

 Item No. P-101

 No. Required 1 

Function: Pump output from F-101 to F-102 

Operation: Continuous  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 14 15 

Temperature (°C) 37 37 

Pressure (bar) 1 3 

Mass Flow (kg/hr) 865 

Component Mass Flow (kg/hr)   

Water 820 

Glucose 0 

Media/Salts 11 

Biomass 34 

Design Data: Material of Construction: 316 Stainless 

 Head (ft) 100 

 Max Motor HP: 1560 

Cost of Utilities/year: 1.8 kWh $500 

Purchase Cost  $60,000 

Bare Module Cost:  $197,900 

Comments:  
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F-102 Products Pump 

Identification: Item Pump 

 Item No. P-102

 No. Required 1 

Function: Pump output from F-102 to F-103 

Operation: Continuous  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 19 20 

Temperature (°C) 37 

Pressure (bar) 1 3 

Mass Flow (kg/hr) 8687 

Component Mass Flow (kg/hr)   

Water 8203 

Glucose 0 

Media/Salts 125 

Biomass 359 

Design Data: Material of Construction 316 Stainless 

 Head (ft) 500 

 Max Motor HP: 1560 

Cost of Utilities/year: 18.0 kWh $4,500 

Purchase Cost  $14,400 

Bare Module Cost:  $47,600 

Comments:  
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F-103 Products Pump 

Identification: Item Pump 

 Item No. P-204

 No. Required 1 

Function: Pump output from F-103 to F-201 

Operation: Continuous  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 24 

Temperature (°C) 37 

Pressure (bar) 1 3 

Mass Flow (kg/hr) 86903 

Component Mass Flow (kg/hr)   

Water 82033 

Glucose 0 

Media/Salts 1262 

Biomass 3608 

Design Data: Material of Construction 316 Stainless 

 Head (ft) 1000 

 Max Motor HP: 1560 

Cost of Utilities/year: 180.4 kWh $45,500 

Purchase Cost  $9,200 

Bare Module Cost:  $30,300 

Comments:  
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F-201 Products Pump 

Identification: Item Pump 

 Item No. P-205

 No. Required 1 

Function: Pump output from F-201 to S-301 

Operation: Continuous  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 34 

Temperature (°C) 37 

Pressure (bar) 1 3 

Mass Flow (kg/hr) 420149 

Component Mass Flow (kg/hr)   

Water 34186 34186 

Glucose 0 0 

Media/Salts 8773 8773 

Biomass 3608 3608 

DDDA 59358 59358 

Sebacic Acid 2198 2198 

Suberic Acid 2198 2198 

Adipic Acid 2198 2198 

Design Data: Material of Construction 316 Stainless 

 Head (ft) 1000 

 Max Motor HP:  

Cost of Utilities/year: 872.4 kWh $219,800 

Purchase Cost  $9,100 

Bare Module Cost:  $30,000 

Comments:  
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Surge Tank 

Identification: Item Storage Tank 

 Item No. S-301 

 No. Required 1 

Function: Store fermented products 

Operation: Batch to Continuous  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID Batchwise  35 (S1) 

 See Figure 12.5  

Temperature (°C)  37 

Pressure (bar)  3 

Mass Flow (kg/hr)   

Component Mass Flow (kg/hr)   

Water  12822.1 

Glucose  0 

Palm Oil  0 

Design Data: Material of Construction 316 Stainless 

 Vessel Diameter (ft) 18.6 

 Vessel Height (ft) 65 

 Final Working Volume (ft​3​) 17661.6 

 Pressure at Vessel Base (psia) 115 

Purchase Cost $ 1,606,300 

Bare Module Cost $ 6,682,400 

Comments:  
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Surge Pump 

Identification: Item Pump 

 Item No. P-301

 No. Required 1 

Function: Pump output from surge tank to RF-501 & RF-502 

Operation: Continuous  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 35 S1 

   

Temperature (°C) 37 

Pressure (bar) 3 3.43 

Mass Flow (kg/hr) 15359.9 15359.9 

Component Mass Flow (kg/hr)   

Water 12822.1 12822.1 

Glucose 0 0 

Media/Salts 0 0 

Biomass 150.2 150.2 

DDDA 2148.5 2148.5 

Sebacic Acid 79.7 79.7 

Suberic Acid 79.7 79.7 

Adipic Acid 79.7 79.7 

Design Data: Material of Construction: 316 Stainless 

 Head (ft) 1000 

 Max Motor HP: 1560 

Cost of Utilities/year: 191.4 kWh $48,200 

Purchase Cost  $8,800 

Bare Module Cost:  $29,200 

Comments:  
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Vacuum Rotary Drum Filter 
Identification: Item Filtration System

 Item No. RF-401 & RF-402

 No. Required  1 (each) 

Function: Remove a majority of water from S1 

Operation: Continuous   

Type: Alar Corp AV330   

Materials Handled: Feed (Stream In) Cake (Solid Out) Supernatant (Liq Out) 

Stream ID S1 S4 S2/S3 

Temperature (°C) 37 37 37 

Pressure (bar) 3.43 3.43 3.43 

Mass Flow (kg/hr) 15359.9 3612.7 11747.2 

Component Flow (kg/hr)    

Water 12822.1 1087.6 11734.5 

Glucose 0 0 0 

Media/Salts 0 0 0 

Biomass 150.2 149.5 0.7 

DDDA 2148.5 2137.8 2137.8 

Sebacic Acid 79.7 79.3 0.4 

Suberic Acid 79.7 79.3 0.4 

Adipic Acid 79.7 79.3 0.4 

Design Data: Material of Construction Stainless steel  

 Pressure  1 bar  

 Diameter 3 fta  

 Length 3 ft  

 Function height 3 ft  

 Orientation Horizontal  

 Frac. of Drum Full 0.4  

 Speed 0.5 rpm  

 Capacity 2727.3 kg/ft​2​/day  

 Motor 13 hp  

Cost of Utilities/year: 8.2 kWh $2,000 x2  

Purchase Cost  $116,900 x2  

Bare Module Cost:  $237,300 x2  

Comments: Quote from Alar Corp. This drum filter is auto cleansing so dead time is not considered 
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Cake Dryer 

Identification: Item Evaporator 

 Item No. E-401

 No. Required  1 

Function: Dry remaining water residing in diacid cake 

Operation: Continuous   

Type:    

Materials Handled: Feed (Stream In) Cake (Solid Out) Exhaust (Vapor Out) 

STream ID S4 S6 S5 

Temperature (°C) 37 37 115 

Pressure (bar) 3.43 1 1 

Mass Flow (kg/hr) 3612.7 2525.1 1087.6 

Component Flow (kg/hr)    

Water 1087.6 0 1087.6 

Glucose 0 0 0 

Media/Salts 0 0 0 

Biomass 149.5 149.5 0 

DDDA 2137.8 2137.8 0 

Sebacic Acid 79.3 79.3 0 

Suberic Acid 79.3 79.3 0 

Adipic Acid 79.3 79.3 0 

Design Data: 
Heat Transfer Coefficient 
(BTU/°F-ft​2​-hr): 120  

 LMTD (°F): 217.7  

 Surface Area (ft​2​) 107.7  

 Heat Duty (BTU/hr): 2813795.6  

 Material of Construction: 316 Stainless  

Cost of Utilities/year: 2850 lb/hr steam $123,100  

Purchase Cost  $38,900  

Bare Module Cost:  $123,300  

Comments:  
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Cake Drying Belt 

Identification: Item Pump 

 Item No. CB-401 & CB-402

 No. Required 1 (each) 

Function: Move moist cake through cake evaporator 

Operation: Continuous  

Type: Conveyor  

Materials Handled: Feed (Pre-Dryer) Discharge (Post-Dryer) 

Stream ID S4 S6 

Mass Flow Rate (kg/hr) 3612.7 2525.1 

Component Mass Flow (kg/hr)  

Water 1087.6 0 

Glucose 0 0 

Media/Salts 0 0 

Biomass 149.5 149.5 

DDDA 2137.8 2137.8 

Sebacic Acid 79.3 79.3 

Suberic Acid 79.3 79.3 

Adipic Acid 79.3 79.3 

Design Data: Material of Construction 316 Stainless 

 Volume on Belt (ft​3​) 22.3 

 Height of Slurry (ft) 0.08 

 Length (ft) 51.7 

 Width (ft) 5.2 

Cost of Utilities/year: 11.2 kWh $2,800 x2 

Purchase Cost  $190,400 

Bare Module Cost:  $306,500 

Comments:  
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Major Ethyl Acetate Mixing Vessel 

Identification: Item Vertical Vessel 

 Item No. M-401

 No. Required 1 

Function: Add ethyl acetate to cake to solubilize diacids 

Operation: Continuous  

Materials Handled: Inlet Outlet 

Temperature (°C) 70 70 

Component Mass Flow (kg/batch)   

Ethyl Acetate  16629 

Biomass 149.5 149.5 

DDDA 2137.8 2137.8 

Sebacic Acid 79.3 79.3 

Suberic Acid 79.3 79.3 

Adipic Acid 79.3 79.3 

Design Data: Material of Construct 316 Stainless 

 Vessel Diameter (ft) 3.3 

 Vessel Height (ft) 16.4 

 Final Working Volume (ft​3​) 138.7 

 Pressure at Vessel Base (psia) 115 

 Resonance Time (hr) 0.5 

Cost of Utilities/year: 3086.6 kWh $777,800 

Purchase Cost  $62,600 

Bare Module Cost:  $260,300 

Associated Cost:   Agitator $50,700 

Total Bare Module Cost:  $311,000 

Comments:  
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Minor Ethyl Acetate Mixing Vessel 

Identification: Item Vertical Vessel 

 Item No. M-402

 No. Required 1 

Function: Secondary dissolution step for those that failed to convert in M-401 

Operation: Continuous  

Materials Handled: Inlet Outlet 

Temperature (°C) 70 70 

Component Mass Flow (kg/batch)   

Ethyl Acetate 86.8 174.1 

Biomass 149.5 149.5 

DDDA 11.2 11.2 

Sebacic Acid 0.4 0.4 

Suberic Acid 0.4 0.4 

Adipic Acid 0.4 0.4 

Design Data: Material of Construct 316 Stainless 

 Vessel Diameter (ft) 2 

 Vessel Height (ft) 8 

 Final Working Volume (ft​3​) 17.3 

 Pressure at Vessel Base (psia) 115 

 Resonance Time (hr) 0.5 

Cost of Utilities/year: 0.7 kWh $200 

Purchase Cost  $28,000 

Bare Module Cost:  $116,400 

Associated Cost:   Agitator $5,500 

Total Bare Module Cost:  $121,900 

Comments:  
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Major Ethyl/Biomass Slurry Pump  

Identification: Item Pump 

 Item No. P-401

 No. Required 1 

Function: Pump liquid diacids to C-401 

Operation: Continuous  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 8 9 

Temperature (°C) 70 70 

Pressure (bar) 5 1 

Mass Flow (kg/hr) 19154.5 

Component Mass Flow (kg/hr)   

Ethyl Acetate 16629 

Biomass 149.5 

DDDA 2137.8 

Sebacic Acid 79.3 

Suberic Acid 79.3 

Adipic Acid 79.3 

Design Data: Material of Construction: 316 Stainless 

 Head (ft) 500 

 Max Motor HP: 1560 

Utilities: 238.6 kWh $60,100 

Purchase Cost  $8,700 

Bare Module Cost:  $28,800 

Comments:  
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Minor Ethyl/Biomass Slurry Pump  

Identification: Item Pump 

 Item No. P-402

 No. Required 1 

Function: Pump liquid diacids to C-402 

Operation: Continuous  

Type: Centrifugal   

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID 16 17 

   

Temperature (°C) 70 

Pressure (bar) 5 1 

Mass Flow (kg/hr) 336 

Component Mass Flow (kg/hr)   

Ethyl Acetate 174.1 

Biomass 149.5 

DDDA 11.2 

Sebacic Acid 0.4 

Suberic Acid 0.4 

Adipic Acid 0.4 

Design Data: Material of Construction: 316 Stainless 

 Head (ft) 100 

 Max Motor HP: 1560 

Cost of Utilities/year: 4.2 kWh $1,000 

Purchase Cost  $111,600 

Bare Module Cost:  $368,300 

Comments:  
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Ethyl Acetate Heat Exchanger 

Identification: Item Shell and tube heat exchanger 

 Item No. E-402

 No. Required 1 

Function: Heat feedstock ethyl acetate from 25 C to 70 C 

Operation: Continuous  

Type: shell and tube  

Materials Handled: Tube Side Shell Side 

Stream IN S12 
Steam 

Stream OUT S13 

   

Mass Flow Rate (kg/hr) 737.26  

Inlet Temp (°C) 25 186 

Outlet Temp (°C) 70 163 

Design Data: Heat Transfer Coefficient (BTU/°F-ft​2​-hr): 120 

 LMTD (°C): 126.7 

 Surface Area (ft​2​) 2.4 

 Heat Duty (BTU/hr): 64942.12 

 Material of Construction: 316 stainless 

Cost of Utilities/year: 70 lb/hr steam $3,000 

Purchase Cost  $150,800 

Bare Module Cost:  $478,000 

Comments:  
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Major Centrifuge  

Identification: Item Filtration System 

 Item No. CF-401 

 No. Required  1 

Function: Separate biomass from liquid diacids 

Operation: Continuous   

Type: Alfa Laval NX 418 Decanter   

Materials Handled: Feed (Stream In) Cake (Solid Out) Supernatant (Liq Out) 

STream ID S9 S11 S10 

Temperature (°C) 70 70 70 

Pressure (bar) 1 1 1 

Mass Flow (kg/hr) 19154.5 249.1 18905.4 

Component Flow (kg/hr)    

Ethyl Acetate 16629.4 87.2 16542.2 

Biomass 149.5 149.5  

DDDA 2137.8 11.2 2126.6 

Sebacic Acid 79.3 0.4 78.9 

Suberic Acid 79.3 0.4 78.9 

Adipic Acid 79.3 0.4 78.9 

Design Data: Capacity 120 GPM  

 Material of Construction: 316 Stainless  

 Speed 4000 rpm  

 Motor 20 hp  

 Voltage 460 V  

Cost of Utilities/year: 14.9 kWh $3,800  

Purchase Cost  $312,600  

Bare Module Cost:  $634,700  

Comments:  
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Minor Centrifuge  

Identification: Item Filtration System 

 Item No. CF-402 

 No. Required  1 

Function: Second pass for diacids caught in solid out from CF-401 

Operation: Continuous   

Type: Alfa Laval NX314 Decanter   

Materials Handled: Feed (Stream In) Cake (Solid Out) Supernatant (Liq Out) 

STream ID S17 S20 S18 

Temperature (°C) 70 70 70 

Pressure (bar) 1 1 1 

Mass Flow (kg/hr) 336 151 185 

Component Flow (kg/hr)    

Ethyl Acetate 174.5 1.7 172.7 

Biomass 149.5 149.5  

DDDA 11.2 0.1 11.1 

Sebacic Acid 0.4  0.4 

Suberic Acid 0.4  0.4 

Adipic Acid 0.4  0.4 

Design Data: Capacity 40 GPM  

 Material of Construction: 316 Stainless  

 Speed 3250 rpm  

 Motor 15 hp  

 Voltage 460 V  

Cost of Utilities/year: 11.2 kWh $2,800  

Purchase Cost  $126,200  

Bare Module Cost:  $256,200  

Comments:  
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Kettle Evaporator 

Identification: Item Heating Vessel 

 Item No. KE-501 & E-501 

 No. Required 1 

Function: Evaporate ethyl acetate from stream 

Operation: Continuous  

Type:   

Materials Handled: Tube Side Shell Side 

Stream IN S19,S27,S25 
Steam 

Stream OUT S21 

   

Mass Flow Rate (kg/hr) 5976  

Inlet Temp (°C) 70  

Outlet Temp (°C) 86  

Design Data: Heat Transfer Coefficient (BTU/°F-ft​2​-hr): 120 

 LMTD (°F): 173.6 

 Surface Area: (ft​2​) 266.8 

 Length (ft) 131.2 

 Diameter (ft) 13.1 

 Heat Duty (BTU/hr): 5559150.3 

 Material of Construction: 316 Stainless 

 Resonance Time (hr) 0.5 

Cost of Utilities/year: 6022 lb/hr steam $260,100 

Purchase Cost  $108,700 

Bare Module Cost:  $344,700 

Comments:  
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Kettle Evaporator Pump  

Identification: Item Pump 

 Item No. P-501

 No. Required 1 

Function: Pump solution from KE-501 to RF-501 

Operation: Continuous  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID S21 S25,S26 

Temperature (°C) 86 95.47/86.13 

Pressure (bar) 1.34 3.76 

Mass Flow kg/hr   

Component Mass Flow (kg/hr)   

Ethyl Acetate 142143 142143 

DDDA 42637 42637 

Sebacic Acid 1581 1581 

Suberic Acid 1581 1581 

Adipic Acid 1581 1581 

Design Data: Material of Construction: 316 Stainless 

 Head (ft) 100 

 Max Motor HP: 1560 

Cost of Utilities/year: 2361.2 kWh $595,000 

Purchase Cost  $9,900 

Bare Module Cost:  $32,900 

Comments:  
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Major Ethyl Acetate Condenser 

Identification: Item Condenser

 Item No. C-501 

 No. Required 1 

Function: Condense evaporated ethyl acetate 

Operation: Continuous  

Type:   

Materials Handled: Tube Side Shell Side 

Stream IN S20 
Chilled Water 

Stream OUT S22 

   

Mass Flow Rate (kg/hr) 15045  

Inlet Temp (°C) 86  

Outlet Temp (°C) 76.73  

Design Data: Heat Transfer Coefficient (BTU/°F-ft​2​-hr) 120 

 LMTD (°F): 109.7 

 Surface Area (ft​2​) 408.7 

 Heat Duty (BTU/hr): -5381953.2 

 Material of Construction: 316 Stainless 

Cost of Utilities/year: 43073 gal/hr cooling water $31,000 

Purchase Cost  $47,300 

Bare Module Cost:  $149,900 

Comments:  
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Diacid/Ethyl Acetate Rotary Filter 

Identification: Item Evaporator 

 Item No. RF-501

 No. Required  1 

Function: Remove a majority of ethyl acetate from diacids 

Operation: Continuous   

Type: Alarp Corp AV340   

Materials Handled: Feed (Stream In) Recycle Slurry 

STream ID S26 S27 S28 

Temperature (°C) 86.13 86.13 86.13 

Pressure (bar) 3.76 3.43 3.76 

Mass Flow (kg/hr)    

Component Flow (kg/hr)    

Ethyl Acetate 7107 5528 1579 

DDDA 2132 0 2131.8 

Sebacic Acid 79.1 0 79.1 

Suberic Acid 79.1 0 79.1 

Adipic Acid 79.1 0 79.1 

Design Data: Material of Construction Stainless steel  

 Pressure  1 bar  

 Diameter 3 ft  

 Length 4 ft  

 Function height 3 ft  

 Orientation Horizontal  

 Frac. of Drum Full 0.4  

 Speed 0.5 rpm  

 Capacity 2727.3 kg/ft​2​/day  

 Motor 11 hp  

Cost of Utilities/year: 8.2 kWh $2,000  

Purchase Cost  $127,700  

Bare Module Cost:  $259,200  

Comments: Drum is auto cleansing so dead time is not considered 
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Diacid Slurry Pump  

Identification: Item Pump 

 Item No. P-502

 No. Required 1 

Function: Pump output from RF-501 to RD-501 

Operation: Continuous  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID  S28 

   

Temperature (°C) 86.13 

Pressure (bar) 3.43 3.76 

Mass Flow (kg/hr)  

Component Mass Flow (kg/hr)   

Ethyl Acetate 1579 

Biomass 0 

DDDA 2131.8 

Sebacic Acid 79.1 

Suberic Acid 79.1 

Adipic Acid 79.1 

Design Data: Material of Construction: 316 Stainless 

 Head (ft) 100 

 Max Motor HP: 1560 

Cost of Utilities/year: 49.2 kWh $12,400 

Purchase Cost  $13,000 

Bare Module Cost:  $43,600 

Comments:  
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Diacid/Nitrogen Rotary Dryer 

Identification: Item Filtration System 

 Item No. RD-501 

 No. Required  1 

Function: Dry ethyl acetate from solid diacids 

Operation: Continuous   

Type:    

Materials Handled: Slurry Solids Exhaust 

Stream ID S28, S37 S29 S38 

Temperature (°C) 86.13/115 115 115 

Pressure (bar) 3.43/1.7 1.7 1.7 

Mass Flow (kg/hr)    

Component Flow (kg/hr)    

Nitrogen 29.86 0 29.86 

Ethyl Acetate 1599.7 0 1599.7 

DDDA 2131.8 2131.8 0 

Sebacic Acid 79.1 79.1 0 

Suberic Acid 79.1 79.1 0 

Adipic Acid 79.1 79.1 0 

Design Data: Material of Construction 316 Stainless  

 Diameter (ft) 7.7  

 Length (ft) 77  

 Volume (ft​3​) 3553.8  

 Resonance Time (hr) 0.5  

Cost of Utilities/year: 632 lb/hr steam $27,300  

Purchase Cost  $83,600  

Bare Module Cost:  $172,300  

Comments:  
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Nitrogen Compressor 

Identification: Item Multi-stage compressor

 Item No. CP-501 

 No. Required 1 

Function:  

Operation: Continuous  

Type: 2-Stage Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID S38 S40,S43 

Temperature (°C) 115 76.73/115 

Pressure (bar) 1.7 1.7/2.74 

Gas Flow Rate (m​3​/hr)   

Component Mass Flow (kg/hr)   

Ethyl Acetate 1599.7 1577/20.7 

Nitrogen 29.86 0/26.5 

Design Data: Material of Construction 316 Stainless 

 Head (ft) 100 

 Drive Type Electrical 

Cost of Utilities/year: 1958.3 kWh $493,400 

Purchase Cost  $356,000 

Bare Module Cost:  $773,900 

Associated Cost:   HEPA Filters $ 

Comments: Pricing of HEPA filters included in bare module cost 
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Minor Ethyl Acetate Condenser 

Identification: Item Condenser

 Item No. C-502 

 No. Required 1 

Function: Condense evaporated ethyl acetate to be recycled 

Operation: Continuous  

Type:   

Materials Handled: Tube Side Shell Side 

Stream IN  
Chilled Water 

Stream OUT S40 

   

Mass Flow Rate (kg/hr) 1577  

Inlet Temp (°C) 115  

Outlet Temp (°C) 76.73  

Design Data: Heat Transfer Coefficient (BTU/°F-ft​2​*hr): 120 

 LMTD (°F): 136.01 

 Surface Area (ft​2​) 38.4  

 Heat Duty (BTU/hr): -606028.6 

 Material of Construction: 316 Stainless 

Cost of Utilities/year: 5010 gal/hr cooling water $3,600 

Purchase Cost  $42,100 

Bare Module Cost:  $133,500 

Comments:  
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Diacid Transport Belt 

Identification: Item Conveyor Belt

 Item No. CB-501 

 No. Required 1 

Function: Transport solid diacids into MT-501 

Operation: Continuous  

Type:   

Materials Handled: Feed (Pre-Dryer) 

Stream ID S29 

Mass Flow Rate (kg/hr) 2369..3 

Component Mass Flow (kg/hr)   

DDDA 2132 

Sebacic Acid 79.1 

Suberic Acid 79.1 

Adipic Acid 79.1 

Design Data: Material of Construction 316 Stainless 

 Volume on Belt (ft​3​) 21  

 Height of Slurry (ft) 0.08 

 Length (ft) 50 

 Width (ft) 5 

Cost of Utilities/year: 7.5 kWh $1,900 

Purchase Cost  $73,500 

Bare Module Cost:  $118,300 

Comments:  
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Diacid Melting Tank 

Identification: Item Vertical Vessel with Heating

 Item No. MT-501

 No. Required 1 

Function: Melt DDDA 

Operation: Batch  

Materials Handled: Inlet Outlet 

Stream ID S29 S30,S33 

Temperature (°C) 115 135.2 

Pressure (bar) 1.01 2.74 

Component Mass Flow (kg/batch)   

DDDA 2132 6080 

Sebacic Acid 79.1 79.3 

Suberic Acid 79.1 79.3 

Adipic Acid 79.1 79.3 

Design Data: Material of Construct 316 Stainless  

 Vessel Diameter (ft) 0.33 

 Vessel Height (ft) 3.3 

 Final Working Volume (ft​3​) 10 

Cost of Utilities/year: 360 lb/hr steam $15,500 

Purchase Cost  $6,200 

Bare Module Cost:  $25,900 

Associated Cost:                 ​Agitator  $17,400 

Heating Jacket  $22,400 

Total Bare Module Cost:  $65,700 

Comments:  
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Ethyl Acetate Recycle Tank 

Identification: Item Vertical Vessel with Heating

 Item No. TK-501

 No. Required 1 

Function: Store condensed ethyl acetate to be recycled back into S13 

Operation: Batch  

Materials Handled:z Inlet Outlet 

Stream ID S41 S23,S42 

Temperature (°C) 76.73 76.73 

Pressure (bar) 1.38 1.34,1.7 

Component Mass Flow (kg/batch)   

Ethyl Acetate 16141 15979,161 

DDDA 0 0 

Nitrogen 0 0 

Design Data: Material of Construct 316 Stainless  

 Vessel Diameter (ft) 8 

 Vessel Height (ft) 40 

 Final Working Volume (ft​3​) 74330 

 Pressure at Vessel Base (psia) 115 

Purchase Cost $ 206,100 

Bare Module Cost: $ 857,500 

Associated Cost:                 ​Agitator $  

Heating Jacket $  

Total Bare Module Cost: $  

Comments: Cost of agitator and heating jacket included in bare module cost 
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 Ethyl Acetate Recycle Pump  

Identification: Item Pump 

 Item No. P-503

 No. Required 1 

Function: Recycle ethyl acetate into S13 

Operation: Continuous  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID S23 S24 

   

Temperature (°C) 76.73 

Pressure (bar) 1.34 3 

Mass Flow (kg/hr)  

Component Mass Flow (kg/hr)   

Ethyl Acetate 15979 

DDDA 0 

Sebacic Acid 0 

Suberic Acid 0 

Adipic Acid 0 

Design Data: Material of Construction: 316 Stainless 

 Head (ft) 100 

 Max Motor HP: 1560 

Cost of Utilities/year: 199.1 kWh $50,200 

Purchase Cost  $8,700 

Bare Module Cost:  $28,600 

Comments:  
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Diacid Pump  

Identification: Item Pump 

 Item No. P-504

 No. Required 1 

Function: Pump diacids from MT-501 to RF-502 

Operation: Continuous  

Type: Centrifugal  

Materials Handled: Feed (Stream In) Discharge (Stream Out) 

Stream ID  S30 

   

Temperature (°C) 135.2 

Pressure (bar) 1.01 3.43 

Mass Flow (kg/hr)  

Component Mass Flow (kg/hr)   

Ethyl Acetate 0 

Biomass 0 

DDDA 4106 

Sebacic Acid 79.2 

Suberic Acid 79.2 

Adipic Acid 79.2 

Design Data: Material of Construction: 316 Stainless 

 Head (ft) 100 

 Max Motor HP: 1560 

Cost of Utilities/year: 54.1 kWh $13,600 

Purchase Cost  $30,400 

Bare Module Cost:  $101,500 

Comments:  
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Vacuum Rotary Drum Filter 
Identification: Item Filtration System

 Item No. RF-502

 No. Required  1 

Function: Separate liquid DDDA from other diacid impurities 

Operation: Continuous   

Type: Alar Corp AV110   

Materials Handled: Feed (Stream In) Impurities (Solid Out) Product (Liq Out) 

Stream ID S30 S31 S32 

Temperature (°C) 135.2 135.2 135.2 

Pressure (bar) 3.43 1.01 2.74 

Mass Flow (kg/hr) 4343 395 3948 

Component Flow (kg/hr)    

DDDA 4106 158 3948 

Sebacic Acid 79.2 79 0.2 

Suberic Acid 79.2 79 0.2 

Adipic Acid 79.2 79 0.2 

Design Data: Material of Construction Stainless steel  

 Pressure  1 bar  

 Diameter 1 ft  

 Length 1 ft  

 Function height 1 ft  

 Orientation Horizontal  

 Frac. of Drum Full 0.4  

 Speed 0.5 rpm  

 Capacity 2727.3 kg/ft​2​/day  

 Motor 4 hp  

Cost of Utilities/year: 3.0 kWh $800  

Purchase Cost  $114,800  

Bare Module Cost:  $233,100  

Comments: Drum is auto cleansing so dead time is not considered 
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DDDA Flaker 

Identification: Item Conveyer Belt

 Item No. FL-501

 No. Required 1 

Function: Crystallize liquid DDDA 

Operation: Continuous  

Type:   

Materials Handled: Feed (Pre-Dryer) Discharge (Post-Dryer) 

Stream ID S34 S35 

Temperature (°C) 135.2 60 

Mass Flow Rate (kg/hr) 1974.15 

Component Mass Flow (kg/hr)   

DDDA 1974 

Sebacic Acid 0.05 

Suberic Acid 0.05 

Adipic Acid 0.05 

Design Data: Material of Construction: 316 Stainless 

 Length 46.5 

 Width 4.6 

Cost of Utilities/year: 8.9 kWh $2,300 

Purchase Cost  $63,300 

Bare Module Cost:  $632,800 

Comments:  
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Section 17 

Equipment Cost Summary  
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Table 17.1: Equipment Costing Summary 

Process Equipment ID Type Cp, Purchase Cost ($) Bare Module Factor Cbm, Bare Module Cost ($) 

TK-001  Storage $482,300 4.16 $2,006,300 

 TK-002  Storage   $131,500  4.16 $546,900 

 TK-003  Storage  $1,313,200  4.16 $5,463,000 

TK-004 Storage $508,900 4.16 $2,117,200 

TK-501 Storage $206,100 4.16 $857,500 

S-301 Storage $1,606,300 4.16 $6,682,400 

P-001 Process Machinery $12,100 3.30 $39,900 

P-002 Process Machinery $40,700 3.30 $134,200 

P-003 Process Machinery $11,700 3.30 $158,000 

P-004 Process Machinery $8,900 3.30 $29,400 

P-005 Process Machinery $12,300 3.30 $40,600 

P-006 Process Machinery $8,800 3.30 $28,900 

P-101 Process Machinery $60,000 3.30 $197,900 

P-102 Process Machinery $14,400 3.30 $47,600 

P-204 Process Machinery $9,200 3.30 $30,300 

P-205 Process Machinery $9,100 3.30 $30,000 

P-301 Process Machinery $8,800 3.30 $29,200 

P-401 Process Machinery $8,700 3.30 $28,800 

P-402 Process Machinery $111,600 3.30 $368,300 

P-501 Process Machinery $9,900 3.30 $32,900 

P-502 Process Machinery $13,000 3.30 $43,600 

P-503 Process Machinery $8,700 3.30 $28,600 

P-504 Process Machinery $30,400 3.30 $101,500 

CP-101 Compressor $34,100 2.15 $73,400 

CP-102 Compressor $82,000 2.15 $176,300 

CP-103 Compressor $196,600 2.15 $422,800 

CP-201 Compressor $360,000 2.15 $773,900 

CP-501 Compressor $10,700 2.15 $23,000 
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E-001 Heater $88,100 3.17 $279,400 

E-002 Heater $38,900 3.17 $123,200 

E-401 Heater $38,900 3.17 $123,300 

E-402 Heater $150,800 3.17 $478,000 

M-001 Mixing Vessel $215,700 4.28 $980,700 

M-002 Mixing Vessel $384,500 4.28 $1,799,000 

M-401 Mixing Vessel $66,700 4.28 $311,000 

M-402 Mixing Vessel $28,400 4.28 $121,900 

F-101 (x2) Growth Fermenter $36,400 4.16 $158,000 

F-102 (x2) Growth Fermenter $111,000 4.16 $486,500 

F-103 (x2) Growth Fermenter $400,600 4.16 $1,966,300 

F-201 (x6) Growth Fermenter $1,180,400 4.16 $5,910,400 

RF-401 Rotary Filter $116,900 2.03 $237,300 

RF-402 Rotary Filter $116,900 2.03 $237,300 

RF-501 Rotary Filter $127,700 2.03 $259,200 

 RF-502 Rotary Filter  $114,800 2.03 $233,100 

CB-401 Conveyer Belt  $112,000 1.61  $180,400 

CB-402 Conveyer Belt $78,300 1.61 $126,100 

CB-501 Conveyer Belt $73,500 1.61 $118,300 

CF-401 Centrifuge $312,600 2.03 $634,700 

CF-402 Centrifuge $126,200 2.03 $256,200 

KE-501/E-501 Kettle Evaporator $108,700 3.17 $344,700 

C-501 Condenser $47,300 3.17 $149,900 

C-502 Condenser $42,100 3.17 $133,600 

RD-501 Diacid Dryer $83,600 2.06 $172,300 

MT-501 Melting Tank $17,400 3.5 $65,700 

FL-501 Flaker $63,300 10 $632,800 
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Figure 17.1: Total Bare Module Cost for Plant Equipment. Cost is continually summed throughout the figure. Size of bar represents relative cost 
of equipment listed 

 

In order to build this plant, there is a total capital investment (TCI) required of 

approximately $106 MM is required. $69 MM of this total will be spent towards purchasing and 

installing equipment pieces such as fermenters, heaters, compressors, and more. There is a 

breakdown of the capital investment in Figure 17.1 by the type of equipment. The majority of 

equipment investment is allocated to the equipment associated with the two fermentation 

production trains. This seems logical as the six production fermentation vessels are responsible 

for the value creation stage of the proposed design.  
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Section 17.1: Unit Costing Considerations 

Section 17.1.1: Pumps, Compressors and Agitator 

The pumps, compressors and the agitator in this section were all costed according to the 

equations in Table 16.32 of ​Seider et. al, 2017.​17.1​ ​The purchase costs for the pumps required the 

flow rates through each pump in gallons per minute and the pressure head in feet for each pump. 

In order to cost each compressor, the flow through each compressor in cubic feet per minute was 

required. Lastly, in order to cost the agitator, the agitator horsepower was required. Each of these 

unit costing inputs was either retrieved from ASPEN simulation results or was calculated by 

supplementary equations in Chapter 16 of ​Seider et. al, 2017.​17.2  

Section 17.1.2: Heat Exchangers and Condensers 

The four heaters were costed according to the heat exchanger equations in Chapter 16 of 

Seider et. al, 2017.​17.3​ ​In order to use these equations, the surface area in square feet and the 

material of construction (stainless steel) were required. This same process was required for 

condensers.  

In order to calculate the required surface area of the heat exchangers, the weighted heat 

capacity of all stream components, the mass flow rates of the stream, and the desired temperature 

change must all be known. For heat exchangers, as opposed to evaporators, no information 

regarding phase change heat of vaporization was required. This heat duty, the log mean 

temperature difference of the stream and the heating fluid, as well as an estimated heat transfer 

coefficient for the device used, allowed for an estimated surface area to be determined. This 

value was then used to inform the purchase cost of said equipment and bare module factors were 
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taken into consideration. In order to calculate the surface area of condensers, the total sensible 

and latent heat was divided by the log mean temperature difference and the heat transfer 

coefficient. More in-depth calculations can be found in the Appendix.  

Section 17.1.3: Kettle Evaporator and Diacid Dryer 

In order to cost the kettle evaporator, the equation for a shell-and-tube heat exchanger 

was utilized from Chapter 16 in ​Seider et. al, 2017.​17.4​ ​In order to determine the purchase cost, 

the surface area and material of construction of the heat exchanger were required. The surface 

area in square feet was determined by dividing the total sensible and latent heat by the heat 

transfer coefficient and the log mean temperature difference. The material of construction was 

again chosen to be stainless steel. 

Costing of the diacid dryer was done according to the equation for a direct-heat rotary 

dryer in Chapter 16 of ​Seider et. al, 2017. ​In order to cost the diacid dryer, the surface area in 

square feet was required. Calculating the surface area was performed similarly to the kettle 

evaporator sizing process; the sum of the sensible and latent heat transferred was divided by the 

heat transfer coefficient and the log-mean temperature difference. The total heat included the 

heat required to heat the ethyl acetate, vaporize it and heat the vapor to the temperature of the 

vessel.  

Section 17.1.4: Melting Tank and Flaker 

In order to find the purchase cost of the melting tank, equations for a vertical pressure 

vessel and agitator were utilized from Chapter 16 from ​Seider et. al, 2017.​17.5​ ​In addition, a 

multiplier was added to account for a heating jacket,​ ​as advised by Professor Vrana. In order to 

cost the vertical pressure vessel, the diameter and length of the tank, the maximum allowable 
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pressure, and the material of construction were required. The diameter and length were 

determined by specifying the volumetric flow rate and the residence time of the tank. The 

maximum allowable pressure was determined by specifying the tank temperature, and the 

material of construction was set to be stainless steel. 

In order to cost the flaker, Professor Vrana advised our team to determine the purchase 

cost of a conveyor belt with similar dimensions, and to utilize a bare module cost of 10 in order 

to account for all of the peripheral equipment required. The equation to cost a conveyor belt was 

found in Chapter 16 of Seider et. al, 2017.​17.6​ The surface area of the conveyor belt was required 

and was determined by evaluating the volumetric flow rate of material passing through the 

flaker. 

Section 17.1.5: Rotary Filter, Conveyer Belt, and Centrifuges 

The purchase costs for rotary filters, conveyer belts and centrifuges were calculated 

according to equations in Section 16 of​ Seider et. al, 2017.​17.7​  ​In order to cost the rotary filters, 

the surface area in square feet was required. This was determined by evaluating the flow of 

solids through the filters and comparing this to filtering area specifications on a size chart by 

ALAR Engineering Corporation.​17.8​ In order to determine the purchase costs of conveyor belts, 

the width and length of the conveyor belt were required. These dimensions were calculated from 

from the flow rate of material traveling on the belt. Lastly, to evaluate the purchase cost of the 

centrifuges, the flow rate of solids through each centrifuge was required and was obtained from 

ASPEN simulation process results. 
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Section 17.1.6: Storage Tanks 

The purchase costs of the storage tanks were determined by using equations for Vertical 

Pressure Vessels in Chapter 16 of ​Seider et. al, 2017.​17.9​ ​In order to cost for the storage tanks, the 

diameter, length, maximum allowable stress in psi and material of construction of the vessels 

were required. The diameter and length were calculated by sizing for the volume of the tank and 

utilizing a length to diameter ratio of 10, as advised by Professor Vrana. The material of 

construction was assumed to be stainless steel and the maximum allowable stress was 

determined by the temperature of the vessel. 

Section 17.1.7: Fermenters, Mixing Vessels, and Agitators 

The fermenters were costed according to vertical pressure vessel and agitator equations in 

Chapter 16 of ​Seider et. al, 2017​.​17.10​ In order to confirm the accuracy of this equipment fit, the 

surface area correlated to heat transfer was calculated and compared to the vessel size to confirm 

that the vessel was appropriate for sizing the fermenter. Then, a factor of 1.15 was multiplied to 

account for the cost of the heating jacket, as advised by Professor Vrana. An agitator was also 

costed based on Table 17.2 provided by Dr. Bockrath.  

The mixing vessel costs were also calculated according to equations for vertical pressure 

vessels and agitators in Chapter 16 of ​Seider et. al, 2017​. As mentioned previously, the 

dimensions of the tank and material of construction were required to determine the cost of the 

tank. The dimensions of the tank were found from the volumetric flow through the vessel and the 

material of construction was set to be stainless steel.  
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Table 17.2 : Fermentation agitator sizing table courtesy of Dr. Bockrath 
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Section 18 

Fixed Capital Investment Summary 

 

 

 

 

 

  

151 



 

The total capital investment for the plant was calculated according to the process outlined 

in Chapter 17 of ​Seider et. al, 2017​.​18.1​ ​The total bare module cost for equipment was calculated 

by multiplying the total purchase cost of the equipment times the bare-module factor. The total 

bare module cost for all fermentation, filtration and crystallization equipment was calculated to 

be $69 MM. 

The costs included in the total capital investment are the costs associated with site 

preparation, service facilities, contractor fees, land and plant start-up. Table 18.1 shows each 

component of the total capital investment and the method in which each was calculated. 

Table 18.1: Total Capital Investment (TCI) Components. This table demonstrates the various components of TCI 
and their method of calculation. 

Component of Total Capital Investment Method of Calculation 

Cost of Site Preparations 5% of Total Bare Module Costs 

Cost of Service Facilities 5% of Total Bare Module Costs 

Cost of Contingencies and Contractor Fees 18% of Direct Permanent Investment 

Cost of Land 2% of Total Depreciable Capital 

Cost of Plant Start-Up 10% of Total Depreciable Capital 

 

Finally, a summary of the total investment required for this project is included in Table 

18.2.  The total permanent investment required in order to start up the plant is $100 MM. As 

seen, the total bare module cost of equipment makes up the majority of this initial investment 

with $69 MM.  
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Table 18.2: Total Capital Investment Breakdown. This table outlines the components of the total investment 
required for the startup of the plant. 
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Section 19 

Operating Costs- Cost of Manufacturing 
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Section 19.1: Variable Operating Costs 

The total variable operating costs are broken up into raw materials, utilities and general 

expenses, as outlined in Chapter 17 of ​Seider et. al, 2017​.​19.1​ The raw materials for this plant are 

water, glucose, palm oil, media salts and ethyl acetate, as outlined in Table 19.1. In total, the raw 

materials constitute $17.7MM of the total variable operating costs.  The utilities costs are 

composed of costs for low pressure steam, cooling water, electricity and nitrogen, as shown in 

Table 19.2. The utilities cost make up a total of about $6.96MM. Lastly, the general expenses are 

broken down into selling/transfer expenses, direct research, allocated research, administrative 

expenses and management incentive compensation. The method in which these are calculated are 

outlined in Table 19.3. General expenses make up a total of $11.5MM.  

Table 19.1: Raw Material Costs. This table outlines the total annual costs of raw materials in the process 

Raw Material Estimated Cost ($/kg) Required Ratio (/lb of 
DDDA) 

Total Annual Cost 
($MM/year) 

Water ($0.00027) 0.65 kg/lb DDDA ($0.00550MM) 

Glucose ($0.180) 0.046 kg/lb DDDA ($0.259MM) 

Palm Oil ($0.696) 0.60 kg/lb DDDA ($13.1MM) 

Media Salts ($0.027) 0.067 kg/lb DDDA ($0.0567MM) 

Ethyl Acetat​e ($0.80) 0.17 kg/lb DDDA ($4.28MM​) 

Total   ($17.7MM) 

 

The cost of process water was found to be $0.00027/kg from Table 17.1 in ​Seider et. al, 

2017.​19.2​ ​Palm oil and glucose prices are determined by global commodities prices. These 

commodity prices determined the cost of palm oil and glucose to be $0.696/kg and $0.180/kg 
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respectively.​19.3,19.4​ The ethyl acetate price was found on Alibaba as $800 per metric ton.​19.5 

Lastly, the cost of media salts was determined by performing a weighted average of the cost of 

each component part in the media.​19.5 

Table 19.2: Utilities Costs. This table demonstrates the annual utilities costs. 
 

Utilities Cost Required Ratio 
(per lb DDDA) 

Quantity (per 
year) 

Total Cost 
($/op-yr) 

Low Pressure Steam ($0.006/lb) 2.911 91.2MM lb ($0.55MM) 

Cooling Water ($0.0001/gal) 82.40 2.58MM gal ($0.26MM) 

Electricity ($0.07/kWh) 2.81 87.7MM kWh ($6.14MM) 

Nitrogen ($0.01/lb) 0.0017 0.053MM lb ($0.00050MM) 

Total    ($6.96MM) 

 

The costs of low pressure steam, cooling water and electricity were determined from 

Table 17.1 of ​Seider et. al, 2017​.​19.6​ The cost of nitrogen was given by Professor Vrana to be 

$0.01/lb. As seen in Table 19.2, utilities constitute about $6.96M of variable costs. Electricity 

alone is the largest contributor to the utilities cost and accounts for about 88% of the entire cost.  

Table 19.3: General Expense Data. This table outlines the components of General Expenses and their estimated 
annual costs 

Component of General Expenses Relationship to 
Sales 

Total Annual Cost 
($/yr) 

Selling/Transfer Expenses 3.0% ($2.98MM) 

Direct Research 4.8% ($4.77MM) 

Allocated Research 0.50% ($0.50MM) 

Administrative Expense 2.0% ($1.99MM) 

Management Incentive Compensation 1.3% ($1.24MM) 

Total 11.6% ($11.5MM) 
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As seen in Table 19.3, the components of general expenses are calculated in relation to 

the sales of the plant. This data was obtained from Chapter 17 of ​Seider et. al, 2017.​19.7​ General 

expenses associated with the plant make up $11.5MM of variable costs.  

Section 19.2: Fixed Operating Costs 

The total fixed operating costs are broken up into operations, maintenance and operating 

overhead. 

Table 19.4. Fixed Operations Costs. This table demonstrates the estimated total annual costs tied to labor-related 
operations 

Operations (labor-related) Estimated Cost Total Annual Cost 
($MM/yr) 

Direct Wages and Benefits $40/operator hour ($2.08MM) 

Direct Salaries and Benefits 15% of Direct Wages and Benefits ($0.31MM) 

Operating Supplies and Services 6% of Direct Wages and Benefits ($0.12MM) 

Technical Assistance to 
Manufacturing 

$60,000/yr/operating shift ($1.50MM) 

Control Laboratory $65,000/yr/operating shift ($1.63MM) 

Total  ($5.64MM) 

 
As seen in Table 19.4, the total fixed operations cost is $5.64 MM. The number of daily 

operating shifts was assumed to be five, which each shift containing five operators. These 

assumptions were based on data from Table 17.3 in ​Seider et. al, 2017 ​for batch and continuous 

operations.​19.8  
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Table 19.5. Fixed Maintenance Costs. This table displays the components of site maintenance and their estimated 
total annual costs. 

Maintenance Estimated Cost Total Annual 
Cost ($MM/yr) 

Wages and Benefits 4.5% Total Depreciable Capital ($4.03MM) 

Salaries and Benefits 25% of Maintenance Wages and Benefits ($1.01MM) 

Materials and Services 100% of Maintenance Wages and Benefits ($4.03MM) 

Maintenance Overhead 5% of Maintenance Wages and Benefits ($0.20MM) 

Total  ($9.28MM) 

 

The next component of fixed operating cost is the maintenance associated with the plant, 

as outlined in Table 19.5. The total maintenance cost contributes $9.28 MM and makes up the 

largest portion of the fixed operating cost. The method of calculating each component of 

maintenance is displayed in Table 19.5.  

Table 19.6 Fixed Operating Overhead, Taxes, and Insurance Costs. This table demonstrates total estimated annual 
costs related to operating overhead, taxes and insurance. 

 

Operating Overhead, Taxes, 
and Insurance 

Estimated Cost Total Annual 
Cost ($MM/yr) 

General Plant Overhead 7.1% of Maintenance and Operations Wages and Benefits  ($0.528MM) 

Mechanical Department Services 2.4% of Maintenance and Operations Wages and Benefits ($0.178MM) 

Employee Relations Department 5.9% of Maintenance and Operations Wages and Benefits ($0.439MM) 

Business Services 7.4% of Maintenance and Operations Wages and Benefits ($0.550MM) 

Property Taxes and Insurance 2% of Total Depreciable Capital ($1.79MM) 

Total  ($3.49MM) 
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Lastly, the combination of operating overhead costs, taxes and insurance are shown in 

Table 19.6. These costs constitute $3.49MM and make up the smallest portion of the fixed 

operating costs.  

The total annual fixed operating cost, as seen in Tables 19.4-19.6 is $18.4MM. The total 

operating costs, including both fixed and variable, is about $36MM.  
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Section 20 

Profitability Analyses - Business Case 
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Section 20.1: Plant Base Case Profitability 

The production of DDDA as a metabolite of genetically engineered yeast using palm oil 

feedstock shows considerable potential as a profitable venture within the Asia Pacific chemicals 

market. The viability of this project is dependent on the ability to find funds or venture capital 

financing for the considerable upfront total capital investment associated with the process 

equipment. 

The total capital investment for this project is $107 MM. The working capital associated 

with this project is relatively low; this is due to the assumption supported by consultants that the 

construction time for the project will be approximately one year. Working capital is defined as 

the cost of current assets (DDDA inventory, accounts receivable, raw materials stores, etc.) 

minus the cost of liabilities such as accounts payable. With this definition in mind, the ratio of 

current assets to liabilities over the first three years of construction/scale up was found to be 

5.64:1, clearly indicating the ability to pay back investors even on a short-term basis. The present 

value of the working capital is approximately $6.3 MM and is outlined in Table 20.1. 

Table 20.1: Summary of working capital requirements for the proposed project over the first three years of 
production (the capacity factors during this time were 0%, 50%, and 67% respectively) 
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Following the first two years of operational scale up from 50%, the DDDA production 

plant will operate at 100% production capacity for 300 days each year. This allows for a 

production buffer by building in the assumption of production that does not necessarily operate 

continuously 365 days per year. This is an important assumption for this plant due to the strong 

reliance on batch process scheduling for the upstream fermentation process. Should these 

operations not be optimally scheduled at all times, downtime can occur, increasing the batch 

cycle time and driving down capacity.  

Table 20.2 outlines several measures of profitability both at the onset of construction and 

for the third production year, the first year where the plant is operating at its maximum 

production capacity. Over the lifetime of the plant, the internal rate of return (IRR) is calculated 

to be 24.12%. This is approximately 1.6 times the nominal interest rate specified of 15%. The 

return on investment for this project is 18.20%. 

Table 20.2: Profitability metrics for the DDDA production process. These measures of profitability use the 
averaged, base case pricing calculations and a nominal interest rate of 15%. Deviations from these values will be 
discussed in the sensitivity analysis.  
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While this project offers a positive ROI, in order to understand the value creation 

opportunities of this project, they must be put in perspective relative to the larger chemical 

industry and other alternative investment opportunities. Over the pass three years (2017-2015), 

the S&P 500, an American stock market index based on the market capitalizations of 500 large 

companies having common stock listed on the NYSE or NASDAQ, had an average  returns of 

11.72%.​20.1​ Evonik, a major player in the DDDA market  and a major global manufacturer of 

specially chemicals averaged 8.99% total returns over the last three years.​20.2​ While other 

industries may provide stronger year-over-year returns, the Dow Jones Industrial Average had 

returns of 25.08% in 2017.​20.3​ This project clearly represents a profitable and market competitive 

investment, especially within the specialty chemicals marketspace. 

The net present value (NPV) of the base case profitability analysis was determined to be 

approximately $54.1 MM. The assumptions for this base case is that DDDA is sold at a price of 

$7/kg, a competitive price consistent with butadiene sourced DDDA, and the price controlling 

raw material (palm oil) costs $696/metric ton.​20.4​ These assumptions resulted in a year over year 

revenue of $98.5 MM at the capacity factor of 100% for 300 days per year. Figure 20.1 outlines 

the cumulative free cash flow generated over the 15-year operation period. Based on this figure, 

the breakeven period for this investment takes place during the fourth fiscal quarter of 2025. 
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Figure 20.1: Cumulative discounted free cash flow for the DDDA production plant over a 15 year production 
lifespan assuming base case pricing structure for DDDA and palm oil 

 

The profitability of this project as it is currently represented has a strong dependency on 

the length of the construction period for the production plant. Due to the high direct permanent 

investment and negative cash flows associated with site construction and the absence of DDDA 

production, the ROI for the project is strongly based on how quickly 100% capacity can be 

reached. Moving forward, exhaustive construction scheduling should be ensured in order to 

protect against this externality.  
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Section 20.2: Fixed & Variable Cost Sensitivity 

 
Figure 20.2: Cumulative discounted cash flow as a function of changing fixed and variable costs. Sensitivity for a 

100% increase in fixed cost and a 15% increase in variable costs were explored.  

Figure 20.2 outlines the strong dependency of the project to changes in the cost of 

equipment relative to changes in the cost of raw materials. This process relies heavily upon 

multistep fermentation, separation, and purification processes. These processes rely upon many 

expensive units of equipment, specifically the fermentation tanks, and this sensitivity is clearly 

indicated by the $20 MM deficit produced by the 2 times increase in fixed costs. Comparatively, 

minor (<15%) fluxuations in variable costs do not appear to have nearly as strong of an influence 

on profitability; water, glucose, palm oil, and ethyl acetate are relatively low cost inputs relative 

to the value creation of the fermentation process. This variable costs influence on profitability is 

also a product of the utilities, specifically low pressure steam in the evaporation operations. 
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Further analysis of the influence of variation in raw materials pricing is discussed in Section 

20.3. 

Section 20.3: DDDA Sale Price Sensitivity 

 
Figure 20.3: Effect of DDDA sale price on overall project profitability. The Current Design dot represents the base 
case pricing structure. The price of the manipulated variable was adjusted in order to find the price at which the 
project is no longer viable given no other changes to the process. 

Figure 20.3 shows the strong dependence of project profitability on the sale price of 

DDDA. This dependency is not particularly surprising considering sale price is one of the 

strongest sliders for overall revenue. In this case, the breakeven price, the price at which the 

DDDA production plant will generate no profit over its 15-year production lifespan, is $5.68/kg 

DDDA. This price is below the average sale price of DDDA by $1.32/kg as of April 2018. 

Currently, bulk distributors can expect to sell one ton of 98.9% purity DDDA for $7,900/ton 

($7.9/kg).​20.5​ With the demand for DDDA growing at 5-6% annually and a market with strong 
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inverse price swings related to butadiene availability (see Section 20.4), the sales price of DDDA 

is only expected to rise. While the base case of this profitability analysis assumed a conservative 

sale price of $7/kg, this plant could feasible have NPV approaching $100 MM. Should the sale 

price of DDDA stay locked in at $8/kg across the 15 year life cycle of the plant, the ROI would 

be 25.15%. 

Section 20.4: Palm Oil Sale Price Sensitivity 

 
Figure 20.4: Effect of palm oil sale price on overall project profitability. The Current Design dot represents the base 
case pricing structure. The price of the manipulated variable was adjusted in order to find the price at which the 
project is no longer viable given no other changes to the process. 

By a considerable margin, palm oil represents the largest raw material input for the 

production of DDDA. 0.6 kg (1.32 lb) of palm oil are required to produce 1.00 lb of DDDA. 
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other the process water, this represents the largest mass contribution to the feedstock per pound 

of product produce. Water however, is considerably cheaper than the fat acid feedstock; As 

shown in Figure 20.4, palm oil costs approximately $696/MT ($0.70/kg). The only raw material 

input to the process more expensive than palm oil is ethyl acetate, the organic solvent used in 

purification, at $0.80/kg. Due to the approximate 99% recycle of ethyl acetate outlined in the 

Sections 13, the quantity of ethyl acetate per pound of product is far lower than palm oil at 0.17 

kg (0.37 lb) per 1.00 lb DDDA.  Therefore, sensitivity to variation in palm oil was the raw 

material analyzed for sensitivity.  

 
Figure 20.5: Outlines that profitable pricing region for palm oil relative to 15 years of Asian Pacific palm oil pricing. 
There appears to be not historic context in which palm oil prices alone would result in this project becoming 
unprofitable. 

Figure 20.4 and Figure 20.5 clearly indicate that the process is much more insensitive to 

palm oil prices than DDDA prices. Palm oil prices would need to reach historic highs in order to 

the be the sole contributor to hindering project viability. $696/MT was selected as the base case 
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palm oil price point because it was a medium price, and because it was the most recently quoted 

price for palm oil in the region.  

Section 20.5: Palm Oil vs Butadiene Price Variability 

 
 
Figure 20.6: Feedstock Volatility over 3 years. The trend present in this figure is estimated to be cyclic. Variations 
in the peaks may occur. 

 

As discussed in the Section 4: Market and Competition Analysis, butadiene pricing is 

very susceptible to price swings due changes in crude oil production. This price volatility does 

not affect this process, but is a far more important sensitivity for conventional petrochemical 

production. Comparing the month to month price fluctuation of palm oil to butadiene highlights 

the value added of having a reliable feedstock supply. Should palm oil prices have price 

fluctuation of 60% similar to butadiene in summer of 2009, it becomes clear that its price could 

feasibly approach the Not Profitable line in Figure 20.5. While the conversion efficiency and 
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mass ratio of butadiene for conventional DDDA production are not within the scope of this 

project, it is clear that raw materials sensitivity is much more of a consideration for the 

petrochemical synthesis of DDDA than the biological synthesis of DDDA. Under the base case 

pricing discussed, this project will produce value for shareholders and stakeholders.  
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Section 21 

 

Other Important Considerations 
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Section 21.1 Environmental Considerations 
 

DDDA and the other diacid impurities have no substantial negative environmental 

impact.​21.1​ Water contamination is not a concern because the diacids are readily biodegradable, 

with low bioaccumulation potential. Wastewater treatment is largely focused on treating 

biomass, media, and salts since there is no known toxicity of diacids in water.​21.2 

This process evaporates a large amount of water vapor, nitrogen, and ethyl acetate. The 

biggest concern being the release of ethyl acetate, a volatile organic compound. Ethyl acetate 

released from this plant can cause significant air pollution and health effects further explained in 

Section 21.3. This process aims to minimize the release of ethyl acetate by condensing the vapor 

and recycling it.  

Deforestation related to utilizing palm oil is a major environmental concern that is further 

explained in Section 21.4. This DDDA process will increase demand for palm oil, which will 

result in more deforestation. This domino effect is only regulated by the market size of DDDA 

that is subject to stringent regulations on volatile organic compounds (VOC) emissions. 

However, our team is choosing to purchase palm oil from vendors that are certified by the 

Roundtable on Sustainable Palm Oil (RSPO). RSPO Certification ensures that producers are 

limiting the land that may be developed for palm oil, curbing deforestation according to the 

RSPO principles and Criteria (P&C) standard.​21.3 

 

Section 21.2 Process Controller Considerations 
 

All the fermenters require height and temperature controllers. The temperature needs to 

be maintained across all seed, growth, and production fermenters to ensure a stable environment 
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for the conversion of palm oil to DDDA. Height controllers are needed to maximize the output 

from each fermenter ensuring our annual production goal is met. 

The filtration section requires a valve before the rotary drums and a controller on the 

ethyl acetate stream leading into the mixing vessels. The valve before the drums will be kept 

open so they both operate in parallel. In the case a drum fails the valve will be closed, switching 

flow to the working drum will the failed drum undergoes maintenance. The controller on the 

ethyl acetate stream is set to meet design specifications explained in Section 6.4. 

No controllers or valves are necessary for the crystallization part of the process. All 

equipment is running continuously. Failure of equipment in this part of the process will have to 

be maintenanced in the 60 days of non-operating time. 

Section 21.3 Safety and Health Concerns 

Primary health concern is the high exposure to ethyl acetate. The amount of ethyl acetate 

recycling through the plant can cause a number of adverse health problems in short term and 

long term exposure. Short term exposure can induce nausea and vomiting while long term 

exposure can induce eye, lung heart, kidney, or liver problems. The allowable exposure to ethyl 

acetate for workers over an 8 hour shift is 200 ppm.​21.4 

Section 21.4 Plant Location, Startup, and Layout 

The proposed plant will be located in Malaysia, preferably near a water treatment facility. 

Deforestation is a concern to plant palm to meet the current demands of DDDA. The plant will 

preferably be near a palm farm to provide feedstock and reduce transportation costs. The layout 

of the plant needs to be designed in a way which prioritizes worker safety and mitigates the risks 

of high exposure to VOCs. The plant needs to meet Malaysia regulations for VOC emissions, 
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building codes, and wastewater treatment. The startup cost for the plant includes site preparation, 

service facilities, land cost and contractor fees as explained in section 18. 
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Section 22 

Conclusion and Recommendations 
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Analysis of the proposed process design suggests that the biological synthesis of 

dodecanedioic acid (DDDA) warrants further investigation of viability and more rigorous 

economic analysis. As dictated by the project objective, 14,000 metric tons of DDDA were 

modeled to be produced per year for sale to Asian Pacific markets. The product was of greater 

than 99% purity and met or exceeded known customer requirements set by conventionally 

sourced DDDA. Economic analysis estimates the NPV of the project to be $54.1MM with an 

IRR of 24.12%. Prior to continued development of the described process, design calculations and 

processes (see Appendix A) should be revised to confirm accuracy. Assumptions surrounding 

equipment capacities and operating costs should additionally be refined.  

Areas for additional model optimization include the fermentor, evaporation utilities, and 

water usage. A kinetic model of fermentation may serve as a more accurate model of growth 

rates and allow for the optimization of feedstock supply. Additional integration of heat utilities 

outside of heated organic solvent recycle may help to push down annual utilities costs. Finally, 

reprocessing of water in the fermentation units may allow for decreased feed of process water to 

existing regional palm oil extraction and water treatment infrastructure. Additional patent data 

must first be explored prior to implementation of the aforementioned model optimizations.  

Separation of the diacid impurities (sebacic acid, suberic acid, adipic acid) from DDDA 

in ethyl acetate by solubility was determined to be infeasible due to their similar solubility 

properties. For this reason, the diacid melt crystallization unit was designed to take advantage of 

the diacids’ different melting points to purify DDDA. This design was based upon industry 

consultant recommendations to analyze para-xylene separation from an m-xylene mixture. 

Should the window for melt crystallization be infeasible in practice, or should the diacid 
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impurities simply solubilize into the liquid DDDA, the diacid purification technique will have to 

be re-designed. Currently no research is apparent that refutes the feasibility of the process 

described in this proposed design. 

The profitability of the proposed design relies most heavily upon the market price of 

DDDA and the total capital costs associated with multiple fermentation trains required to meet 

production goals. Sensitivity analysis indicates that a 20% decrease in the sale price of DDDA 

for the modeled base cae could endanger the project viability. Similarly, a sizable (>50%) change 

in the calculated fixed cost of the equipment would have the same effect. While the former does 

not appear likely to occur due to the rising demand for DDDA relative to conventional supply, 

more rigorous analysis of total permanent capital is recommended to ensure the costs associated 

with equipment were not underestimated.  

We caution against using optimistic cost information, keeping in mind associated 

uncertainties in the proposed design. However, based upon all available data provided, we do 

recommend investing in this project.  
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Appendix A: Sample Calculations 

Fermentation Reaction Calculations 

The following chemical reactions were derived using elemental balances. Certain species such as 

biomass and palm oil fatty acid triglycerides were given approximated stoichiometries for the 

purposes of balance simplification 

O O CO O     Selectivity .4Growth P athway (1)     C H:  6 12 6 + 6 2 → 6 2 + 6H2 = 0  

O O                  Selectivity .6Growth P athway (2)                C H:  6 12 6 → CH2 = 0  

Production Pathways: DDDA, Sebacic acid, Suberic Acid, and Adipic Acid (Figure 10.3) 

 Selectivity = 0.9O (C H O ) 8O C H O 4CO 4H O2 C H6 5 6 16 32 2 3 + 3 2 → 7 12 22 4 + 2 2 + 2 2  

 Selectivity = 0.033O (C H O ) 9O C H O 8CO 8H O2 C H6 5 6 16 32 2 3 + 5 2 → 7 10 18 4 + 3 2 + 3 2  

 Selectivity = 0.033O (C H O ) 0O C H O 2CO 2H O2 C H6 5 6 16 32 2 3 + 8 2 → 7 8 14 4 + 5 2 + 5 2  

 Selectivity = 0.033O (C H O ) 01O C H O 6CO 6H O2 C H6 5 6 16 32 2 3 + 1 2 → 7 6 10 4 + 6 2 + 6 2  

Fermentation Air Feed Calculations 

 

Sample Calculation: 1m​3​ growth fermenter 

 

 

Filtration Calculations 
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Drum Size:  
Slurry stream 1 from section 400 has a solids flow rate of 2898.31 kg/hr. The solids are only 
diacids and biomass. 
 
Filter Area= solids flow rate/ capacity= hr

2898.31 kg ÷ 6000 lb
f t −day2  

= hr
2898.31 kg × 6000 lb

f t −day2

× kg
2.2 lb × day

24 hr  
=25.5 ft​2​ (round up to manufactured sizes) 

Filter Area= 28.3 ft​2​ (diameter: 3 feet, length: 3 feet) 
 

Batch to Continuous Transition Calculation 

In order to avoid build up of volume of fermentation broth to be processed in the 
continuous downstream processes, the flow rates used in the Aspen filtration report were set by 
the upstream production rate. This ensured that the surge tank would not need to be much larger 
than a factor larger than the size of a single batch. 

 

Dissolution Calculations 

Per patent information and solubility information outlined in Section 10, the ethyl acetate flow 
rate was set to 7 times greater than the flow rate of diacids. The solubility of diacids in the 
dissolution step was then calculated to ensure full solubilization of the products. The solubilities 
were found to be within the accept range for the diacids at the given temperature.  

Example Calculations: M-401 

 

 

 

 

 

 

Fermentation Cooling Jacket Sizing & Heat Duty 
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The heat duty of all fermenters was calculated based upon the combustion of oxygen. 
This calculation and information regarding the cooling utility, chilled water, was used the size 
the area of the heating jacket. These heat transfer areas were compared to the internal area of the 
vessels in which they were required to fit, and were confirmed in all cases to be smaller. The heat 
transfer coefficient was estimated based on material to be 120 BTU/hr*ft​2​*F. This indicated that 
additional cooling coils were not required in order to maintain the internal temperature of the 
vessels. The quantity of utilities duty on each vessel was also calculated and informed utilities 
calculations is Section 14.  

Sample Calculations: F-103 

 

 

 

 

Heating/Evaporation Calculation & Sizing 

The heat duty associated with preheating and reheating liquids throughout this process 
were calculated using low pressure steam. Using the flow rates of the streams being heated, their 
heat capacities, and the desired temperature change across the heat exchangers, the heat duty Q 
was calculated. It was assumed in all calculations that low pressure steam was fed into all heat 
exchangers as saturated steam at its vapor pressure. Low pressure steam was assumed to 
condense across the heat exchanger, releasing heat related to its heat of vaporization at the 
specified temperature and pressure. No heat transfer losses were factored into these calculations. 
Future considerations should seek to insert real-world inefficiencies into these heat transfer 
calculations. 

 

 

Sample Calculations: E-402 
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The evaporation units in this process were calculated similarly to the heating calculations 
above, but included additional calculations to account for the required phase change across the 
block. The heat transfer coefficient was estimated based on material to be 120 BTU/hr*ft2*F. A 
general outline of these calculations can be seen below. 

Sample Calculations: E-401 
Water Evap= 1088 kg/hr = 60422 mol/hr 
 
Liquid heating 
inlet temp= 37 C 
outlet temp= 100 C 
Q=286256.32 kJ/hr=79.52 kW 
 
Vaporization 
Q= 245616.33 kJ/hr= 682.27 kW 
 
Gas Heating 
inlet temp= 100 C 
outlet temp= 115 C 

Q=33145 kJ/hr= 9.21 kW 
 
Total Q= 771 kW=2630723 BTU/hr 
 
T hot in= 186 C=336.8 F 
T hot out= 163 C= 325.4 F 
T cold in= 37 C=98.6 F 
T cold out= 115 C=239 F 
LMTD= 172.6 F 
 
U= 120 BTU/hr-ft​2​-F 
Q=U*A*LMTD 
A=127 ft​2 

 

Conveyor Belt Sizing Calculations 

The need to feed solid materials at points throughout this process requires the sizing of 
conveyor belts for materials transport. The volumetric flow rate of materials was used to find the 
required length and width of these pieces of equipment. This informed later costing analysis 
using ​Process Design Principles 3​rd ​Edition, by Seider, Seader. 
 

196 



 

Sample Calculation: CB-401 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B: Excel, Aspen Plus Input Summary, Block Report, and Stream Reports 

Fermentation Excel Spreadsheet 
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Filtration Flowsheet 
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Filtration Input Summary
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Filtration Block Report
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Crystallization Flowsheet 
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Crystallization Input Summary
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Crystallization Block Report
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Appendix C: Material Safety Data Sheets 

This appendix contains MSDS forms for all major materials in our process. They are in 

the following order: 

● Palm Oil 

● Glucose 

● DDDA 

● Sebacic Acid 

● Suberic Acid 

● Adipic Acid 

● Ethyl Acetate 
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