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16  Abstract—Synaptic degeneration is central in Alzheimer’s disease (AD) pathogenesis and biomarkers to monitor
this pathophysiology in living patients are warranted. We developed a novel sandwich enzyme-linked immunosor-
bent assay (ELISA) for the measurement of the pre-synaptic protein SNAP-25 in cerebrospinal fluid (CSF) and
evaluated it as a biomarker for AD. CSF samples included a pilot study consisting of AD (N = 26) and controls
(N = 26), and two independent clinical cohorts of AD patients and controls. Cohort | included CSF samples from
patients with dementia due to AD (N = 17), patients with mild cognitive impairment (MCI) due to AD (N = 5) and
controls (N = 17), and cohort Il CSF samples from patients with dementia due to AD (N = 24), patients with MCI
due to AD (N = 18) and controls (N = 36). CSF levels of SNAP-25 were significantly increased in patients with AD
compared with controls (P < 0.00001). In both clinical cohorts, CSF levels of SNAP-25 were significantly increased
in patients with MCI due to AD (P < 0.0001). SNAP-25 could differentiate dementia due to AD (N = 41) from con-
trols (N = 52) and MCI due to AD (N = 23) from controls (N = 52) with areas under the curve of 0.967 (P < 0.0001)
and 0.948 (P < 0.0001), respectively. CSF SNAP-25 is a promising AD biomarker that differentiates AD patients in
different clinical stages of the disease from controls with excellent diagnostic accuracy. Future studies should
address the specificity of the CSF SNAP-25 against common differential diagnoses to AD, as well as how the bio-
marker changes in response to treatment with disease-modifying drug candidates.

This article is part of a Special Issue entitled: SNARE proteins. © 2018 The Authors. Published by Elsevier Ltd on behalf of
IBRO. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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17 INTRODUCTION neurofibrillary  tangles, synaptic degeneration and 20
neuronal degeneration (Blennow et al., 2006). Several 21
cerebrospinal fluid (CSF) biomarkers for Alzheimer’s dis- 22
ease are accessible, including total tau (T-tau) and phos- 23
phorylated tau protein (P-tau), mirroring tau pathology 24
and neurodegeneration, respectively, and amyloid-f1_42 25
(AB4_42), mirroring aggregation of the peptide into plaques 26

18 Alzheimer’'s disease is characterized of extra-cellular
19 accumulation of aggregated amyloid f, intra-cellular
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et al., 1987; Masliah et al., 2001; Scheff et al., 2007). Ear-
lier post-mortem studies suggested that synaptic dysfunc-
tion in Alzheimer’s disease is related to cognitive decline
(DeKosky and Scheff, 1990; Blennow et al., 1996) and
that synaptic loss occurs early in the disease (Davies
et al., 1987; Masliah et al., 2001), with disturbances in
presynaptic terminals (Masliah et al., 1991) and reduc-
tions in synaptic protein levels (DeKosky and Scheff,
1990; Blennow et al., 1996). Thus, it is evident that reli-
able CSF biomarkers to monitor synaptic dysfunction
and degeneration directly in Alzheimer’s disease patients
would be very useful.

In recent years, there are promising results for some
synaptic biomarkers in CSF, including the pre-synaptic
proteins synaptosomal-associated protein 25 (SNAP-25)
(Brinkmalm et al., 2014a; b) and synaptotagmin (Ohrfelt
et al., 2016), as well as the post-synaptic protein neuro-
granin (Kvartsberg et al., 2015a,b; Sanfilippo et al.,
2016; Wellington et al., 2016). A marked increase of these
synaptic CSF markers were found in dementia due to Alz-
heimer’s disease and already in MCI due to Alzheimer’s
disease (Brinkmalm et al., 2014a,b; Kvartsberg et al.,
2015a,b; Ohrfelt et al., 2016; Sanfilippo et al., 2016;
Wellington et al., 2016), with higher CSF levels correlating
with more marked future cognitive decline among MCI
patients (Kvartsberg et al., 2015a,b).

The pre-synaptic protein SNAP-25 is one of the major
proteins involved in the formation of the SNARE (soluble
N-ethylmaleimide-sensitive factor attachment protein
receptor) complexes (Sollner et al., 1993a; Sollner
et al.,, 1993b; Jahn et al., 2003). This protein assembly
is a crucial step in neurotransmitter release and modifica-
tions of any of the SNARE proteins could alter the appo-
sition of them, which could influence calcium-dependent
exocytosis of neuro-transmitters (Sollner et al., 19933;
Sollner et al., 1993b; Jahn et al., 2003; Sudhof 2004).
The central function of SNAP-25 in the regulation of
neuro-transmitter release along with the recently sug-
gested post-synaptic impact on receptor trafficking, spine
morphogenesis and plasticity (Antonucci et al., 2013;
Antonucci et al., 2016), makes it as a potential biomarker
candidate reflecting synaptic dysfunction and degenera-
tion in Alzheimer’s disease. We have previously shown
that a N-terminal fragment of SNAP-25 is a promising bio-
marker by utilizing an approach of affinity purification and
mass spectrometry (Brinkmalm et al., 2014a,b), and up to
now, no enzyme-linked immunosorbent assay (ELISA) for
assessment of SNAP-25 in CSF samples has been avail-
able. One advantage of the ELISA technology is the ease
with which it can be performed in a high-through-put for-
mat. The feasibility and the accessibility that the ELISA
offers would be required in future studies for assessment
of synaptic proteins in large patient cohorts.

In this study, we report a novel ELISA for
measurements of the pre-synaptic protein SNAP-25 in
CSF. The utility of the novel SNAP-25 ELISA was
initially verified in brain tissue extracts and from patients
with Alzheimer's disease and age-matched controls,
followed by a pilot study of CSF samples. Then, CSF
SNAP-25 was assessed in two independent clinical
cohorts, with the main finding being markedly higher

levels in patients with MCI due to Alzheimer’'s disease
and dementia due to Alzheimer’s disease.

EXPERIMENTAL PROCEDURES
Human brain tissue samples

All brain tissues, from the superior parietal gyrus, were
obtained from the Netherlands Brain Bank. The clinical
and demographic characteristics autopsy-confirmed
patients with Alzheimer's disease (N = 15) and age-
matched controls (N = 15) have previously been
published (Brinkmalm et al., 2014a,b). In our study, all
Alzheimer’s disease patients fulfilled Braak stages 5 or
6, i.e. late stages of disease, while the controls fulfilled
Braak stages 0 or 1 (Braak and Braak, 1991). The brain
extraction procedure was performed as described by
Brinkmalm et al. (2014a,b). In the present study, brain
homogenates from the Tris fractions (soluble proteins)
were analyzed.

Quality control (QC) CSF samples

The repeatability of the novel SNAP-25 ELISA was
examined on decoded CSF samples supplied by the
clinical routine section at the Clinical Neurochemistry
Laboratory, The Sahlgrenska University Hospital,
MéIndal, Sweden. The procedure making pools of left-
over CSF aliquots were approved by the Ethics
Committee at University of Gothenburg. The quality
control CSF pool 1 (QC1 sample) had an AP4_4» of
446 ng/L, a T-tau level of 332 ng/L and a P-tau level of
46 ng/L. The QC2 sample had an AB4_4, level of 405 ng/
L, a T-tau level below 561 ng/L and a P-tau level of
50 ng/L.

CSF samples in the pilot study

An initial pilot study was performed using de-identified
CSF samples supplied by the Clinical Neurochemistry
Laboratory, Sahlgrenska University, Md&lndal, following
procedures approved by the Ethics Committee at
University of Gothenburg. Patients were designated as
control or Alzheimer's disease according to CSF
Alzheimer's disease core biomarker levels using in-
house optimized cut-off levels for Alzheimer’'s disease
(Hansson et al.,, 2006): ABi42 <550ng/L, T-tau
>400 ng/L, and P-tau >50 ng/L. The subjects were older
than 55 years. The age-matched test material included 26
patients with an Alzheimer’s disease biomarker profile
and 26 subjects with a control biomarker profile (Fig. 2).

CSF samples in the clinical studies

In this study, SNAP-25 levels in CSF were measured in
two independent clinical patient cohorts. The clinical and
demographic characteristics have been reported
previously (Ohrfelt et al., 2016). To facilitate for the reader
essential parts used for diagnosing the patients and
selecting the CSF are briefly given below (Ohrfelt et al.,
2016). At the Center of Cognitive at Lariboisiere
Fernand-Widal University Hospital APHP, patients under-
went a thorough clinical examination involving personal
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medical and family histories, neurological examination,
neuropsychological assessment, lumbar puncture with
CSF biomarker analysis, and a brain structural imaging
study with MRI. The diagnosis for each patient was made
by neurologists considering CSF results and according to
validated clinical diagnostic criteria for dementia due to
Alzheimer’s disease (McKhann et al., 2011), MCI due to
Alzheimer’s disease (Albert et al., 2011; Dubois et al.,
2014), subjective cognitive impairment (Sperling et al.,
2011), psychiatric disorder (DSM-IV). The CSF samples
of the study were selected after a second validation step
by a neurologist (CP) and a biochemist (EAB). Patients
were not included in the study, without a consensus diag-
nosis or in case of disagreement about the final diagnosis.
This procedure resulted in selection of CSF samples from
subject with MCI due to Alzheimer’s disease, dementia
due to Alzheimer’s disease, and neurological controls
(no neurodegenerative disorders). The Alzheimer’s dis-
ease core CSF biomarkers have been included in the
research criteria for the diagnosis of both early and man-
ifest Alzheimer's disease by the International Working
Group (Dubois et al., 2014) and in the diagnostic guideli-
nes from the National Institute on Aging-Alzheimer’s
Association (McKhann et al., 2011), respectively. The fol-
lowing cut-off values were used to define a biochemical
Alzheimer’s disease signature as supportive criteria for
dementia due to Alzheimer’s disease (McKhann et al.,
2011): ABq_42 (<550ng/L), T-tau (>400ng/L), and P-
tau (>50ng/L). CSF was obtained by lumbar puncture
between the L3/L4 or L4/L5 intervertebral space, and
samples were immediately centrifuged at 1800g for
10 min at +4 °C, and stored at —80 °C pending analysis.

Demographics of the clinical CSF studies

The demographic characteristics and the biomarker CSF
levels of the Alzheimer’s disease core biomarkers for the
cohorts have been reported previously (Ohrfelt et al.,
2016). Briefly, cohort | consisted of five patients with
MCI due to Alzheimer's disease (one man and four
women, 62-88 years), 17 patients with dementia due to
Alzheimer's disease (five men and 12 women,
52-86 years), and 17 neurological controls (seven men
and ten women, 41-82 years) (Ohrfelt et al., 2016). The
replication sample set (cohort Il) consisted of 18 patients
with MCI due to Alzheimer’s disease (five men and 13
women, 58-83 years), 24 patients with dementia due to
Alzheimer's disease (seven men and 17 females,
52-84 years) and 36 neurological controls (13 men and
23 women, 43-80 years) (Ohrfelt et al., 2016). In cohort
I, the patients with MCI due to Alzheimer’s disease were
older than the controls. Both patients with MCI due to
Alzheimer’s disease and dementia due to Alzheimer’s dis-
ease were slightly but significantly older than the controls
in cohort Il (Ohrfelt et al., 2016).

Analysis of CSF biomarkers

AB1_42, T-tau, and tau phosphorylated at threonine 181
(P-tau) protein measurements were performed using
commercially  available assays from  Fujirebio
(INNOTEST® B-AMYLOID(1_42), INNOTEST® hTAU Ag

and INNOTEST® PHOSPHO-TAU(181P) according to
the manufacturer’s instructions.

Synthetic peptides of SNAP-25 and antibodies

The synthetic peptide of N-terminal acetylated SNAP-25
(Ac-2-47 SNAP-25) was bought from CASLO Aps
(Lyngby, Denmark). The monoclonal mouse antibody
clone 71.1 recognizing the N-terminal portion of SNAP-
25 (aa 20-40) was purchased from Synaptic Systems
(Gottingen, Germany). Polyclonal chicken IgY antibody
was produced by immunization with Ac-2-47 SNAP-25
and the subsequent antigen affinity purification of the
total 1gY extract was conducted by Getica AB
(Gothenburg, Sweden). Biotinylation of the Ac-2-47
SNAP-25 purified chicken IgY antibody was performed
accordingly to the manual, Simoa Homebrew Detector
Biotinylation Protocol, provided by Quanterix (Lexington,
MA, USA). A ratio of biotin to antibody of 40:1 was
applied.

A novel sandwich ELISA method for SNAP-25

F16 Maxisorp Loose Nunc-lmmuno plates (Thermo
Fisher Scientific Nunc A/S, Roskilde, Denmark) were
coated with 100 uL of monoclonal mouse antibody clone
71.1 (1 g/L) diluted 1:400 in 50 mM carbonate buffer, pH
9.6 and incubated over night or up to three nights at
+2-8°C. The plates were washed with 385puL of
phosphate-buffered saline PBS-Tween20 (0.05%) (PBS-
T). The same washing procedure was repeated
between every following incubation step. After the
coating and washing steps, the plates were blocked with
300 puL Roti®-Block (Carl Roth, Germany) diluted 1:10 in
PBS-T for one hour at room temperature. All standards
and samples were analyzed in duplicate. The standards
of Ac-2-47 SNAP-25 were diluted in assay buffer, i.e.
Roti®-Block diluted 1:100 in PBS-T, to providing a final
concentration range of 4000-62.5 ng/L or 1000-7.8 ng/L
for brain samples and CSF samples, respectively. Brain
tissue homogenates were diluted 1:15 in assay buffer,
while neat CSF samples were added to the plates.
Samples and standards (50 uL) were incubated over
night at +2-8 °C, simultaneously with 50 pL biotinylated
affinity Ac-2-47 SNAP-25 purified chicken IgY antibody
(1g/L) diluted 1:500 in assay buffer. Enhanced
Streptavidin-HRP conjugate (0.01 g/L) (Kem-En-Tec
Diagnostics, Taastrup, Denmark), pre-diluted 1:100 in
Uni-Stabil Plus (Kem-En-Tec Diagnostics) (stored at
+2-8 °C pending analysis), was then diluted 1:200 in
assay buffer, and was incubated for 30 min at room
temperature. Then, 100 uL TMB ONE™, ready-to-use
substrate (KE-MEN-TEC Diagnostics) were added. The
reaction was quenched with 100 uL of H,SO, (0.2 M).
The absorbance was measured at 450nm. The
concentrations of SNAP-25 in samples were calculated
from the four parameter standard curve. For each brain
sample a ratio was calculated where the SNAP-25 level
was divided with the total protein concentration.
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Assay performance

The within-day precision (repeatability) and the between-
day repeatability (intermediate  precision) were
determined using two QC samples (QC1 and QC2)
analyzing them at three different days (N = 5 or N = 6).
Lower limit of quantification (LLOQ) was calculated
according to Andreasson et al. (2015).

Statistical analysis

Because most of the analytes were not normally
distributed (Shapiro-Wilk test, P < 0.05), non-parametric
statistics were used for analysis. Data are given as
median (inter-quartile range). Differences between more
than two groups were assessed with Kruskal-Wallis
test. Statistically significant results (P < 0.05) were
followed by Mann—Whitney U-tests to investigate group
differences. Receiver operating characteristic (ROC)
curves were performed on each subject group on the
levels of SNAP-25 in order to assess its diagnostic
value. The area under the curve (AUC) and a 95%
confidence interval (Cl) was calculated for SNAP-25
using GraphPad Prism 7.02. The correlation coefficients
(rho) were calculated using the Spearman two-tailed
correlation test. SPSS 24 was employed for most of the
statistical analyzes.

RESULTS
Assay performance

The novel ELISA is directed against the N-terminal of
SNAP-25, that measure both partially degraded N-
terminal SNAP-25 fragments as well as the possible full-
length protein. Within-day repeatability was 9.6% for QC
sample 1 and 15% for QC sample 2. Between-day
repeatability was 13% (QC1) and 16% (QC2). The
repeatability was within acceptable ranges, i.e. within-
day <15 and between-day <20 (Lee and Hall (2009)).
LLOQ was 15.7 ng/L.

Human brain and the pilot CSF study

Initially, we tested the novel SNAP-25 ELISA on brain
tissue homogenates from age-matched patients with
Alzheimer’s disease and controls. We found that SNAP-
25 levels were significantly decreased in patients with
later stages of Alzheimer’s disease compared with the
controls (Fig. 1). In the pilot CSF study, the levels of
SNAP-25 were significantly increased in the group with
an Alzheimer’s disease biomarker profile (N = 26) than
in the group with a control biomarker profile (N = 26)
(Fig. 2).

CSF SNAP-25 in the clinical cohorts

CSF levels of the SNAP-25 were significantly higher in
patients with MCI due to Alzheimer’s disease (cohort I,
Il and all samples), and in dementia due to Alzheimer’'s
disease compared with controls (cohort I, Il and all
samples) (Fig. 3). SNAP-25 could differentiate MCI due
to Alzheimer’s disease from controls in both cohorts and
in the entire set of samples, with AUCs (confidence
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Fig. 1. SNAP-25 in brain tissue in Alzheimer’s disease (AD) and
controls. The figure shows the individual values SNAP-25 (displayed
as the ratio SNAP-25/total protein) in the soluble protein fraction in
the superior parietal gyrus from controls (green) and patients with AD
(violet). The lower, upper and middle lines of the error bars
correspond to the 25th and 75th percentiles and medians,
respectively.
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B
Control AD biomarker
biomarker profile profile
Subjects, N
(men/women) 26 (14/12) 26 (7/19)
Age (years) 71 (68-75) 74 (70-77)
AB142 (ng/L) 748 (669-900) 440 (375-489)°
T-tau (ng/L) 234 (188-325) 642 (514-870)°
P-tau (ng/L) 34 (31-44) 82 (70-91)

Fig. 2. Individual values for SNAP-25 (A) and demographic data
including Alzheimer’s disease (AD) core biomarker levels (B) from the
pilot study for the patients with AD (violet) and controls (green) based
on the biomarker profile. The lower, upper and middle lines of the
error bars correspond to the 25th and 75th percentiles and medians,
respectively (A).

interval (Cl)) of 1 (1-1) (P = 0.001) (cohort 1), 0.975
(0.943-1.008) (P < 0.0001) (cohort 1) and 0.948
(0.964—1.004) (P < 0.0001) (all samples) (Fig. 4A, C).
SNAP-25 could also differentiate dementia due to
Alzheimer’s disease from controls with AUCs (Cl) of
0.982 (0.946-1.017) (P < 0.0001) (cohort 1), 0.970
(0.935-1.005) (P < 0.0001) (cohort 1) and 0.967
(0.938-0.996) (P < 0.0001) (all samples) (Fig. 4B, C).
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Fig. 3. Individual values for SNAP-25 in CSF samples within cohort | (A), cohort 1l (B) and for the
entire set of samples (C) from subjects with dementia due to Alzheimer’s disease (AD) (violet), mild
cognitive impairment due to Alzheimer’s disease (MCI-AD) (orange) and control (green) individuals.
The lower, upper and middle lines of the error bars correspond to the 25th and 75th percentiles and

medians, respectively.
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SNAP-25 1(1-1), P=0.001 0.982 (0.946-1.017), P<0.0001
Cohort Il N=36 and N=18 N=36 and N=24
SNAP-25 0.975 (0.943-1.008), P<0.0001  0.970 (0.935-1.005), P<0.0001
All samples N=52 and N=23 N=52 and N=41
SNAP-25 0.984 (0.964-1.004), P<0.0001 0.967 (0.938-0.996), P<0.0001

Fig. 4. ROC curve analysis for SNAP-25 in CSF for differentiation of MCI due to Alzheimer’s disease
(MCI-AD) from controls in cohort | (violet), cohort Il (green) and in the entire set of samples (black) (A).
ROC curve analysis for SNAP-25 in CSF for differentiation of dementia due to Alzheimer’s disease
(AD) from controls in cohort | (violet), cohort Il (green) and in the entire set of samples (black) (B). The

area under the curve (95% confidence interval) is shown in the included table (C).

There was a correlation between the CSF levels of

SNAP-25 and the age in patients with dementia due to
Alzheimer’s disease (cohort 1), while there were no
statistically significant correlations between SNAP-25
investigated groups

and age in any other of the

No. of Pages 9

(Table 1). There were no
statistically significant correlations
between CSF SNAP-25 and mini-
mental state examination (MMSE)
scores in any group.

The CSF levels of SNAP-25
correlated with the levels of T-tau
and P-tau in both the control
group and in patients with
dementia due to Alzheimer’s
disease (Table 1). Additionally,
the CSF levels of SNAP-25
correlated with the levels of T-tau
and P-tau in patients with MCI
due to Alzheimer’s disease within
the entire set of samples, but only
with the levels of P-tau within
cohort Il (Table 1). SNAP-25
correlated positively with ABq_42 in
the control group of cohort Il and
for the entire set of samples,
while there were no correlations
within other investigated groups
(Table 1).

DISCUSSION

We developed a novel ELISA for
assessment of the pre-synaptic
protein SNAP-25 in CSF samples.
In one pilot study and both
investigated clinical cohorts, we
found that the CSF levels of
SNAP-25 were significantly higher
in patients with dementia due to

Alzheimer's disease than in
controls. There was also a
consistent increase in early
disease (i.e. MCI due to
Alzheimer’s disease) as
compared to controls.

Synaptic  dysfunction  and
degeneration predict cognitive
decline in Alzheimer's disease
(Davies et al, 1987; Masliah

et al., 2001). The pre-synaptic pro-
tein SNAP-25 is one of the promi-
nent proteins involved in the
regulation of synaptic transmission
(Sollner et al.,, 1993a,b; Sudhof,
2004), and therefore could possi-
bly be a biomarker candidate that
mirrors synaptic degeneration and
dysfunction in Alzheimer's dis-
ease. We found that the CSF
levels of SNAP-25 were consis-
tently elevated in patients with

dementia due to Alzheimer’s disease compared with con-
trols in two separate clinical cohorts, as well as in a group
having an Alzheimer's disease biomarker profile com-
pared to a group with a control biomarker profile. Addition-
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Table 1. Correlation between cerebrospinal fluid SNAP-25, age, MMSE and biomarker levels for the diagnostic groups in the clinical cohorts®

SNAP-25 SNAP-25 SNAP-25
Cohort | Control (N = 17) MCI-AD (N = 18) AD (N = 17)
Age N.S. rho = —0.503, P = 0.04
MMSE N.S. N.S.
Amyloid-B1_42 N.S. N.S.
Total tau rho = 0.805, P = 0.0002 rho = 0.738, P = 0.001

Phosphorylated tau rho = 0.715, P = 0.002

Cohort Il Control (N = 36)

Age N.S.

MMSE N.S.

Amyloid-B1_42 rho = 0.363, P = 0.03
Total tau rho = 0.743, P < 0.00001

Phosphorylated tau rho = 0.618, P = 0.00008

All samples Control (N = 53)

Age N.S.
MMSE N.S.
Amyloid-B1_42 rho = 0.325, P = 0.02

rho = 0.744, P < 0.00001
rho = 0.639, P < 0.00001

Total tau
Phosphorylated tau

rho = 0.830, P = 0.00004

MCI-AD (N = 18) AD (N = 24)
N.S. N.S.

N.S. N.S.

N.S. N.S.

N.S. rho = 0.663, P = 0.0004
rho = 0.513, P = 0.03 rho = 0.604, P = 0.002
MCI-AD (N = 23) AD (N = 41)

N.S. N.S.

N.S. N.S.

N.S. N.S.

rho = 0.453, P = 0.03
rho = 0.637, P = 0.001

rho = 0.726, P < 0.00001
rho = 0.736, P < 0.00001

@ Correlations presented by the Spearman’s rank correlation coefficient (rho). Non-significant (N.S., P > 0.05) correlations were not reported.

ally, the level of SNAP-25 was increased already in the
MCI stage of Alzheimer’s disease, supporting the notion
that this pre-synaptic protein might be an early marker
for Alzheimer’'s disease (Brinkmalm et al., 2014a,b).
There is evidence suggesting that pre-synaptic dysfunc-
tion may occur early in the pathogenesis of dementia
(Masliah et al.,, 2001), and that compensatory post-
synaptic alterations may occur in response to pre-
synaptic discrepancies (DeKosky and Scheff, 1990).
These results are altogether in agreement with our earlier
studies of the synaptic proteins SNAP-25 (Brinkmalm
et al., 2014a; b), synaptotagmin (Ohrfelt et al., 2016)
and neurogranin (Kvartsberg et al., 2015a,b).

We present a sensitive ELISA, which showed
reproducibility and intermediate precision not exceeding
%CV of 15 and 16, respectively. SNAP-25 exists in two
isoforms in the brain, SNAP-25A and SNAP-25B (Bark
and Wilson, 1994). These isoforms differ only in nine
alternate amino acids 58, 60. 65, 69, 79, 84 and 88-89,
which are located beyond the potential cleavage site of
SNAP-25, all of which can be measured using the novel
ELISA. The design of the novel ELISA is based on our
previous finding of numerous N-terminally acetylated sol-
uble SNAP-25 fragments in both human brain tissue and
CSF from subjects with Alzheimer’s disease and controls
(Brinkmalm et al., 2014a,b). In the previous study, we
applied affinity purification (immunoprecipitation) against
the N-terminal of SNAP-25 and mass spectrometry ana-
lyzed for subsequently quantification of tryptic peptides
in CSF (Brinkmalm et al., 2014a,b). The most prominent
result was that the tryptic peptide furthest away from the
targeted N-terminal provided the best differential diagnos-
tic biomarker of Alzheimer’s disease (Brinkmalm et al.,
2014a,b), which might correspond to a truncated SNAP-
25 fragment ending after amino acid 47 (Ac-2-47)
(Brinkmalm et al., 2014a,b). In the present study, we con-
firm that CSF SNAP-25 can discriminate both patients

with dementia due to Alzheimer’s disease and patients
with MCI due to Alzheimer’s disease from controls with
high diagnostic accuracy in ROC curve analyzes
(Brinkmalm et al., 2014a,b). In agreement, we also found
that the CSF levels of SNAP-25 were significantly ele-
vated in Alzheimer’s disease (Brinkmalm et al., 2014a,
b). The novel ELISA does not exclusively target the Ac-
2-47, and possibly longer N-terminal forms of SNAP-25
might also be analyzed. Interestingly, truncated N-
terminal fragments of SNAP-25 might be created by cal-
pain cleavage (Ando et al., 2005; Grumelli et al., 2008),
and the activity of calpain is increased in Alzheimer’s dis-
ease brain (Kurbatskaya et al., 2016). The cleavage of
SNAP-25 by calpain might regulate synaptic transmission
by suppressing the neuro-transmitter release (Ando et al.,
2005).

In agreement with the majority of previous reports
summarized by Honer (2003), we found that the SNAP-
25 levels in brain were significantly decreased in later
stages of Alzheimer’s disease compared with the controls
(Gabriel et al., 1997; Mukaetova-Ladinska et al., 2000;
Brinkmalm et al., 2014a,b). The lower levels of SNAP-
25 might reflect the synaptic degeneration known to occur
in disease-affected regions of the brain in Alzheimer’s dis-
ease (DeKosky and Scheff, 1990). Intra-cellular SNAP-25
is anchored to the pre-synaptic membrane by palmitoyla-
tion of a central cysteine-rich region (amino acids 85, 88,
90 and 92) (Veit et al., 1996). Since the palmitoylation is a
reversible reaction, SNAP-25 could possibly reside free in
the pre-synaptic cytoplasm. However, the mechanism of
liberation of SNAP-25 into CSF and what it reflects are
unknown. Herein, we found that SNAP-25 correlated with
the levels of T-tau and P-tau in both the control group and
in patients with dementia due to Alzheimer’s disease in all
examined sample sets. CSF T-tau has previously been
suggested to be a general marker of damage to cortical
non-myelinated neurons (Blennow et al., 2010). In con-
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trast, P-tau might be a more specific marker for Alzhei-
mer’s disease (Blennow et al., 2010), since high CSF
levels of P-tau have been found to correlate to the accu-
mulation of cortical neurofibrillary tangles (Buerger
et al., 2006; Tapiola et al., 2009). Altogether, these find-
ings suggest that SNAP-25 is a sensitive Alzheimer’s dis-
ease biomarker that to some extent mirrors general
neurodegeneration, which is in agreement with our first
pilot study (Brinkmalm et al., 2014a,b). The result that
the levels of SNAP-25 correlated well with T-tau and P-
tau, imply that SNAP-25 might be a valuable surrogate
biomarker in future clinical treatment studies with tau-
based- modifying drugs (Panza et al., 2016).

Marked synaptic degeneration and loss are the main
pathological features of Alzheimer's disease that
correlate with cognitive decline. Since SNAP-25 is
directly involved in the maintenance of synaptic function
(Sollner et al., 1993a,b; Sudhof, 2004), CSF SNAP-25
could be a potential biomarker to follow progression of
clinical symptoms. In the present study, there were no
correlations between the MMSE score, i.e., the severity
of cognitive impairment, and SNAP-25 in any of the exam-
ined groups Although we did not found correlation
between cognition and SNAP-25, previous studies sup-
port that SNAP-25 single nucleotide polymorphisms are
associated with cognitive decline (Gosso et al., 2008;
Guerini et al., 2014). Further studies using a larger set
of clinical samples are warranted to investigate if SNAP-
25 in CSF could be used for assessment of future rate
of cognitive decline. The relationship of CSF SNAP-25
with neuroimaging markers (positron emission tomogra-
phy and magnetic resonance imaging) would also be
important to evaluate. For instance, changes in glucose
utilization identified with fluorodeoxyglucose positron
emission tomography could possible reflect neurodegen-
eration/synaptic dysfunction (Petrie et al., 2009), and
the cortical glucose metabolism would therefore be inter-
esting to study together with CSF SNAP-25.

The strengths of our study are that we present a novel
ELISA for assessment of the CSF levels of SNAP-25 and
that consistent findings were shown in one pilot set and
two independent replication cohorts of CSF samples.
One drawback is the cross-sectional design that
complicates the investigation of possible association
between CSF SNAP-25 and synaptic degeneration over
time.

In summary, we present a novel ELISA for
measurement of the pre-synaptic protein SNAP-25 in
CSF samples. CSF SNAP-25 levels were increased in
patients with MCI due to Alzheimer's disease and
dementia due to Alzheimer's disease compared with
controls, which are in agreement with our previous
findings, and supports the notion that SNAP-25 could be
a valuable biomarker both in early Alzheimer’s disease
and in manifest Alzheimer's disease dementia. Future
studies should examine the ability to monitor cognitive
decline, the specificity of the biomarker against non-
Alzheimer's disease dementias, as well as how it
changes in response to treatment with novel disease-
modifying drug candidates.

DECLARATIONS
Ethical approval and consent to participate

The study was approved by the Ethics Committee of Paris
Diderot University Hospital (Bichat Hospital). All patients
or caregivers gave their written informed consents for
research, which was conducted in accordance with the
Helsinki Declaration. The use of de-identified leftover
samples for method development and validation studies
was approved by the Regional Ethical Review Board at
University of Gothenburg (08-11-14).

CONSENT FOR PUBLICATION
Not applicable.

AVAILABILITY OF DATA AND MATERIALS

The datasets used and/or analyzed during the present
study are available from the corresponding author on
reasonable request.

COMPETING INTERESTS

KB has served at advisory boards or as a consultant for
Alzheon, BioArctic, Biogen, Eli Lilly, Fujirebio Europe,
IBL International, Pfizer, and Roche Diagnostics, and is
a co-founder of Brain Biomarker Solutions in
Gothenburg AB, a GU Ventures-based platform
company at the University of Gothenburg. HZ is another
co-founder of this company. The other authors declare
that they have no competing interests.

FUNDING

The work was supported by grants from the Swedish
Brain Power Consortium, the Swedish Alzheimer
Foundation (#AF-553101 and # AF-646211), the
Research Council, Sweden (project #14002), the Brain
Foundation, Sweden (project # FO2015-0021), LUA/ALF
project, Vastra Gotalandsregionen, Sweden (project #
ALFGBG-139671), European Research Council, the
Knut and Alice Wallenberg Foundation, Demensfonden,
Eivind och Elsa K:son Sylvans stiftelse, the Wolfson
Foundation, Martha och Gustaf Agrens stiftelse,
Stohnes stiftelse, Stiftelsen Gamla Tjanarinnor, Magn.
Bergvalls stiftelse, Svenska L&kareséllskapet, the
Torsten Soderberg Foundation at the Royal Swedish
Academy of Sciences, Ahlén—stiftelsen, and BMBF
BIOMARK-APD (DLR 01ED1203 J).

AUTHORS’ CONTRIBUTIONS

AO and KB performed the study design, interpretation of
the results, and writing of the manuscript draft. AB, JD,
HZ, EB-A, JH and CP contributed to the study concept
and design and/or to critical revision of the manuscript
for important intellectual content. AQ performed the
experiments, analyzed and compiled data. All authors
read and approved the final manuscript.

Please cite this article in press as: Ohrfelt A et al. A Novel ELISA for the Measurement of Cerebrospinal Fluid SNAP-25 in Patients with Alzheimer's Disease. Neuroscience (2018), https://doi.org/10.1016/j
neuroscience.2018.11.038

524

525

526
527
528
529
530
531

533

534

535

536

537
538
539

540

541
542
543
544
545
546
547
548

549

550
551

5563
554
555
556

558
559
560
561
562
563
564

565

566
567
568
569
570
571
572


https://doi.org/10.1016/j.neuroscience.2018.11.038
https://doi.org/10.1016/j.neuroscience.2018.11.038

573

574
575

576

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

NSC 18760
10 December 2018

No. of Pages 9

8 A. Ohrfelt et al. /Neuroscience xxx (2018) xxx—xxx

ACKNOWLEDGMENTS

We are grateful to Asa Kallén and Sara Skoglar for their
technical assistance.

REFERENCES

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC,
Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ,
Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild
cognitive  impairment due to  Alzheimer's disease:
recommendations from the National Institute on Aging-
Alzheimer’s Association workgroups on diagnostic guidelines for
Alzheimer’s disease. Alzheimers Dement 7(3):270-279.

Ando K, Kudo Y, Takahashi M (2005) Negative regulation of
neurotransmitter release by calpain: a possible involvement of
specific SNAP-25 cleavage. J Neurochem 94(3):651-658.

Andreasson U, Perret-Liaudet A, van Waalwijk van Doorn LJ,
Blennow K, Chiasserini D, Engelborghs S, Fladby T, Genc S,
Kruse N, Kuiperij HB, Kulic L, Lewczuk P, Mollenhauer B,
Mroczko B, Parnetti L, Vanmechelen E, Verbeek MM, Winblad
B, Zetterberg H (2015) A practical guide to immunoassay method
validation. Front Neurol 6:179.

Antonucci F, Corradini I, Morini R, Fossati G, Menna E, Pozzi D,
Pacioni S, Verderio C, Bacci A, Matteoli M (2013) Reduced
SNAP-25 alters short-term plasticity at developing glutamatergic
synapses. EMBO Rep 14(7):645-651.

Antonucci F, Corradini |, Fossati G, Tomasoni R, Menna E, Matteoli
M (2016) SNAP-25, a known presynaptic protein with emerging
postsynaptic functions. Front Synaptic Neurosci 8:7.

Bark IC, Wilson MC (1994) Human cDNA clones encoding two
different isoforms of the nerve terminal protein SNAP-25. Gene
139(2):291-292.

Blennow K, Bogdanovic N, Alafuzoff I, Ekman R, Davidsson P (1996)
Synaptic pathology in Alzheimer’s disease: relation to severity of
dementia, but not to senile plaques, neurofibrillary tangles, or the
ApoE4 allele. J Neural Transm (Vienna) 103(5):603—618.

Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease.
Lancet 368(9533):387—403.

Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal
fluid and plasma biomarkers in Alzheimer disease. Nat Rev
Neurol 6(3):131-144.

Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-
related changes. Acta Neuropathol 82(4):239-259.

Brinkmalm A, Brinkmalm G, Honer WG, Moreno JA, Jakobsson J,
Mallucci GR, Zetterberg H, Blennow K, Ohrfelt A (2014b)
Targeting synaptic pathology with a novel affinity mass
spectrometry approach. Mol Cell Proteomics 13(10):2584-2592.

Brinkmalm A, Brinkmalm G, Honer WG, Frolich L, Hausner L,
Minthon L, Hansson O, Wallin A, Zetterberg H, Blennow K, Ohrfelt
A (2014a) SNAP-25 is a promising novel cerebrospinal fluid
biomarker for synapse degeneration in Alzheimer’s disease. Mol
Neurodegener 9:53.

Buerger K, Ewers M, Pirttila T, Zinkowski R, Alafuzoff I, Teipel SJ,
DeBernardis J, Kerkman D, McCulloch C, Soininen H, Hampel H
(2006) CSF phosphorylated tau protein correlates with neocortical
neurofibrillary pathology in Alzheimer's disease. Brain 129(Pt
11):3035-3041.

Davies CA, Mann DM, Sumpter PQ, Yates PO (1987) A quantitative
morphometric analysis of the neuronal and synaptic content of the
frontal and temporal cortex in patients with Alzheimer’s disease. J
Neurol Sci 78(2):151-164.

DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex
biopsies in Alzheimer’'s disease: correlation with cognitive
severity. Ann Neurol 27(5):457—464.

Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow
K, DeKosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S,
Crutch S, Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert
MO, Jicha GA, Nordberg A, Pasquier F, Rabinovici G, Robert P,
Rowe C, Salloway S, Sarazin M, Epelbaum S, de Souza LC,

Vellas B, Visser PJ, Schneider L, Stern Y, Scheltens P,
Cummings JL (2014) Advancing research diagnostic criteria for
Alzheimer's disease: the IWG-2 criteria. Lancet Neurol 13
(6):614—629.

Gabriel SM, Haroutunian V, Powchik P, Honer WG, Davidson M,
Davies P, Davis KL (1997) Increased concentrations of
presynaptic proteins in the cingulate cortex of subjects with
schizophrenia. Arch Gen Psychiatry 54(6):559-566.

Gosso MF, de Geus EJ, Polderman TJ, Boomsma DI, Heutink P,
Posthuma D (2008) Common variants underlying cognitive ability:
further evidence for association between the SNAP-25 gene and
cognition using a family-based study in two independent Dutch
cohorts. Genes Brain Behav 7(3):355-364.

Grumelli C, Berghuis P, Pozzi D, Caleo M, Antonucci F, Bonanno G,
Carmignoto G, Dobszay MB, Harkany T, Matteoli M, Verderio C
(2008) Calpain activity contributes to the control of SNAP-25
levels in neurons. Mol Cell Neurosci 39(3):314-323.

Guerini FR, Agliardi C, Sironi M, Arosio B, Calabrese E, Zanzottera
M, Bolognesi E, Ricci C, Costa AS, Galimberti D, Griffanti L,
Bianchi A, Savazzi F, Mari D, Scarpini E, Baglio F, Nemni R,
Clerici M (2014) Possible association between SNAP-25 single
nucleotide polymorphisms and alterations of categorical fluency
and functional MRI parameters in Alzheimer's disease. J
Alzheimers Dis 42(3):1015-1028.

Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K,
Minthon L (2006) Association between CSF biomarkers and
incipient Alzheimer’s disease in patients with mild cognitive
impairment: a follow-up study. Lancet Neurol 5(3):228-234.

Honer WG (2003) Pathology of presynaptic proteins in Alzheimer’s
disease: more than simple loss of terminals. Neurobiol Aging 24
(8):1047-1062.

Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112
(4):519-533.

Kurbatskaya K, Phillips EC, Croft CL, Dentoni G, Hughes MM, Wade
MA, Al-Sarraj S, Troakes C, O’Neill MJ, Perez-Nievas BG,
Hanger DP, Noble W (2016) Upregulation of calpain activity
precedes tau phosphorylation and loss of synaptic proteins in
Alzheimer’s disease brain. Acta Neuropathol Commun 4:34.

Kvartsberg H, Duits FH, Ingelsson M, Andreasen N, Ohrfelt A,
Andersson K, Brinkmalm G, Lannfelt L, Minthon L, Hansson O,
Andreasson U, Teunissen CE, Scheltens P, Van der Flier WM,
Zetterberg H, Portelius E, Blennow K (2015a) Cerebrospinal fluid
levels of the synaptic protein neurogranin correlates with cognitive
decline in prodromal Alzheimer’s disease. Alzheimers Dement 11
(10):1180—-1190.

Kvartsberg H, Portelius E, Andreasson U, Brinkmalm G, Hellwig K,
Lelental N, Kornhuber J, Hansson O, Minthon L, Spitzer P, Maler
JM, Zetterberg H, Blennow K, Lewczuk P (2015b)
Characterization of the postsynaptic protein neurogranin in
paired cerebrospinal fluid and plasma samples from Alzheimer’s
disease patients and healthy controls. Alzheimers Res Ther 7
(1):40.

Lee JW, Hall M (2009) Method validation of protein biomarkers in
support of drug development or clinical diagnosis/prognosis. J
Chromatogr B Analyt Technol Biomed Life Sci 877
(13):1259-1271.

Masliah E, Hansen L, Albright T, Mallory M, Terry RD (1991)
Immunoelectron microscopic study of synaptic pathology in
Alzheimer’s disease. Acta Neuropathol 81(4):428—-433.

Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel Jr
DW, Morris JC (2001) Altered expression of synaptic proteins
occurs early during progression of Alzheimer's disease.
Neurology 56(1):127—129.

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR,
Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs
RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B,
Weintraub S, Phelps CH (2011) The diagnosis of dementia due to
Alzheimer’s disease: recommendations from the National Institute
on Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer's disease. Alzheimers Dement 7
(3):263-269.

Please cite this article in press as: Ohrfelt A et al. A Novel ELISA for the Measurement of Cerebrospinal Fluid SNAP-25 in Patients with Alzheimer's Disease. Neuroscience (2018), https://doi.org/10.1016/j
neuroscience.2018.11.038

640
641
642
643
644
645
646
647
648
649
650
651
652
653

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710


https://doi.org/10.1016/j.neuroscience.2018.11.038
https://doi.org/10.1016/j.neuroscience.2018.11.038

711
712
713
714
715
716
77
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
772

773
774

NSC 18760
10 December 2018

No. of Pages 9

A. Ohrfelt et al. /Neuroscience xxx (2018) xxx—xxx 9

Mukaetova-Ladinska EB, Garcia-Siera F, Hurt J, Gertz HJ, Xuereb
JH, Hills R, Brayne C, Huppert FA, Paykel ES, McGee M, Jakes
R, Honer WG, Harrington CR, Wischik CM (2000) Staging of
cytoskeletal and beta-amyloid changes in human isocortex
reveals biphasic synaptic protein response during progression of
Alzheimer’s disease. Am J Pathol 157(2):623-636.

Ohrfelt A, Brinkmalm A, Dumurgier J, Brinkmalm G, Hansson O,
Zetterberg H, Bouaziz-Amar E, Hugon J, Paquet C, Blennow K
(2016) The pre-synaptic vesicle protein synaptotagmin is a novel
biomarker for Alzheimer’s disease. Alzheimers Res Ther 8(1):41.

Olsson B, Lautner R, Andreasson U, Ohrfelt A, Portelius E, Bjerke M,
Holtta M, Rosen C, Olsson C, Strobel G, Wu E, Dakin K, Petzold
M, Blennow K, Zetterberg H (2016) CSF and blood biomarkers for
the diagnosis of Alzheimer’s disease: a systematic review and
meta-analysis. Lancet Neurol 15(7):673—684.

Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato
A, Tortelli R, Galizia |, Prete C, Daniele A, Pilotto A, Greco A,
Logroscino G (2016) Tau-based therapeutics for Alzheimer's
disease: active and passive immunotherapy. Immunotherapy 8
(9):1119-1134.

Petrie EC, Cross DJ, Galasko D, Schellenberg GD, Raskind MA,
Peskind ER, Minoshima S (2009) Preclinical evidence of
Alzheimer changes: convergent cerebrospinal fluid biomarker
and fluorodeoxyglucose positron emission tomography findings.
Arch Neurol 66(5):632—-637.

Sanfilippo C, Forlenza O, Zetterberg H, Blennow K (2016) Increased
neurogranin concentrations in cerebrospinal fluid of Alzheimer’s
disease and in mild cognitive impairment due to AD. J Neural
Transm (Vienna) 123(12):1443-1447.

Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007)
Synaptic alterations in CA1 in mild Alzheimer disease and mild
cognitive impairment. Neurology 68(18):1501-1508.

Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE
(1993a) A protein assembly-disassembly pathway in vitro that
may correspond to sequential steps of synaptic vesicle docking,
activation, and fusion. Cell 75(3):409-418.

Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H,
Geromanos S, Tempst P, Rothman JE (1993b) SNAP receptors
implicated in vesicle targeting and fusion. Nature 362
(6418):318-324.

Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM,
lwatsubo T, Jack Jr CR, Kaye J, Montine TJ, Park DC, Reiman
EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B,
Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward
defining the preclinical stages of Alzheimer's disease:
recommendations from the National Institute on Aging-
Alzheimer’s Association workgroups on diagnostic guidelines for
Alzheimer’s disease. Alzheimers Dement 7(3):280-292.

Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci
27:509-547.

Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P,
Soininen H, Pirttila T (2009) Cerebrospinal fluid {beta}-amyloid 42
and tau proteins as biomarkers of Alzheimer-type pathologic
changes in the brain. Arch Neurol 66(3):382—-389.

Veit M, Sollner TH, Rothman JE (1996) Multiple palmitoylation of
synaptotagmin and the t-SNARE SNAP-25. FEBS Lett 385(1—
2):119-123.

Wellington H, Paterson RW, Portelius E, Torngvist U, Magdalinou N,
Fox NC, Blennow K, Schott JM, Zetterberg H (2016) Increased
CSF neurogranin concentration is specific to Alzheimer disease.
Neurology 86(9):829-835.

(Received 27 April 2018, Accepted 28 November 2018)
(Available online xxxx)

Please cite this article in press as: Ohrfelt A et al. A Novel ELISA for the Measurement of Cerebrospinal Fluid SNAP-25 in Patients with Alzheimer's Disease. Neuroscience (2018), https://doi.org/10.1016/j
neuroscience.2018.11.038

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771


https://doi.org/10.1016/j.neuroscience.2018.11.038
https://doi.org/10.1016/j.neuroscience.2018.11.038

	A Novel ELISA for the Measurement of Cerebrospinal Fluid SNAP-25 �in Patients with Alzheimer’s Disease
	Introduction
	Experimental procedures
	Human brain tissue samples
	Quality control (QC) CSF samples
	CSF samples in the pilot study
	CSF samples in the clinical studies
	Demographics of the clinical CSF studies
	Analysis of CSF biomarkers
	Synthetic peptides of SNAP-25 and antibodies
	A novel sandwich ELISA method for SNAP-25
	Assay performance
	Statistical analysis

	Results
	Assay performance
	Human brain and the pilot CSF study
	CSF SNAP-25 in the clinical cohorts

	Discussion
	Declarations
	Ethical approval and consent to participate

	Consent for publication
	Availability of data and materials
	Competing interests
	Funding
	Authors’ contributions
	Acknowledgments
	References


