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An expanded family of ruthenium metathesis catalysts bearing cyclic alkyl amino carbene
(CAAC) ligands is reported. These catalysts exhibited exceptional activity in the ethenolysis of the
seed oil derivative methyl oleate. In many cases, TONs >100,000 were achieved, at only 3 ppm
catalyst loading. Remarkably, the most active catalyst system was able to achieve a TON of
340,000, at only 1 ppm catalyst loading. This is the first time a series of metathesis catalysts has
exhibited such high performance in cross metathesis reactions employing ethylene gas, with
activities sufficient to render ethenolysis applicable towards the industrial scale production of
linear alpha-olefins (LAQs) and other terminal olefin products.
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A new series of cyclic alkyl amino carbene (CAAC)-containing olefin metathesis cataysts was
synthesized, and were found to exhibit unprecedented activity in the ethenolysis of methyl oleate.
This work advances the state-of-the-art of the ethenolysis reaction, and is expected to find
particular use in large scale industrial applications.
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The transformation of small molecule chemical feedstocks to high-value chemicals has been
a long-standing challenge that has received a significant resurgence of interest in the
chemical sciences. This is a result of recently introduced programs promoting the use of
greener chemistry practices, as well as the rising costs associated with the production of fine
chemicals from petrochemicals. Consequently, the ability to access high-demand products
from renewable sources such as oleochemicals presents a cost-effective and environmentally
friendly alternative.[!]

Olefin metathesis reactions, such as cross-metathesis (CM), ring-closing metathesis (RCM),
and ring-opening metathesis polymerization (ROMP), all of which generate a new internal
olefin, have enjoyed widespread popularity in both academic and industrial settings as a
result of their general applicability, ease of use, and Non-prohibitive costs.[2] Ruthenium-
based metathesis catalysts are ideal for such transformations as a result of their generally
robust nature, which enables handling in air, and imparts good tolerance to a variety of
functional groups and trace impurities. All of these are necessary prerequisites when
subjected to raw materials or biomass.

Many renewable or bio-based materials, such as fatty acids originating from seed oils and
their derivatives, contain at least one unit of unsaturation, providing a synthetic handle for
derivatization by olefin metathesis catalysts. The CM reaction with ethylene (2), commonly
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referred to as ethenolysis, has significant potential as a clean, scalable, and sustainable
solution for the production of linear alpha olefins (LAOSs) (eg. 3 and 4) from the natural oils
found in oleochemicals such as methyl oleate (MO, 1) (Scheme 1). LAOs are direct
precursors to a variety of commaodity chemicals with applications as fuels, surfactants,
lubricants, waxes, perfumes, antimicrobial agents, and thermoplastics. In addition, LAOs
can be rapidly elaborated to more expensive products such as agrochemicals, insect
pheromones, and pharmaceuticals.[3!

The production of terminal olefins from the ethenolysis of seed oil derivatives using
metathesis catalysts has been previously demonstrated. However, the high catalyst loadings
required (10 — 100 ppm) to achieve an acceptable yield of terminal olefins render these
reported procedures cost prohibitive on an industrial scale.l41.[51.[6] In general, catalyst
turnover numbers (TONSs) of at least 35,000 and 50,000 are recommended in the
manufacturing of specialty and commodity chemicals, respectively.[4] In the ethenolysis of
the benchmark substrate MO (1), standard ruthenium-based metathesis catalysts such as 5 —
8 afforded TONs of only 2,000 — 5,000. This stands in contrast to the extremely high activity
normally exhibited by these catalysts in CM with terminal or internal olefins. For example,
TONSs as high as 470,000 have been achieved with 8 in the CM of MO and 2-butene.[”] The
most active catalyst for ethenolysis in the literature to date is cyclic alkyl amino carbene
(CAAC) complex 10 (Scheme 2), which has been previously reported to generate a TON of
35,000 in the CM of MO with ethylene.[*].[3] As a result of the lack of a catalyst sufficiently
active to produce teminal olefins using ethylene gas, industrial scale ethenolysis is currently
accomplished using higher olefins as ethylene surrogates.[®°] Catalyst 7, for example, is able
to achieve the in situ ethenolysis of MO with a TON as high as 192,900 with propylene
gas.[8] However, there is a need to develop catalysts capable of achieving high activity in
ethenolysis reactions when ethylene gas is utilized directly. Whereas CM with higher olefins
necessarily results in a substantial amount of undesired internal olefins being produced as
byproducts, the only products derived from CM with ethylene are terminal olefins. This
intrinsic advantage promotes both increased yield and ease of purification of the desired
terminal olefin products, and is a particularly important consideration for bio-refinery
feedstocks in which multiple downstream products are produced.[3]

Herein, we report the discovery of the most active ethenolysis catalysts to date. In many
cases, TONs surpassing 100,000 were achieved for the ethenolysis of MO, using ethylene
gas. Remarkably, certain catalyst systems even exhibited TONs approaching 200,000, with
the highest TON achieved being 330,000. This represents the first time that reaction
conditions have been developed in order for ethenolysis to proceed efficiently on an
industrial scale.

Despite the promising results previously exhibited by 10 in the ethenolysis of MO,[41.[5]
CAAC ligated ruthenium complexes have yet to be investigated in detail. In particular, it
was envisioned that more in-depth structure/activity relationship (SAR) studies would
facilitate the development of new, more efficient catalysts. Thus, a variety of new catalysts
were prepared through modifications of exisiting literature procedures (Scheme 2).[51.181
Known CAAC catalysts (10, 13, 18, 25) were screened alongside the new catalysts, in order
to ensure accurate SAR comparisons within the series.
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Initially, derivatives of the previous benchmark catalyst 10 were targeted, in which only the
ortho substituents of the N-aryl ring were varied (9 — 13). It is worthy to note that the
syntheses of 9 and 10 are low yielding (ca. 20%), and purification is cumbersome.
Furthermore, complexes bearing even smaller ortho substitution such as N-mesityl or N-2-
isopropylphenyl, were unable to be accessed in even small amounts. In contrast, 11 — 13 can
be produced in high yield (78 — 86%) and isolated without difficulty. This is hypothesized to
be related to the stability of the free carbene intermediate that is generated in situ, which
might otherwise be expected to decompose rapidly in the absence of steric protection. It was
envisioned that this decomposition pathway could be circumvented through the installment
of larger substituents at either R* or R®. Indeed, this strategy proved to be successful, and we
were able to readily access a variety of new complexes in moderate to high yield (29 —
82%). Several of the new backbone containing catalysts included N-aryl substitution that
was previously inaccessible (14, 15, 17, 21), meanwhile others (16, 18 — 20, 22 — 25) were
synthesized in order to provide a more thorough SAR study. Single-crystal X-ray diffraction
of 11 and 24 revealed distorted square-pyramidal geometries, and structural parameters,
including bond lengths and angles, were consistent with those found previously for 10 and
13 (Figure 2). Moreover, catalyst 24 exhibits a CAAC ligand featuring a chirogenic center
as well as two different ortho N-aryl substituents. Accordingly, the single crystal of 24
revealed both N-aryl rotamers (24a and 24b), in a ratio of 64:36 respectively.?

Once in hand, catalysts 9 — 25 were examined in the ethenolysis of 1 using ethylene (Table
1). Reaction conditions were adapted from those that were previously reported in the
literature, and were initially re-optimized using benchmark catalyst 10 (neat MO, 40 °C, 150
psi ethylene).l4l The only deviation from the published procedures was the use of higher
purity ethylene (99.95%) than previously reported (99.9%). We were pleased to find that
this simple modification appeared to already result in a substantial increase in activity: 10
ppm loading of catalyst 10 resulted in a TON of 67,000, whereas the benchmark value for
10 published in the literature is a TON 35,000.[401.[10]-11[12),[13] \w/e were delighted to find
that the TON of catalyst 10 further increased to 120,000 upon reduction of the catalyst
loading to 3 ppm. Thus, all subsequent reactions were run at 3 ppm catalyst loading, which
was also expected to provide greater differentiation in activity between promising catalysts
than at 10 ppm.

Remarkably, at 3 ppm catalyst loading, most catalysts surpassed a TON of 100,000!
Specifically, catalysts 11 and 24 emerged as the most efficient, with TONs of 180,000.
Catalyst activity correlates with N-aryl substitution, with larger substituents at R and R?
generally resulting in higher TONs, although this can also have a deleterious effect (as in 12
and 13, compared to 9 — 11). The ideal combination thus far appears to be when R is small
and R is large, as in catalysts 11 and 24 (R1 = Me, R2 = iPr). Interestingly, substitution at
R® by a phenyl ring resulted in an overall improvement of activity, especially for N-2,6-
diisopropylphenyl catalyst 25. Replacement of R4 and/or R® by ethyl, propyl, or cyclohexyl
did not result in a significant change in the TON (as in 15 — 19), although an adamantyl
substituent (20) resulted in complete loss of activity. Interestingly, while consumption of
MO appears to be the most important determining factor in the overall yield of ethenolysis
products, increased N-aryl substitution on the catalyst appears to strongly favour selectivity
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for terminal olefins. These trends in selectivity and TON are most evident in the series of
catalysts bearing a phenyl ring on the backbone at R® (21 — 25).

A plausible explanation for the high activity exhibited by CAAC catalysts in ethenolysis
transformations might be a result of increased stabilization of the ruthenium methylidene
intermediate generated in the presence of ethylene gas. Ruthenium methylidenes are known
to decompose rapidly via insertion of the N-aryl substituent into the methylidene carbene,
which subsequently generates various ruthenium hydrides that are inactive in metathesis
transformations.[!5] CAAC ligands are known to be more electron donating than their N-
heterocyclic carbene (NHC) counterparts.[16] Thus, when used in place of NHCs, it is
expected that the increased electron density at ruthenium might somewhat stabilize the
otherwise highly reactive and electron deficient methylidene intermediate.[15.cl. [17]
Substitution of the ortho N-aryl substituents with a larger sterically encumbered group
would also be expected to significantly decrease the rate of termination by insertion into the
[Ru]=CH, bond. However, increased substitution can also hinder coordination of olefins to
the ruthenium metal center. Diminished reactivity with increasing N-aryl substitution was
indeed noted when initiation rates of selected catalysts (9 — 14) were measured following
exposure to n-butylvinylether.[18] When initiation rates are compared to TONSs, it is clear
that both the slowest initiating catalysts (12, 13) and the fastest initiating catalyst (14)
exhibit the lowest TONs (Figure 3). This is likely a result of diminished catalytic rate for the
former group and an increased susceptibility to decomposition for the latter. This study
illustrates the importance of this delicate balance, as reflected in the superior TONs
exhibited by catalysts 11 and 24, possessing asymmetric N-aryl substituents. In these
systems, the smaller substituent (R = Me) faciltates rapid coordination of the incoming
olefin substrate, whereas the larger substituent (R2 = iPr) prevents decomposition of the
methylidene intermediate. This asymmetry might be expected to exhibit a greater effect in
CAAC ligated catalysts, as the steric interaction of the ortho substituents on the N-aryl ring
with the two adjacent geminal methyl substituents would be expected to influence the
conformation of the N-aryl ring. If the larger substituent resides closer to the ruthenium
metal center, the methyl group which is inherently more susceptible to CH insertion would
be directed away from the reactive ruthenium methylidene.

It has been postulated that high activity in ethenolysis might be correlated to the tendency of
a catalyst to undergo degenerative metathesis events, through the preferential formation of
2,4-metallacycles rather then 2,3-metallacycles, which would result in increased selectivity
for terminal olefins in the product distribution.[2%] This is a powerful design principle in the
context of achieving high kinetic selectivity for terminal olefins, when employing higher
olefins such as propene and 1-butene gas as ethylene surrogates. However, when ethylene
gas is employed, it is more likely that the lower selectivities for terminal olefins exhibited by
previous generations of catalysts (5 — 8) is primarily a result of rapid catalyst death in the
presence of ethylene. This would translate to products reflecting the kinetic distribution of
rapid unselective cross metathesis reactions of 5 — 8 with both ethylene and terminal
olefins.[20] A lthough CAAC-ligated ruthenium-based catalysts have been demonstrated to
engage in metathesis reactions more slowly than phosphine or NHC-ligated catalysts,[5al.[18]
they also appear to persist for a much longer time in the presence of ethylene.[21] This would
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allow for the ethenolysis reaction to proceed closer to completion in order to achieve the
equilibrium ratio of terminal olefin products, and provides a feasible explanation for the
notable increase in activity exhibited by this family of catalysts.[22]

Finally, given the notable dependance on the TON with respect to the purity of the ethylene
employed, as seen earlier for catalyst 10, we briefly explored the effect of utilizing an even
higher purity ethylene source (99.995% vs. 99.95%) at different loadings of catalyst 11
(Table 2).23 A dramatic increase in TON was noted at 1 ppm catalyst loading. To the best of
our knowledge, this represents the highest value available in the literature for any
ethenolysis catalyst to date (TON 340,000).

In summary, a new series of ruthenium metathesis catalysts, bearing CAAC ligands, is
presented that displays exceptional activity in ethenolysis reactions. In the cross metathesis
reaction of the seed oil derivative methyl oleate (1) and ethylene gas (2), TONs >100,000
are generated in many cases, which surpasses the minimum value of 50,000 required to be
considered economically sustainable on an industrial scale. Furthermore, even higher TONs
(180,000 — 340,000) were obtained in some cases. These are the highest values recorded in
the literature to date for an ethenolysis reaction, and the only reported TONs >50,000 using
ethylene gas specifically. As a result, it is envisioned that this work will find substantial
application in the continued development of new methodologies and processes directed
towards the economically and environmentally sustainable production of LAOs, as well as
other valuable terminal olefins, especially through the transformation of seed oils and their
derivatives.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Selected ruthenium metathesis catalysts previously studied for ethenolysis.

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2016 February 02.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Marx et al.

Page 10

Figure 2.
Solid-state structures of 11 and 24 (24 crystallized as 24a and 24b, in a ratio of 64:36), with

thermal ellipsoids drawn at 50% probability.1* For clarity, hydrogen atoms have been
omitted. Selected bond lengths (A) for 11: C1-Ru 1.928(6), C19-Ru 1.824(6), O1-Ru
2.301(4), Cl1-Ru 2.3374(16), CI2-Ru 2.3165(17); for 24a: C1-Ru 1.940(7), C24-Ru
1.836(9), O1-Ru 2.332(8), Cl1-Ru 2.3356(18), CI2-Ru 2.3271(13); for 24b: C1-Ru
1.931(12), C24-Ru 1.828(18), O1-Ru 2.325(15), CI1- 2.335(4), CI2-Ru 2.307(3).
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Comparison of initiation rates and TON for catalysts 9 — 14.
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Scheme 1.
Ethenolysis of the seed oil derivative methyl oleate (1).
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Scheme 2.
Synthesis of CAAC complexes under study (isolated yield in brackets).
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Table 1

Ethenolysis of methyl oleate (1) using catalysts 9 — 25.2

catalyst  conversion (%)P€  selectivity (%)P4€  yield (%)f  TONY
9 37 86 32 110,000
10 42 88 37 120,000
11 59 92 54 180,000
12 18 94 17 57,000
13 19 97 18 60,000
14 22 63 14 47,000
15 26 86 22 73,000
16 42 92 39 130,000
17 19 78 14 47,000
18 13 97 13 43,000
19 16 97 15 50,000
20 <5% - - -
21 41 83 34 110,000
22 46 85 39 130,000
23 48 88 43 140,000
24 57 94 54 180,000
25 47 98 46 150,000

aReaction conditions: catalyst (3 ppm), C2H4 (150 psi, 99.95% purity), 40 °C, 3 h.
bDetermined via GC, using dodecane as an internal standard.
CConversion =100 — [(final moles 1) X 100/[initial moles 1)]

dSelectivity for ethenolysis products (3 and 4) over self-metathesis products (3a and 4a).

eSelectivity =100 X (moles 3 + 4)/[(moles 3 + 4) + (2 X moles 3a + 4a)].

f

Yield = Conversion X Selectivity/100.

gTON = Yield X (initial moles 1/moles catalyst)/100.
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Table 2

Effect of CoH,4 (2) source on activity of catalyst 11.2

Loading purity of 2 yield (%) TON
3 99.95% 54 180,000
3 99.995% 53 180,000
2 99.95% 48 240,000
2 99.995% 49 245,000
1 99.95% 13 130,000
1 99.995% 34 340,000

a ) . . . .
Reaction conditions, and calculations, are as listed in Table 1.
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