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An expanded family of ruthenium metathesis catalysts bearing cyclic alkyl amino carbene 

(CAAC) ligands is reported. These catalysts exhibited exceptional activity in the ethenolysis of the 

seed oil derivative methyl oleate. In many cases, TONs >100,000 were achieved, at only 3 ppm 

catalyst loading. Remarkably, the most active catalyst system was able to achieve a TON of 

340,000, at only 1 ppm catalyst loading. This is the first time a series of metathesis catalysts has 

exhibited such high performance in cross metathesis reactions employing ethylene gas, with 

activities sufficient to render ethenolysis applicable towards the industrial scale production of 

linear alpha-olefins (LAOs) and other terminal olefin products.

Graphical Abstract

A new series of cyclic alkyl amino carbene (CAAC)-containing olefin metathesis cataysts was 

synthesized, and were found to exhibit unprecedented activity in the ethenolysis of methyl oleate. 

This work advances the state-of-the-art of the ethenolysis reaction, and is expected to find 

particular use in large scale industrial applications.
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The transformation of small molecule chemical feedstocks to high-value chemicals has been 

a long-standing challenge that has received a significant resurgence of interest in the 

chemical sciences. This is a result of recently introduced programs promoting the use of 

greener chemistry practices, as well as the rising costs associated with the production of fine 

chemicals from petrochemicals. Consequently, the ability to access high-demand products 

from renewable sources such as oleochemicals presents a cost-effective and environmentally 

friendly alternative.[1]

Olefin metathesis reactions, such as cross-metathesis (CM), ring-closing metathesis (RCM), 

and ring-opening metathesis polymerization (ROMP), all of which generate a new internal 

olefin, have enjoyed widespread popularity in both academic and industrial settings as a 

result of their general applicability, ease of use, and Non-prohibitive costs.[2] Ruthenium-

based metathesis catalysts are ideal for such transformations as a result of their generally 

robust nature, which enables handling in air, and imparts good tolerance to a variety of 

functional groups and trace impurities. All of these are necessary prerequisites when 

subjected to raw materials or biomass.

Many renewable or bio-based materials, such as fatty acids originating from seed oils and 

their derivatives, contain at least one unit of unsaturation, providing a synthetic handle for 

derivatization by olefin metathesis catalysts. The CM reaction with ethylene (2), commonly 
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referred to as ethenolysis, has significant potential as a clean, scalable, and sustainable 

solution for the production of linear alpha olefins (LAOs) (eg. 3 and 4) from the natural oils 

found in oleochemicals such as methyl oleate (MO, 1) (Scheme 1). LAOs are direct 

precursors to a variety of commodity chemicals with applications as fuels, surfactants, 

lubricants, waxes, perfumes, antimicrobial agents, and thermoplastics. In addition, LAOs 

can be rapidly elaborated to more expensive products such as agrochemicals, insect 

pheromones, and pharmaceuticals.[3]

The production of terminal olefins from the ethenolysis of seed oil derivatives using 

metathesis catalysts has been previously demonstrated. However, the high catalyst loadings 

required (10 – 100 ppm) to achieve an acceptable yield of terminal olefins render these 

reported procedures cost prohibitive on an industrial scale.[4],[5],[6] In general, catalyst 

turnover numbers (TONs) of at least 35,000 and 50,000 are recommended in the 

manufacturing of specialty and commodity chemicals, respectively.[4] In the ethenolysis of 

the benchmark substrate MO (1), standard ruthenium-based metathesis catalysts such as 5 – 

8 afforded TONs of only 2,000 – 5,000. This stands in contrast to the extremely high activity 

normally exhibited by these catalysts in CM with terminal or internal olefins. For example, 

TONs as high as 470,000 have been achieved with 8 in the CM of MO and 2-butene.[7] The 

most active catalyst for ethenolysis in the literature to date is cyclic alkyl amino carbene 

(CAAC) complex 10 (Scheme 2), which has been previously reported to generate a TON of 

35,000 in the CM of MO with ethylene.[4],[5] As a result of the lack of a catalyst sufficiently 

active to produce teminal olefins using ethylene gas, industrial scale ethenolysis is currently 

accomplished using higher olefins as ethylene surrogates.[6b] Catalyst 7, for example, is able 

to achieve the in situ ethenolysis of MO with a TON as high as 192,900 with propylene 

gas.[4a] However, there is a need to develop catalysts capable of achieving high activity in 

ethenolysis reactions when ethylene gas is utilized directly. Whereas CM with higher olefins 

necessarily results in a substantial amount of undesired internal olefins being produced as 

byproducts, the only products derived from CM with ethylene are terminal olefins. This 

intrinsic advantage promotes both increased yield and ease of purification of the desired 

terminal olefin products, and is a particularly important consideration for bio-refinery 

feedstocks in which multiple downstream products are produced.[3]

Herein, we report the discovery of the most active ethenolysis catalysts to date. In many 

cases, TONs surpassing 100,000 were achieved for the ethenolysis of MO, using ethylene 

gas. Remarkably, certain catalyst systems even exhibited TONs approaching 200,000, with 

the highest TON achieved being 330,000. This represents the first time that reaction 

conditions have been developed in order for ethenolysis to proceed efficiently on an 

industrial scale.

Despite the promising results previously exhibited by 10 in the ethenolysis of MO,[4],[5] 

CAAC ligated ruthenium complexes have yet to be investigated in detail. In particular, it 

was envisioned that more in-depth structure/activity relationship (SAR) studies would 

facilitate the development of new, more efficient catalysts. Thus, a variety of new catalysts 

were prepared through modifications of exisiting literature procedures (Scheme 2).[5],[ 8 ] 

Known CAAC catalysts (10, 13, 18, 25) were screened alongside the new catalysts, in order 

to ensure accurate SAR comparisons within the series.

Marx et al. Page 3

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2016 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Initially, derivatives of the previous benchmark catalyst 10 were targeted, in which only the 

ortho substituents of the N-aryl ring were varied (9 – 13). It is worthy to note that the 

syntheses of 9 and 10 are low yielding (ca. 20%), and purification is cumbersome. 

Furthermore, complexes bearing even smaller ortho substitution such as N-mesityl or N-2-

isopropylphenyl, were unable to be accessed in even small amounts. In contrast, 11 – 13 can 

be produced in high yield (78 – 86%) and isolated without difficulty. This is hypothesized to 

be related to the stability of the free carbene intermediate that is generated in situ, which 

might otherwise be expected to decompose rapidly in the absence of steric protection. It was 

envisioned that this decomposition pathway could be circumvented through the installment 

of larger substituents at either R4 or R5. Indeed, this strategy proved to be successful, and we 

were able to readily access a variety of new complexes in moderate to high yield (29 – 

82%). Several of the new backbone containing catalysts included N-aryl substitution that 

was previously inaccessible (14, 15, 17, 21), meanwhile others (16, 18 – 20, 22 – 25) were 

synthesized in order to provide a more thorough SAR study. Single-crystal X-ray diffraction 

of 11 and 24 revealed distorted square-pyramidal geometries, and structural parameters, 

including bond lengths and angles, were consistent with those found previously for 10 and 

13 (Figure 2). Moreover, catalyst 24 exhibits a CAAC ligand featuring a chirogenic center 

as well as two different ortho N-aryl substituents. Accordingly, the single crystal of 24 
revealed both N-aryl rotamers (24a and 24b), in a ratio of 64:36 respectively.9

Once in hand, catalysts 9 – 25 were examined in the ethenolysis of 1 using ethylene (Table 

1). Reaction conditions were adapted from those that were previously reported in the 

literature, and were initially re-optimized using benchmark catalyst 10 (neat MO, 40 °C, 150 

psi ethylene).[4] The only deviation from the published procedures was the use of higher 

purity ethylene (99.95%) than previously reported (99.9%). We were pleased to find that 

this simple modification appeared to already result in a substantial increase in activity: 10 

ppm loading of catalyst 10 resulted in a TON of 67,000, whereas the benchmark value for 

10 published in the literature is a TON 35,000.[4b],[10].11[12],[13] We were delighted to find 

that the TON of catalyst 10 further increased to 120,000 upon reduction of the catalyst 

loading to 3 ppm. Thus, all subsequent reactions were run at 3 ppm catalyst loading, which 

was also expected to provide greater differentiation in activity between promising catalysts 

than at 10 ppm.

Remarkably, at 3 ppm catalyst loading, most catalysts surpassed a TON of 100,000! 

Specifically, catalysts 11 and 24 emerged as the most efficient, with TONs of 180,000. 

Catalyst activity correlates with N-aryl substitution, with larger substituents at R1 and R2 

generally resulting in higher TONs, although this can also have a deleterious effect (as in 12 
and 13, compared to 9 – 11). The ideal combination thus far appears to be when R1 is small 

and R2 is large, as in catalysts 11 and 24 (R1 = Me, R2 = iPr). Interestingly, substitution at 

R5 by a phenyl ring resulted in an overall improvement of activity, especially for N-2,6-

diisopropylphenyl catalyst 25. Replacement of R4 and/or R5 by ethyl, propyl, or cyclohexyl 

did not result in a significant change in the TON (as in 15 – 19), although an adamantyl 

substituent (20) resulted in complete loss of activity. Interestingly, while consumption of 

MO appears to be the most important determining factor in the overall yield of ethenolysis 

products, increased N-aryl substitution on the catalyst appears to strongly favour selectivity 

Marx et al. Page 4

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2016 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for terminal olefins. These trends in selectivity and TON are most evident in the series of 

catalysts bearing a phenyl ring on the backbone at R5 (21 – 25).

A plausible explanation for the high activity exhibited by CAAC catalysts in ethenolysis 

transformations might be a result of increased stabilization of the ruthenium methylidene 

intermediate generated in the presence of ethylene gas. Ruthenium methylidenes are known 

to decompose rapidly via insertion of the N-aryl substituent into the methylidene carbene, 

which subsequently generates various ruthenium hydrides that are inactive in metathesis 

transformations.[15] CAAC ligands are known to be more electron donating than their N-

heterocyclic carbene (NHC) counterparts.[16] Thus, when used in place of NHCs, it is 

expected that the increased electron density at ruthenium might somewhat stabilize the 

otherwise highly reactive and electron deficient methylidene intermediate.[15b,c], [17] 

Substitution of the ortho N-aryl substituents with a larger sterically encumbered group 

would also be expected to significantly decrease the rate of termination by insertion into the 

[Ru]=CH2 bond. However, increased substitution can also hinder coordination of olefins to 

the ruthenium metal center. Diminished reactivity with increasing N-aryl substitution was 

indeed noted when initiation rates of selected catalysts (9 – 14) were measured following 

exposure to n-butylvinylether.[18] When initiation rates are compared to TONs, it is clear 

that both the slowest initiating catalysts (12, 13) and the fastest initiating catalyst (14) 

exhibit the lowest TONs (Figure 3). This is likely a result of diminished catalytic rate for the 

former group and an increased susceptibility to decomposition for the latter. This study 

illustrates the importance of this delicate balance, as reflected in the superior TONs 

exhibited by catalysts 11 and 24, possessing asymmetric N-aryl substituents. In these 

systems, the smaller substituent (R1 = Me) faciltates rapid coordination of the incoming 

olefin substrate, whereas the larger substituent (R2 = iPr) prevents decomposition of the 

methylidene intermediate. This asymmetry might be expected to exhibit a greater effect in 

CAAC ligated catalysts, as the steric interaction of the ortho substituents on the N-aryl ring 

with the two adjacent geminal methyl substituents would be expected to influence the 

conformation of the N-aryl ring. If the larger substituent resides closer to the ruthenium 

metal center, the methyl group which is inherently more susceptible to CH insertion would 

be directed away from the reactive ruthenium methylidene.

It has been postulated that high activity in ethenolysis might be correlated to the tendency of 

a catalyst to undergo degenerative metathesis events, through the preferential formation of 

2,4-metallacycles rather then 2,3-metallacycles, which would result in increased selectivity 

for terminal olefins in the product distribution.[19] This is a powerful design principle in the 

context of achieving high kinetic selectivity for terminal olefins, when employing higher 

olefins such as propene and 1-butene gas as ethylene surrogates. However, when ethylene 

gas is employed, it is more likely that the lower selectivities for terminal olefins exhibited by 

previous generations of catalysts (5 – 8) is primarily a result of rapid catalyst death in the 

presence of ethylene. This would translate to products reflecting the kinetic distribution of 

rapid unselective cross metathesis reactions of 5 – 8 with both ethylene and terminal 

olefins.[20] A lthough CAAC-ligated ruthenium-based catalysts have been demonstrated to 

engage in metathesis reactions more slowly than phosphine or NHC-ligated catalysts,[5a],[18] 

they also appear to persist for a much longer time in the presence of ethylene.[21] This would 
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allow for the ethenolysis reaction to proceed closer to completion in order to achieve the 

equilibrium ratio of terminal olefin products, and provides a feasible explanation for the 

notable increase in activity exhibited by this family of catalysts.[22]

Finally, given the notable dependance on the TON with respect to the purity of the ethylene 

employed, as seen earlier for catalyst 10, we briefly explored the effect of utilizing an even 

higher purity ethylene source (99.995% vs. 99.95%) at different loadings of catalyst 11 
(Table 2).23 A dramatic increase in TON was noted at 1 ppm catalyst loading. To the best of 

our knowledge, this represents the highest value available in the literature for any 

ethenolysis catalyst to date (TON 340,000).

In summary, a new series of ruthenium metathesis catalysts, bearing CAAC ligands, is 

presented that displays exceptional activity in ethenolysis reactions. In the cross metathesis 

reaction of the seed oil derivative methyl oleate (1) and ethylene gas (2), TONs >100,000 

are generated in many cases, which surpasses the minimum value of 50,000 required to be 

considered economically sustainable on an industrial scale. Furthermore, even higher TONs 

(180,000 – 340,000) were obtained in some cases. These are the highest values recorded in 

the literature to date for an ethenolysis reaction, and the only reported TONs >50,000 using 

ethylene gas specifically. As a result, it is envisioned that this work will find substantial 

application in the continued development of new methodologies and processes directed 

towards the economically and environmentally sustainable production of LAOs, as well as 

other valuable terminal olefins, especially through the transformation of seed oils and their 

derivatives.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

References

1. a) Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ. Angew Chem. 2011; 
123:3938.Angew Chem Int Ed. 2011; 50:3854.b) Montero de Espinosa L, Meier MAR. Eur Polym 
J. 2011; 47:837.c) Marshall A-L, Alaimo PJ. Chem Eur J. 2010; 16:4970. [PubMed: 20394084] d) 
Meier MAR, Metzger JO, Schubert US. Chem Soc Rev. 2007; 36:1788. [PubMed: 18213986] e) 
Sheldon RA. Green Chem. 2007; 9:1273.f) Sheldon, RA.; Arends, I.; Hanefeld, U., editors. Green 
Chemistry and Catalysis. Wiley-VCH; Weinheim: 2007. g) Corma A, Iborra S, Velty A. Chem Rev. 
2007; 107:2411. [PubMed: 17535020] 

2. a) Cossy, J.; Arseniyadis, S.; Meyer, C., editors. Metathesis in Natural Product Synthesis. Wiley-
VCH; Weinhem: 2010. b) Lozano-Vila AM, Monsaert S, Bajek A, Verpoort F. Chem Rev. 2010; 
110:4865. [PubMed: 20392041] c) Vougioukalakis G, Grubbs RH. Chem Rev. 2010; 110:1746. 
[PubMed: 20000700] d) Samojlowicz C, Bieniek M, Grela K. Chem Rev. 2009; 109:3708. 
[PubMed: 19534492] e) Schrodi Y, Pederson RL. Aldrichim Acta. 2007; 40:45.f) Nicolaou KC, 
Bulger PG, Sarlah D. Angew Chem. 2005; 117:4564.Angew Chem Int Ed. 2005; 44:4490.g) 
Grubbs, RH., editor. Handbook of Metathesis. Vol. 2. Wiley-VCH; Weinhem: 2003. h) Schrock 
RR, Hoveyda AH. Angew Chem. 2003; 115:4740.Angew Chem Int Ed. 2003; 42:4592.i) Schrock 
RR. Chem Rev. 2002; 102:145. [PubMed: 11782131] j) Trnka TM, Grubbs RH. Acc Chem Res. 
2001; 34:18. [PubMed: 11170353] k) Fürstner A. Angew Chem. 2000; 112:3140.Angew Chem Int 
Ed. 2000; 39:3012.

3. a) Chikkali S, Meckling S. Angew Chem. 2012; 124:5902.Angew Chem Int Ed. 2012; 51:5802.b) 
Montero de Espinosa L, Meier MAR. Top Organomet Chem. 2012; 39:1.c) Raluca, M.; Dixneuf, 

Marx et al. Page 6

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2016 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PH. In Green Metathesis Chemistry. Vol. 185. Springer Netherlands; 2010. c) Mol JC. Green Chem. 
2002; 4:5.

4. a) Nickel A, Ung T, Mkrtumyan G, Uy J, Lee C-W, Stoianova D, Papazian J, Wei W-H, Mallari A, 
Schrodi Y, Pederson RL. Top Catal. 2012; 55:518.b) Schrodi Y, Ung T, Vargas A, Mkrtumyan G, 
Lee C-W, Champagne TM, Pederson RL, Hong SH. Clean. 2008; 36:669.

5. a) Anderson DR, Ung T, Mkrtumyan G, Bertrand G, Grubbs RH, Schrodi Y. Organometallics. 
2008; 27:563. [PubMed: 18584055] b) Anderson DR, Lavallo V, O’Leary DJ, Bertrand G, Grubbs 
RH. Angew Chem. 2007; 119:7400.Angew Chem Int Ed. 2007; 46:7262.

6. a) Zhang J, Song S, Wang X, Jiaoa J, Shi M. Chem Commun. 2013; 49:9491.b) van der Klis F, Le 
Nôtre J, Blaauw R, van Haveren J, van Es DS. Eur J Lipid Sci Technol. 2012; 114:911.c) Cohen, 
SA.; Luetkens, ML.; Balakrishnan, C.; Snyder, R. Elevance Renewable Sciences. WO2011/046872 
A2. 2011. d) Thomas RM, Keitz BK, Champagne T, Grubbs RH. J Am Chem Soc. 2011; 133:7490. 
[PubMed: 21510645] e) Hagadorn, JR.; Holtcamp, MW.; Bedoya, MS. Exxonmobile. 
WO2011100022 A3. 2011. f) Mignani, G.; Pevere, V.; Olivier-Bourbigou, H.; Vallee, C.; Berthod, 
M.; Citadelle, C. Rhodia Operations, IFP. WO2010/010290 A1. 2010. g) Marinescu SC, Schrock 
RR, Müller P, Hoveyda AH. J Am Chem Soc. 2009; 131:10840. [PubMed: 19618951] h) Schrodi, 
Y.; Pederson, RL.; Kaido, H.; Tupy, MJ. Elevance Renewable Sciences. WO2008/046106 A2. 
2008. i) Burdett KA, Harris LD, Margl P, Maughon BR, Mokhtar-Zadeh T, Saucier PC, Wasserman 
EP. Organometallics. 2004; 23:2027.

7. Patel J, Mujcinovic S, Jackson WR, Robinson AJ, Serelis AK, Such C. Green Chem. 2006; 8:450.

8. Jazzar R, Dewhurst RD, Bourg J-B, Donnadieu B, Canac Y, Bertrand G. Angew Chem. 2007; 
119:2957.Angew Chem Int Ed. 2007; 46:2899.

9. We also observed multiple conformational and rotational isomers in the NMR spectra of each of the 
catalysts 21 – 24. Ratios varied with respect to N-aryl substitution (see ESI for details).

10. Intuitively, this marked effect might be expected. Ethylene gas contains small amounts of 
impurities, such as carbon monoxide and acetylene, known catalyst poisons for ruthenium-based 
metathesis catalysts (see ref. 11). At such low catalyst loadings, even trace amounts of these 
substances would exhibit a greater effect.

11. a) Nelson DJ, Manzini S, Urbina-Blanco CA, Nolan SP. Chem Commun. 2014; 50:10355.b) Diver 
ST. Coord Chem Rev. 2007; 251:671. [PubMed: 19590747] 

12. Methyl oleate (Nu-Check-Prep, >99%, see ESI) was purified through filtration over alumina (see 
ESI). As disclosed previously this purification step is essential for high TON (see ref. 4). For 
example, when methyl oleate purchased from Nu-Check-Prep (>99%) or Sigma Aldrich (>99.0%, 
Fluka analytical standard) was used without further purification, TONs were only 8,500 and 230 
respectively for catalyst 11 (3 ppm).

13. Interestingly, a similar increase was not noted for catalyst 5. For example, under the optimized 
reaction conditions 5 (100 ppm) generated a TON of only 4600 (cf. literature value of 5400, see 
ref. 4b).

14. CCDC 1025991 (11) and 1025992 (24) contain the supplementary crystallographic data for this 
paper. These data can be obtained free of charge from The Cambridge Crystallographic Data 
Centre.

15. a) Hong SH, Wenzel AG, Salguero TT, Day MW, Grubbs RH. J Am Chem Soc. 2007; 129:7961. 
[PubMed: 17547403] b) Sanford MS, Love JA, Grubbs RH. J Am Chem Soc. 2001; 123:6543. 
[PubMed: 11439041] c) Lehman SB, Wagener KB. Organometallics. 2005; 24:1477.d) Ulman M, 
Grubbs RH. J Org Chem. 1999; 64:7202.

16. a) Back O, Henry-Ellinger M, Martin CD, Martin D, Bertrand G. Angew Chem. 2013; 
125:3011.Angew Chem. 2013; 52:2939. [PubMed: 23364832] b) Lavallo V, Canac Y, Prasang C, 
Donnadieu B, Bertrand G. Angew Chem. 2005; 117:5851.Angew Chem Int Ed. 2005; 44:5705.c) 
Melaimi M, Soleilhavoup M, Bertrand G. Angew Chem. 2010; 122:8992.Angew Chem Int Ed. 
2010; 49:8810.

17. Occhipinti G, Jensen VR. Organometallics. 2011; 30:3522.

18. See ESI for further details.

19. Stewart IC, Keitz BK, Kuhn KM, Thomas RM, Grubbs RH. J Am Chem Soc. 2010; 132:8534. 
[PubMed: 20518557] 

Marx et al. Page 7

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2016 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. For similar correlations regarding catalyst lifetime and approach to equilibrium for E/Z 
diastereoselectivity see: Lee C-W, Grubbs RH. Org Lett. 2000; 2:2145. [PubMed: 10891252] 

21. Keitz BK, Grubbs RH. J Am Chem Soc. 2011; 133:16277. [PubMed: 21919449] 

22. More detailed studies are currently underway and will be reported in due course.

23. Ethylene gas was purchased and used as received from Matheson, and was either Ultra High Purity 
(99.95%) or Matheson Purity (99.995%). Matheson Purity ethylene (99.995%) is certified to 
contain less than 4 ppm acetylene, and less than 2 ppm carbon monoxide.

Marx et al. Page 8

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2016 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Selected ruthenium metathesis catalysts previously studied for ethenolysis.
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Figure 2. 
Solid-state structures of 11 and 24 (24 crystallized as 24a and 24b, in a ratio of 64:36), with 

thermal ellipsoids drawn at 50% probability.14 For clarity, hydrogen atoms have been 

omitted. Selected bond lengths (Å) for 11: C1-Ru 1.928(6), C19-Ru 1.824(6), O1-Ru 

2.301(4), Cl1-Ru 2.3374(16), Cl2-Ru 2.3165(17); for 24a: C1-Ru 1.940(7), C24-Ru 

1.836(9), O1-Ru 2.332(8), Cl1-Ru 2.3356(18), Cl2-Ru 2.3271(13); for 24b: C1-Ru 

1.931(12), C24-Ru 1.828(18), O1-Ru 2.325(15), Cl1- 2.335(4), Cl2-Ru 2.307(3).
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Figure 3. 
Comparison of initiation rates and TON for catalysts 9 – 14.
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Scheme 1. 
Ethenolysis of the seed oil derivative methyl oleate (1).
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Scheme 2. 
Synthesis of CAAC complexes under study (isolated yield in brackets).
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Table 1

Ethenolysis of methyl oleate (1) using catalysts 9 – 25.a

catalyst conversion (%)b,c selectivity (%)b,d,e yield (%)f TONg

9 37 86 32 110,000

10 42 88 37 120,000

11 59 92 54 180,000

12 18 94 17 57,000

13 19 97 18 60,000

14 22 63 14 47,000

15 26 86 22 73,000

16 42 92 39 130,000

17 19 78 14 47,000

18 13 97 13 43,000

19 16 97 15 50,000

20 <5% --- --- ---

21 41 83 34 110,000

22 46 85 39 130,000

23 48 88 43 140,000

24 57 94 54 180,000

25 47 98 46 150,000

a
Reaction conditions: catalyst (3 ppm), C2H4 (150 psi, 99.95% purity), 40 °C, 3 h.

b
Determined via GC, using dodecane as an internal standard.

c
Conversion = 100 – [(final moles 1) X 100/[initial moles 1)]

d
Selectivity for ethenolysis products (3 and 4) over self-metathesis products (3a and 4a).

e
Selectivity = 100 X (moles 3 + 4)/[(moles 3 + 4) + (2 X moles 3a + 4a)].

f
Yield = Conversion X Selectivity/100.

g
TON = Yield X (initial moles 1/moles catalyst)/100.
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Table 2

Effect of C2H4 (2) source on activity of catalyst 11.a

Loading purity of 2 yield (%) TON

3 99.95% 54 180,000

3 99.995% 53 180,000

2 99.95% 48 240,000

2 99.995% 49 245,000

1 99.95% 13 130,000

1 99.995% 34 340,000

a
Reaction conditions, and calculations, are as listed in Table 1.
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