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Abstract

For decades, ethylenediaminetetraacetic acid (EDTA) and other aminopolycarboxylates
with similar complexation properties and applicability have been widely used as
chelating agents in various branches of industry. Recently, the low biodegradability of
these ligands and their accumulation in the environment has become cause for concern,
because of the persistence of these ligands and their metal complexes in nature.
Ethylenediaminedisuccinic acid (EDDS), iminodisuccinic acid (ISA), N-bis[2-(1,2-
dicarboxyethoxy)ethyl]aspartic acid (BCA6), N-bis[2-(1,2-dicarboxyethoxy)ethyl]-
glycine (BCAS), N-bis[2-(1,2-dicarboxyethoxy)ethyl]methylglycine (MBCAS) and N-
tris[(1,2-dicarboxy-ethoxy)ethylJamine (TCA6) are more environmentally benign and
potential candidates to replace EDTA, and also diethylenetriaminepentaacetic acid
(DTPA), in several applications. The protonation of these ligands and their complex
formation equilibria with selected metal ions were studied in aqueous solution by
potentiometric titration. Models of the complexation and stability constants of the
different complex species were determined with the computer program SUPERQUAD.
The metals tested were Mg(II), Ca(Il), Mn(II), Fe(Ill), Cu(Il), Zn(Il), Cd(1I), Hg(II),
Pb(Il) and La(IIl), the selection varying somewhat with the ligand. The formation of
species ML was dominant in all systems. Besides the main species, hydroxo and acidic
complexes often complemented the complexation models. In some cases, additions of
binuclear or bis complexes to models significantly improved the fit. According to the
results of the complexation studies, the stability constants of the new ligands are
somewhat lower than the corresponding values of EDTA and DTPA. The complexation
capability of the new ligands is nevertheless high enough for them to be used in several
applications. The new ligands also have other environmental advantages, including low
nitrogen content. In the case of the BCA ligands, less chemical and fewer process steps
are required in pulp bleaching due to the inertness of their Mn(II) complexes. The lower
stability of Cd(Il), Hg(II) and Pb(Il) complexes of BCA6 is an environmentally
advantageous because, in conjunction with the better biodegradability, it probably

reduces the capability of BCA6 to remobilize toxic heavy metal ions from sediments.
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Abbreviations

BCAS

N-bis[2-(1,2-dicarboxyethoxy)ethyl]glycine

BCAG6 (AES) N-bis[2-(1,2-dicarboxyethoxy)ethyl]aspartic acid

CMOS
DTPA
EDDA
EDDHA
EDDS
EDTA
EEDTA
EGDA
ISA
MBCAS
MGDA
NTA
ODA
ODS
TCA6
TDS
TEA
T™MS

carboxymethyloxysuccinic acid
diethylenetriaminepentaacetic acid
ethylenediaminediacetic acid
ethylenediiminobis(2-hydroxyphenyl)acetic acid
ethylenediaminedisuccinic acid
ethylenediaminetetraacetic acid
oxybis(ethylenenitrilo)tetraacetic acid
ethyleneglycoldiacetate / 2,5-dioxa-1,1,6-hexanedicarboxylic acid
iminodisuccinic acid
N-bis[2-(1,2-dicarboxyethoxy)ethylJmethylglycine
methylglycinediacetic acid

nitrilotriacetic acid

oxydiacetate

oxydisuccinic acid
N-tris[(1,2-dicarboxyethoxy)ethylJamine
3,6-dioxaoctane-1,2,4,5,7,8-hexacarboxylic acid
triethanolamine

1-hydroxy-3-oxapentane-1,2,4,5-tetracarboxylic acid
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1 Introduction

The ability of aminopolycarboxylates such as ethylenediaminetetraacetic acid (EDTA)
and diethylenetriaminepentaacetic acid (DTPA) to form stable metal complexes has been
widely exploited in analytical chemistry and industrial applications. For decades, both
ligands have extensively been used as effective chelating agents in a variety of large-scale
industrial applications from detergents to agrochemicals. Recently, however, the
nonbiodegradability of these ligands and their metal complexes and their accumulation in
the environment has become cause for concern. '® Further, EDTA and DTPA may be
capable of remobilizing toxic heavy metal ions from sediments,”® and they form strong
complexes with iron and may increase eutrophication through release of phosphates. The
high nitrogen content of EDTA and DTPA is an environmental disadvantage. EDTA has
been found in drinking water and is present in almost all anthropogenically influenced
surface waters in industrialized countries.” * Replacement of EDTA and DTPA by more

environmentally friendly chelating agents would be highly desirable.

Because of their industrial importance, chelating agents are produced and used in large
and increasing quantities. EDTA was patented in Germany in 1935 and has been in
constant production since then. Figure 1 shows the development of EDTA sales
(calculated as HYEDTA) in Western Europe between 1989 and 1999. According to data
supplied by industry, currently 53900 tonnes EDTA per year are produced in the
European Union. The sales of EDTA in 1999 were 34546 tonnes in Western Europe and
1192 tonnes in Finland. > EDTA is used as a complexing agent in many branches of
industry. The estimated percentage EDTA use in Western Europe °, Sweden * and the
World ' is shown in Figure 2. As in Sweden, the major user of complexing agents in
Finland is the pulp and paper industry. '° The quantity of DTPA sold in Western Europe
in 1999 was 14357 tonnes. Sales in Sweden, Finland and Germany comprised two-thirds

of the total. >
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EDTA is on the EU priority list of substances for risk assessment. The EU Risk
Assessment Report stresses the need to limit the risks that EDTA continues to pose to the
environment. This conclusion was reached in view of the high levels of EDTA released to
the environment through its use in industrial detergents, by paper mills, by circuit board
manufacturers and during the recovery of EDTA-containing wastes. Investigations of

these release scenarios have demonstrated a risk to aquatic organisms. °

Although EDTA is the main chemical of concern and was the chief motivation for our
search for alternative ligands, other ligands with the same kind of biodegradability and
the same complexation properties or applicability are discussed where appropriate.

DTPA, for example, is heavily consumed in pulp bleaching.

Alternative chelating agents should fulfil the following three criteria: their complex
forming properties should be sufficient for the application, the nitrogen content should be
as low as possible to reduce the loading of nitrogen, for example, in the effluents of a

pulp mill, and they should be readily or at least inherently biodegradable.

The present complexation studies were part of a wider research project coordinated by
Kemira Oyj. The complexation data are currently being utilized in various practical

studies with the aim of developing new environmentally friendly products.

The protonation of six candidate ligands to replace EDTA, and their complex formation
equilibria with selected metal ions, were studied in aqueous solution by potentiometric
titration. Models of the complexation and stability constants of the different complex
species were determined with the computer program SUPERQUAD. The selection of
metals varied somewhat depending on the ligand and included Mg(II), Ca(Il), Mn(Il),
Fe(III), Cu(Il), Zn(1l), Cd(1I), Hg(1), Pb(II) and La(III).

13



2 Features of studied ligands, metal ions and complexation
2.1 The chelate effect

Chelation is a process in which a metal ion coordinates with two or more donor atoms of
the same ligand resulting in the formation of one or more rings. The word chelate,

' is derived from the Greek word

originally proposed in 1920 by Morgan and Drew '
M (chelé), meaning claw, while ligand comes from the Latin word ligare, to bind.
Chelating agents are typically organic molecules with several atoms (polydentate or
multidentate ligands) capable of forming chelate rings by coordination bonds with metal
cations by donating electron pairs of ligand (Lewis base) to metal ions (Lewis acid). "

Five- or six-membered chelate rings are usually the most stable.

The chelate effect refers to the preference of metal ions to form complexes with chelating
ligand rather than non-chelating ligands where the two types of ligands can form bonds of
similar strength. The chelating effect is affected by enthalpy and entropy contributions.'*
2 In general, for any stability constant as well as for their differences, the following

thermodynamic relationship can be expressed as

AG'=-RTInp=AH'-TAS® [1]

With increasing 8, A G° becomes more negative, due to more negative enthalpy term
A H' or more positive entropy term A S”. Factors AH’ and AS° can operate in the same

or different directions, the sum effect being decisive.

The following enthalpy contribution can be considered: ligand repulsion, ligand distortion
and crystal field stabilization energy. '*'° When two ligands approach a metal ion they
repel one another, with unfavourable enthalpy change upon complex formation, but in the
case of a chelating ligand some of this repulsion has already been built into the ligand.
Some distortion of the ideal bond angles within the ligand almost always occurs in
chelate formation. This can be unfavourable as compared with monodentate complex

formation if the distances of the donor atoms are not ideally suited to the metal. Bond
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distortions are generally lowest in five- and six-membered rings, and these ring sizes are
usually favoured. Besides these effects, a chelate ligand generates a larger crystal field
splitting than do otherwise similar monodentate ligands, and this enables the formation of

stronger complexes.

There are also several entropy contributions to the chelate effect. ' '** Although the
complexation of chelating ligands may be disfavoured relative to monodentate ligands
due to the unfavourable position of the other end of a chelating ligand when one end is
bound to metal, there are also some favouring entropy terms in chelate formation. The
activity factor means that the chance of coordination of the other end of the ligand is
proportional to its effective local concentration around the metal ion. In dilute solution,
this is much higher than the average ligand concentration because the other end is located
in a relatively small volume immediately surrounding the metal ion. The activity factor
also provides an explanation of the decreasing magnitude of the chelate effect as the ring
size increases beyond the most favoured size, and of the strengthening of the chelate
effect with increase in the number of chelate rings. Much of the internal entropy of the
ligand is lost upon coordination. The internal entropy of the ligand is less for a rigid
chelating ligand than for corresponding monodentate ligand. The internal entropy losses
will disfavour complex formation of the monodentate ligand more than that of the
chelating ligand. The gain in translational entropy when several monodentate ligands are
replaced by one polydentate ligand is also considered as an important source of the

chelate effect.

2.2 Ligands investigated

In this work, the metal complexation ability was studied for a series of chelating agents
regarded as candidates to replace EDTA and DTPA in several applications. All the
ligands contain basic amino nitrogen donors with an electron pair capable of interacting
with metal ion, and acidic carboxylic acid groups, capable of losing proton and
coordinating to metal ion through oxygen donors. Containing both hard metal ion-
favouring carboxylic acid groups and one or two soft metal ion-favouring amino groups,

these ligands can be expected to complex both hard and soft metal ions. These same



donors are present in EDTA and DTPA. Some of the ligands studied here (BCA6, BCAS,
MBCAS, TCAG6) also have neutral ether oxygen atoms, which enhance the effect of the
stronger donor atoms and, in some cases, enable the formation of chelate rings of
adequate size. It can be assumed that rings formed through ether oxygens are less stable
than rings consisting solely of stronger donors. On the other hand, the stability of a
chelate is expected to grow with increasing number of donor atoms. Although nitrogen is
usually a strong donor, forming stable complexes, high nitrogen content in a chelating
agent is environmentally undesirable. Thus, it is reasonable to seek ligands with the

number of oxygen donors increased at the expense of nitrogen donors.

Ethylenediaminedisuccinic acid (EDDS) is a structural isomer of EDTA. With two chiral
carbon atoms it has three stereoisomeric forms [S,S], [S,R/R,S] and [R,R]. In the present
work, EDDS was used as [S,S] form and as a mixture consisting of 25% [S,S], 50% [R,S]
and 25% [R,R] forms. [S,S]-EDDS was prepared using 1,2-dibromoethane and L-aspartic
acid * and the isomeric mixture of EDDS was synthesised from ethylenediamine and
maleic anhydride. *2° The iminodisuccinic acid (ISA) was an isomeric mixture
consisting of 50% [S,S] and 50% [R,S] forms synthesised by Michael addition of aspartic
acid to maleic acid. ** While EDDS and ISA are not new compounds, they are used in

this project in new applications.

In the context of the project, a series of novel chelating agents was designed by Kemira.
These were N-bis[2-(1,2-dicarboxyethoxy)ethyl]aspartic acid (BCA6), N-bis[2-(1,2-
dicarboxyethoxy)ethyl]glycine (BCAS), N-bis[2-(1,2-dicarboxyethoxy)ethyl]methyl-
glycine (MBCAS) and N-tris[2-(1,2-dicarboxyethoxy)ethylJamine (TCA6), synthesised,
respectively, via a lanthanide-catalysed Michael addition of diethanolamine, bis-N-(2-
hydroxyethyl)aspartic acid, bis-N-(2-hydroxyethyl)-D-L-alanine or tricthanolamine to

maleic acid. 2"

All new ligands were studied as isomeric mixtures, and in addition BCA6, which appears
as six conformational isomers, [S,S,S], [S,S,R], [S,R,R], [S,R,S], [R,S,R] and [R,R,R],
was studied as its pure isomers [S,S,S] and [R,S,R]. These were produced using stereo

centres from L- and D-malic and aspartic acid. *° All ligands were produced by Kemira.
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2.3 Metal ions investigated

Metal ions for the study were selected with a view to the intended applications. In pulp
bleaching, Mn(Il) and Fe(III) should be sequestered, while Mg(Il) and Ca(Il) ions, which
have a positive effect on peroxide bleaching, should not. The complexation of Ca(Il) is
essential in detergent applications, and the complex formation with Zn(II), Cu(Ill) and

Fe(III) is beneficial in applications to plant growth.

The complexation of La(Ill) was studied in an attempt to discover the reason for the
disappearance of the lanthanum catalyst used in the synthesis of most of the ligands. The
complexation of BCAS, BCA6 and TCA6 with La(Ill) was studied while searching for
the lost lanthanum, and the reason for the disappearance was discovered: these ligands
are good chelators for La(IIl). The problem of loss was solved by recycling the catalyst

by ion exchange. *'

When application tests showed BCAG6 to be the most suitable of the new ligand for pulp
bleaching, some additional studies were done with BCA6. Concern over its possible
ability to mobilize heavy metals led to widening of the studies to include the
complexation of BCA6 with Cd(II), Hg(II) and Pb(II) ions.

The isomers of EDDS are known to exhibit different degrees of biodegradability and it
was of interest to study their possibly different behaviour in complexation. These
comparisons were first done for EDDS with Fe(III), Mn(Il), Cu(Il) and Zn(II) — the metal
ions that were measured with almost all ligands here — and then for BCA6 with these ions

and also with Ca(II) and Mg(II).

2.4 Properties of the metal ions

Several properties of the metal ion affect chelate formation. These include electronic
structure, acceptor character, size, oxidation state and coordination number of metal ion.
The nature of the bond between metal and ligand may vary from essentially electrostatic

to almost purely covalent. "2

17



Metal ions can be classified according to their electronic structure as set out in Table 1.
Types i-iv have filled subshells and types v and vi incompletely filled subshells. The
effect of variable oxidation states is present in the latter two cases. The complexes of
transition metals and the lanthanides (and actinides) are generally highly stable compared

with those of non-transition elements. '2

Two classifications of metals divide them according to their nature of acceptor character
towards different ligands in aqueous solution: the a/b and the hard/soft classification. Most
metals in their common oxidation states are class a acceptors and form their most stable
complexes with more electronegative ligands containing nitrogen, oxygen and fluorine. The
bonding is predominately electrostatic, and these metal ions have weak polarizing power.
Class b acceptors form their most stable complexes with elements like phosphorus, sulphur
and chlorine and elements below these in the periodic table. The greater polarizing power of
the class b metal ions results in covalent forces in their complexes, which contribute
significantly to the metal-ligand bonding. Class b metals can form more stable complexes
than class a metals with neutral ligands such as ethylenediamine, while class a metals prefer
ligands containing acidic functional groups such as polycarboxylic acids. The division into
the different classes is not sharp, and there are several borderline ions. Metal ions of type i
and ii with 2 or 8 electrons in their outermost shells belong to class a. When d-subshells are
completely filled (type iii), class b character changes to class a with increasing charge of the
ion, and in type iv (“inert” pair of s-electrons) class b behaviour predominates. When the
number of electrons in the d-shell increases (in type v), the class a character changes to class
b. It must be emphasized that the a/b classification is purely empirical, and the a/b character

of metal ions is exhibited as described only in highly polar solvents like water. '*'> ¥

Since metal ions behave as Lewis acids (electron pair acceptor) and ligands as Lewis
bases (electron pair donor), the hardness/softness of metal ions and ligands offers another
way to classify them. Stable complexes result from interactions between hard acids and
hard bases or between soft acids and soft bases. Ligands containing highly
electronegative donor atoms, which are difficult to polarize, are classified as hard bases
(e.g. the carboxylic acid donors as in the ligands studied here). Like class a ions, hard

metal ions retains their valence electrons strongly and are not easily polarized. Tons that

18



are small in size and possess high charge are classified as hard. Soft metal ions in turn,
like class b ions, are relatively large, do not retain their valence electrons firmly and are

12. 13, 3336 According to the hardness parameter derived from

easily polarized.
electronegativity by Parr and Pearson, *° the hardness order of the studied metal ions is
Mg®" > Ca®" > La*" > Fe*" > Zn*" > Cd*' > Mn*" > Pb*" > Cu®*" > Hg”". A hardness order

similar to this, expressed by Hancock and Marsicano *’~*

as relative ionicity versus
covalence in the M-L bond, gives the series Ca’" > Mg*" > La’" > Fe’" > Mn** > Pb*" >

Zn*" > Cd* > Cu* > Hg™".

Besides the ionic contribution and strength of covalence of Lewis acid and base, * steric
hindrance may affect the formation of the M-L bond. When sizes of the metal ion and
donor atom are disparate, steric effects increase. *">° The relative sizes of metal ion and
ligand are reported to affect the hardness of the metal ion and thereby the strength of

394142 Although nitrogen is classified as a class a or hard donor atom, it is

complexation.
considered to be more suitable than oxygen for soft acids. Its lower electronegativity (3)
as compared with oxygen (3.5) and its neutral character in the studied ligands make it
more suitable than oxygen for complexation with softer acids. On the other hand both
oxygen and nitrogen donors bond well with the large Hg”" ion, and Hg”" benefits from

the addition of neutral oxygen donors to the ligand as is discussed later.

The size of a metal ion is not invariant, but is affected by several factors, including
coordination number, nature of the linked molecules and bonding, and in the case of
transition metals, spin state (high/low spin). Ionic radii can be estimated by applying
different assumptions. The effective ionic radii given by Shannon and Prewitt, ** often
considered most useful, are shown for the present metal ions for coordination number six in
Table 1. Progressing to the right in a periodic series should mean a decrease in the ionic
size. If the ionic charge remains constant, the decrease in size is smooth and moderate, but
if the charge increases there will be a precipitous drop in the ionic radii. Increase in the
oxidation state causes a shrinkage in size for certain metal ions. The ion becomes smaller
because of loss of electron density and because the increasing cationic charge pulls the
negatively charged ligands closer to the metal. In the case of transition metals, also the spin

state affects the effective ionic radii. Increasing coordination number has an increasing
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effect on the ionic radii because of repulsions among the coordinating ions. **

If the studied metal ions are considered with respect to the hard/soft and a/b criteria
together, it can be seen that Mg(Il), Ca(Il) and La(Ill) can be classified as hard, class a
ions, while Hg(Il) is a soft, class b ion. Its small size and high charge put Fe(IIl) in the
hard, class a category, while Mn(II), Cu(Il), Zn(II), Cd(IT) and Pb(II) lie in the borderline

arca.

Table 1. Electronic structures, acceptor nature and hardness/softness of the metal ions of

the study. ' '>*> ?* Effective radii of metal ions in octahedral coordination (*spin state:
high spin). **
studied type outermost electrons classa/b/ hard / soft/ ionic
metal ion  i-vi borderline borderline radii
r/pm
- i ns’ (a) (hard) -
Mg(ID) il nsnp° a hard 72
Ca(1) a hard 100
Zn(I0) ii (n-1)d" a hard-soft 74
Cddn a-b soft 95
Hg(1l) b soft 102
Pb(IT) iv (n-1)d"’ns’ a-b hard-soft 118
Mn(1) v (n-1)d"' — (n-1)d® a-b hard-soft 82 *
Fe(II) transition metals a hard 64 *
Cu(Il) a-b hard-soft 73
La(III) vi (-1)(f — f)ns’np® a hard 106

lanthanides n=5
actinides n=6

Alkaline earth metals (type ii) Mg(I) and Ca(Il) are hard acids, favour oxygen donor, are
not easily polarized and show predominately electrostatic bonding in complexes.

Type iii ions with d'® subshell electrons are relatively easily polarized and tend to have
significant covalent bonding character. Coordination number 4 is common for the group
12 metals, Zn(Il), Cd(IT) and Hg(Il) and also coordination number six for Zn(II) and
Cd(1I). In addition, coordination numbers 5 and 8 are reported for Hg(II).'? In the case of
multidentate ligands like EDTA, the lower coordination number 4 of metal ions usually
increases due to chelation. As a borderline ion, Zn(Il) forms stable complexes with both
oxygen and nitrogen. Cd(II) is also a borderline ion, but class b behaviour predominates;

Hg(II) is in class b.

Pb(II) ion (type iv) has an oxidation state two units lower than the group valence because

the pair of s-electrons outside the completed electronic shell do not usually participate in
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bonding. Pb(I) shows class b behaviour, and covalent bonding is important in chelates.

Coordination numbers 4, 5 and 6 are common. '

In the case of transition metals (type v), the d-subshell is progressively filled as the
atomic number increases. Metals with few d-electrons outside the shielding noble gas
configuration ns’np® have relatively low ionization energies, like the alkaline and
alkaline-earth metals. They prefer oxygen donors and have large ion size and high
coordination numbers, e.g. 7 or 8. As the number of d-electrons is increased across the
transition metal series, the electron affinity increases with the decreasing shielding of the
configuration ns’np® and increasing effective nuclear charge. lonic radii and maximum
coordination numbers are decreased (to 6), and polarizing power and covalent character
of the bonding are increased. As a consequence, with increasing atomic number and d-
electrons the character of the transition metals changes from class a to class b. The
stability of complexes of divalent ions in the transition metal series with chelators
containing oxygen or nitrogen donors often follows the Irving-Williams order: Mn*" <
Fe?" < Co?" < Ni*' < Cu*" > Zn*". * In octahedral coordination the radius of high spin
divalent ions follows the same sequence for all ions except Cu?’. The Cu®" ion is
exceptional because of its distortion from regular octahedral environment by the Jahn-
Teller effect. In the sequence of octahedrally coordinated ions from Mn*' to Zn*', the
crystal-field stabilization energy (CFSE) is zero for Mn?* (d°) and Zn** (dlo) but rises for
intermediate ions, giving a further increase to stability constants, estimated to be as much

as 5-10%."

An example of type vi ions among the studied metals is La(Ill), which shows class a
behaviour. In interaction with ligands it shows electrostatic character, preferring oxygen
donors, and coordination with nitrogen is usually in association with oxygen donors, as in
EDTA, DTPA and the studied ligands. The large size of La(III) allows high coordination
numbers of 8, 9 or even 10 as, for example, in La(H,0)4(H-EDTA). '?

The basicity of neutral oxygen donors increases slightly in the series H O < CH;0H <
(CH3)20, and this affects the complex stabilities because of the greater electron density of

the lone pairs of the ethers than of water. **>' Several studies report that the addition to
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ligands of groups containing neutral oxygen donors, such as ether oxygen, alters the
selectivity in favour of larger ions. ** ** 3% 3 This preference for larger ions has been
reported in connection with the common practice of adding neutral oxygen donors to
ligands in such positions that five-membered chelate rings are formed on complex
formation. Five- and six-membered chelate rings are commonly considered to form the
most stable complexes, with the five-membered rings rated more stable than the six.
However, it is pointed out that five-membered chelate rings are better preorganized for
coordinating with large metal ions, and six-membered chelate rings for coordinating with
small metal ions. Although this different tendency has been extensively studied for
macrocyclic compounds, it does not appear to depend on the presence of a macrocyclic
ring. Rather, it is related to the presence of five-membered vs. six-membered chelate
rings in the formed complex, since similar size-selectivity patterns are observed in the
open-chain analogues. This tendency is valid irrespective of the hard or soft character of
the metal ion because it is related to donor-metal-donor angles and to steric strain with

different metal ion and chelate ring sizes. > *% 360
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3 Biodegradation and photodegradation properties

EDTA and DTPA have shown virtually no biodegradability in various tests. ' 64
Biodegradability of complexing agents based on ethylene(propylene)di(tri)amine is reported
to depend on the character and number of substituents and nitrogen atoms in the molecule.
Tetra(penta)-substituted derivatives with two or more tertiary nitrogen atoms and
carboxymethyl groups (EDTA, DTPA) are highly stable, while disubstituted derivatives with
two secondary nitrogen atoms (e.g. EDDA, ethylenediaminediacetic acid) are potentially
degradable. ® EDTA and DTPA are reported to be photodegradable only as their Fe(III)
complexes. Although Fe(Ill) complexes would be rapidly photodegraded in summer in
shallow rivers, the rate may be lower in lakes because of the greater light attenuation.
Photodegradation is also pH dependent; degradation is faster under acidic conditions. Under
typical freshwater conditions at neutral pH, the free Fe(IIl) concentration is very low due to

the insolubility of iron oxides, and the metal ion is not available for complexation. ®*7

In the case of EDDS, the biodegradability depends significantly on the isomeric form of the
compound: the [S,S]-isomer is rapidly and completely biodegradable, the mixture of isomers
degrades partially, and the [R,R]-isomer is resistant in the standard Sturm test (OECD 301B).
> Similar results have been found in ISO 9439 tests, where [S,S]-EDDS degraded
significantly better than the EDDS mixture both as the sodium salt and as iron complex. "'
Both the OECD 301B and ISO 9439 tests are classified as CO, evolution tests. "> 7 In a
study of the biodegradation of several metal complexes of [S,S]-EDDS, the Na, Mg, Ca, Cr,
Fe, Zn, Cd, Al, and Pb complexes were found to biodegrade readily, whereas the Cu, Ni, Co
and Hg complexes remained undegraded. In the case of Hg-EDDS, the lack of
biodegradation was due to metal toxicity. ** Besides biodegradation, the low toxicity of

EDDS to fish and algae has been reported. ™

EDDS is reported to photodegrade markedly faster than EDTA, both in the laboratory and in
field experiments. "° This is because the photodegradation of EDDS is independent of its
speciation, whereas the photodegradation of EDTA depends on its existence as Fe(II)-EDTA

species.
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Chelating agents have sometimes been applied to solubilize heavy metals in polluted
soils. Although most of the chelating agent would be removed from the soil before return
of the soil to the field, some amount is always left. The formation of metal complexes
with this residual complexing agent is possible and must be taken into consideration.
EDTA is persistent in the environment and its metal complexes may be leached deep into
the soil and contaminate groundwater. Investigation of the degradation of residual EDDS
from washing of polluted soil has shown that the EDDS degrades in the soil. "® Recently,
the readily biodegradable isomer [S,S]-EDDS has been used as a replacement for EDTA
in soil washing and phytoextraction. '"*° Phytoextraction through the use of high biomass
plants has been proposed as an alternative method to remove metals from contaminated
soil. Because the process is generally conceived as being very slow, EDTA and EDDS
have been investigated and compared for chemically enhanced phytoextraction. Heavy
metals were strongly mobilized by both chelators, EDDS being more effective for Cu and
Zn and EDTA for Cd and Pb. Again, however, the persistence of EDTA is considered to

make it unsuitable for use in phytoextraction under normal field conditions. %

An ISA mixture containing 50% [S,S]- and 50% [R,S]-isomers is more biodegradable
than a mixture containing 25% [S,S]-, 25% [R,R]- and 50% [R,S]-isomers in the
1S09439 test. 7' All isomers of ISA are biodegradable in some degree in the OECD 301F
test. * In the same test, but with a different strain isolated from activated sludge, the
cleavage of the [S,S]-isomer is twice as high as that of the [R,S]-isomer, and the [R,R]-
isomer is not transformed at all. ** ISA has also been tested as a biodegradable alternative

to EDTA in soil washing tests, but it proved to be less effective than EDDS. 7

TCA6 shows weaker biodegradability in the ISO9439 test than does EDDS, ISA or
BCAG6, but slightly better biodegradability than DTPA, both as Na salt and as Fe
complex. "' Only preliminary tests have been done on the biodegradability of MBCAS5,
but it seems to be less biodegradable than EDDS, ISA and the other compounds in the
BCA series. In the OECD standardized biodegradation tests (301B and 301F), BCAS is
noticeably more biodegradable than EDTA and DTPA. The degradation of BCAG6 is
improved in prolonged tests. *’ Also, enhanced biodegradation of BCA6 in a prolonged
1S09439 test is reported. "' BCAS5 and BCA6 appear to be partially biodegradable and
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more degradable than EDTA and DTPA in OECD tests. If the complexing agents studied
in the above-mentioned OECD tests are arranged from least to most biodegradable, the
order is DTPA < EDTA < BCA6 < BCAS5 < [S,S]-EDDS. ¥ ¥ Additionally, BCA6 and
BCA5 have demonstrated their superior degradability to EDTA in Fenton’s process. *’

In photodegradation tests carried out on the same series of chelating agents, the isomeric
mixture of EDDS was used instead of the [S,S] isomer used in biodegradation tests. Since
total elimination was achieved, it was concluded that all three isomers of EDDS are
photodegradable. All other ligands showed photodegradability, and they can be arranged
from least to most photodegradable when exposed to sunlight in lake water as follows:
EDTA < BCA5 < DTPA < BCA6 < EDDS. ® ™ # % 15 poth biodegradability and
photodegradability comparisons, EDDS appears as the most degradable. One
disadvantage of EDDS in real applications is that its nitrogen content is not lower than
that of EDTA. The degradability of different isomers of BCA6 has not been studied

because of poor availability of the pure isomers.



4 Experimental
4.1 Preparation of compounds
4.1.1 Preparation of stock solutions of metal ions

Metal salts were p.a. grade from different producers. Aqueous Cu(1l), Mn(IT), Mg(II),
Zn(II) and Ca(II) chloride solutions were prepared by dissolving CuCl,, MnCl, and
MgCl, hydrates in distilled water and ZnO and CaO m aqueous hydrochloric acid.
Fe(III) chloride solution was prepared from a Fixanal ampoule (Riedel-de Haén).
Aqueous Cd(II) and Hg(Il) nitrate solutions were prepared by dissolving Cd(NOs), in
distilled water and Hg(NOs), in aqueous nitric acid. Pb(II) nitrate solution was prepared
from a Titrisol ampoule (Merck). Aqueous La(III) solutions were prepared by dissolving
La(NO,), hydrate in distilled water. The metal contents of the stock solutions were
standardized by EDTA titration. The Cu(II) concentration was also determined
electrogravimetrically. The acid contents of the metal solutions were determined by

titration with 0.1 M NaOH solution after liberation of the H ions by cation exchange.

4.1.2 Preparation of igands

All ligands were produced by Kemira as described in section 2.2. The purity of the
ligands was checked by *C-NMR and 'H-NMR techniques at Kemira. The products were
usually in the form of sodium salts containing sodium hydroxide, sodium chloride and
water. The base contents of the products were checked by potentiometric titration. Some
products contained organic impurities (0.5-2.9 % w/w depending on product, impurity
and batch). Where necessary, the complexation of impurities was included as known

parameters in the calculations.
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4.1.3 Titration solutions

Aqueous 0.1 M NaOH, 0.1 M HCI and 0.1 M HNO; were prepared from Titrisol
ampoules (Merck). Water used in the dilutions and titration solutions was purified with a

Milli-RO and Milli-Q water purification system (Millipore).

4.2 Potentiometric measurements

The protonation and complex formation equilibria were studied in aqueous 0.1 M NaCl
(or in 0.1 M NaNO; where the metal ion was Cd(Il), Hg(II) or Pb(Il)) at atmospheric
pressure, in a nitrogen atmosphere and in a water—thermostated vessel with jacket at 25.0
°C through a series of potentiometric emf (electromotoric force) titrations. The titrations
were carried out with a Schott-Gerdte GmbH titrator TPC2000 and utilizing titration
software TR600 version 5.00. The cell arrangement for the measurement of the hydrogen

ion concentration, [H'] was the following:

-RE | equilibrium solution | GE+ 2]

where GE denotes a glass electrode, Schott N2680, and RE is Hg, Hg,Cl, || 0.1 M NaCl
(or 0.01 M NaCl, 0.09 M NaNO;). Assuming the activity coefficients to be constant,
expression [3] is valid at 25.0 °C.

E=Eo+59.157log[H"] + ju[H'] + jou[OH] [3]

The cell parameter £ and the liquid junction coefficient jy, valid in acidic solutions, were
determined for each titration by adding a known amount of HCl (or HNOs3) to the
background electrolyte. The value of the liquid junction coefficient joy, valid in basic
solutions, was determined periodically by adding a known amount of NaOH to the
background electrolyte. The value of the coefficient jy varied slightly in different runs,
and was in 0.1 M background about -500 mV M™ on average, and the value of the
coefficient joy was 230 mV M. The repeatability of these values was good and the

values correspond to those in earlier studies made in our laboratory and elsewhere. °' The
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ionic product of water, the pK, value, used when measurements were done in 0.1 M
NaCl (13.78) was determined in earlier work done in the same background in this

1,92
o9 For measurements done

laboratory and corresponds to values determined elsewhere.
in 0.1 M NaNOs, the pK,, value (13.75) was calculated from E, values ** and again
corresponds to values reported elsewhere *>. Although most titrations were carried out
under conditions where the liquid junction potential was negligible, the liquid junction

correction was made to all emf values.

For measurements of the metal complex equilibria, aqueous NaOH or HCI (or HNO3)
was added to the solution. The ratio of the total concentrations of metal, Cy;, to ligand,
Cv, was usually held constant. The initial concentrations were varied within the limits
0.0002 M < Cy £ 0.0065 M and 0.0002 M < Cp £ 0.0063 M, covering the metal-to-
ligand ratios from 3:1 to 1:4 depending on the system. In some runs, aqueous metal
chloride was used as the titrant. Three to nine independent titrations were carried out for
each system. The number of data points used in the calculation of the stability constants
varied between 145 and 467 in the pH (= -log[H']) ranges 1.9-11.2 depending on the
metal ion and ligand. In some of the titrations, the upper pH values were limited by the
appearance of a precipitate or very slow attainment of equilibrium. Only stable emf
readings (0.2 mV / 2-3 min) were used in the calculations. The reproducibility and
reversibility of the equilibria were tested by performing forward (increasing pH) and

backward (decreasing pH) titrations.
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5 Calculations
5.1 Zy, zero level and calculation equations

When an alkaline ligand solution was titrated with aqueous HCI (or HNO,) or an acidic
ligand solution was titrated with aqueous NaOH, there was an easily detected inflection
point at about pH 7. The data was usually analysed by using HL as the zero level of the
ligand.

Protonation/deprotonation of the ligand was controlled with addition of HCI (or HNO,) /
NaOH. Curves of Zy versus pH were drawn to visualize the experimental data sets. Zy
describes the average number of protons added or liberated per mole of ligand and is

given by the relation

Zu=(Cy- [H+K HTYCL (4]
where Cy denotes the total concentration of protons calculated over the zero level HLI'X,
H,0 and M™, where x = 6 for BCA6 and TCAG6, x = 5 for BCA5 and MBCAS5 and x = 4

for ISA, and n" is the oxidation number of each metal ion.

In evaluating the equilibrium constants, the following two-component equilibria were

considered for TCA6, BCA6, BCAS, MBCAS and ISA:

HL'™ = L¥+pH", p=1; B0 [5]
(where x = 6 for BCA6 and TCAG6, x =5 for BCAS and MBCAS5 and x = 4 for ISA)

pH' +HL"™ 5 H,, "™, p=1x; B [6]
(where x = 6 for BCA6 and TCA6, x =5 for BCAS and MBCAS and x = 4 for ISA).

In the evaluation of H™ - M™ - HL'™ systems, the complexation can be characterized by

the general three-component equilibrium
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PH +gM™ + f(HL'™) = (H),(M™)((HL'™),; By [7]
(where x = 6 for BCA6 and TCAG6, x =5 for BCAS and MBCAS and x = 4 for ISA).

The hydrolysis of metal ions can be written

pH +gM™ = (H),M"),; Bugo [8]

The zero level was chosen differently for EDDS: in that case Cy denotes the total
concentration of protons calculated over the zero level HsL, H,O and M"™, and Zy curves

were drawn to the other direction:
Zy=(H]- Cu- K JHT/CL 9]
For EDDS, the following two-component equilibria were considered:

Hil = Ha L7+ pH™ | p=1-4; Booi [10]
pH +HiL = He L7, p=1,2; Boor [11]

and the metal complexation for EDDS was characterized by the three-component

equilibrium expressed as follows:

pH + gM™ + r(HsL) = (H),(M")(Hal): ; Bpgr [12]

The protonation constants of the ligand and the hydrolysis constants of the metal ions
were considered as known parameters in the evaluation of the three-component system
(equation [7] or [12]). The hydrolysis constants calculated from data presented by Baes

99

and Mesmer are shown in Table 2. These were taken into consideration in the

calculations to the appropriate extent.
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Table 2. Hydrolysis constants of the metal ions in ionic strength 0.1, at 25 °C.

99

metal ion pqr (equation [8]) log By, formula
Mg(1I) -110 -11.69 MgOH"
Ca(ll) -110 -13.06 CaOH"
Mn(1I) -110 -10.79 MnOH"
2210 2242 Mn(OH),
310 23481 Mn(OH);"
-410 -47 81 Mn(OH),*
-120 -10.31 Mn,(OH)**
-320 2439 Mn,(OH);"
Fe(I1I) -110 -2.56 FeOH™
2210 -6.21 Fe(OH),"
310 -12.50 Fe(OH);
-410 -21.88 Fe(OH),
-220 -2.84 Fe,(OH),*
-430 -6.05 Fe;(OH),*"
Cu(II) -110 822 CuOH"
210 -17.53 Cu(OH),
310 -27.80 Cu(OH)y
-410 -39.12 Cu(OH),~
-220 -10.60 Cu(OH),>"
Zn(IT) -110 9.15 ZnOH"
210 -17.10 Zn(OH),
-310 -28.39 Zn(OH)y
-410 -40.71 Zn(OH)*
-120 -8.89 Zny(OH)™
-620 -57.53 Zny(OH)™
cddn -110 -1031 CdOH"
210 -20.59 Cd(OH),
-410 -46.91 Cd(OH),*
-120 9.16 Cdy(OH)*
-440 -32.36 Cd,(OH),*"
Hg(I) -110 -3.60 HgOH'
210 -6.34 Hg(OH),
310 -21.10 Hg(OH);
-120 -3.08 Hg,(OH)™
-330 -6.42 Hg;(OH);**
Pb(I) -110 -7.86 PbOH"
210 -1727 Pb(OH),
310 -28.06 Pb(OH);
-120 -6.16 Pb,(OH)**
-430 -23.95 Pby(OH),*"
-440 -20.30 Pb,(OH),*
-860 -43.61 Pbs(OH)s*"
La(Ill) -110 -8.90 LaOH™"
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5.2 Calculation program SUPERQUAD

Mathematical analysis of the systems involves a search for the complex models (pgr
triplets) and the corresponding equilibrium constants of the complexes () that best

describe the experimental data.

The calculations were carried out with the computer program SUPERQUAD ', which

determines the best fit to the experimental data by minimizing the error sum

U= Ewi(Eiobs_Eicalc)Z [1 3]

where E™ are the observed quantities, £, are the corresponding calculated values, and

w; are the weights of each observation.

In SUPERQUAD the titre volume is chosen as the independent variable (predictor) and
the measured potential (emf value) as the dependent variable (response). Electrode
readings in the unbuffered parts of the titration curve (in the region of end-points) are
unreliable because there even small titre errors can have a significant effect. Weighting is

necessary therefore. The standard error propagation formula

o’ = o + (SE/SV) oy’ [14]
is used to calculate the error in measured potential, where o” is the calculated variance of
the measurement, 0E2 and GV2 are the estimated variances of the electrode and volume
readings (depending on the instrumental precision of the potentiometer and burette,
usually 0.1 mV and 0.02 ml) and 3E/3V is the slope of the titration curve. The weight for
each observed titration point is inversely proportional to the variance at that point,

wi = 1/(6?). [15]

The data near the end-point, where 6E/3V is large, have less weight than the other data.
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As experimental input data, SUPERQUAD uses the titration curves (series of titre volumes
and electrode readings), the reaction temperature, total number of millimoles of each
reactant initially present in the titration vessel, concentration of the titrant in the burette,
initial volume in the titration vessel, standard potential of the electrode, and the electrode
and volume reading errors. As well, a suggested complexation model with estimated initial
log p values is given to the program. Additionally, the maximum number of refinement
cycles, selection of output data and choice of weighting scheme can be selected. The output
data consists, among others, of the results (log S values with their standard deviation and
reaction stoichiometry, sample standard deviation s and the y” statistics), plots of residuals,
table of concentrations and percentage distribution curves. The maximum number of data
points in the calculation is 600, the maximum number of reactants is four and the

maximum number of reactions is 18.

The main task and challenge is to find a complexation model that gives a satisfactory fit to
the experimental data and is chemically reasonable. Some model selection criteria are
incorporated in SUPERQUAD. As input data, the program reads the proposed set of
formation constants associated with the stoichiometric coefficients and the refinement key
that tells if the constant is held constant, refined or ignored. The sample standard deviation
s and the i’ statistics are used as criteria in selection of the complex models. The sample
standard deviation should be about one, but models with an s value less than three can be
considered acceptable. During the calculations the model with the lowest sample standard
deviation and xz and no ill-defined formation constants is taken as the best. A formation
constant is ill-defined if its calculated standard deviation is excessive (more than 33% of its
value) or if its value is negative. If after refinement a formation constant is found to be ill-
defined, a new model, from which the corresponding species has been rejected, is
automatically generated. Negative constants are not rejected during the refinement, but at
the end of it if they remain negative. Each successive model uses as initial estimates the
constants stored for the previous model before the new refinement is started. Finally, if no
ill-defined formation constant is found, the output routine gives a full range of diagnostics,
including plots of residuals and species distributions. Residual plots are useful in giving the
possibility to detect anomalous titration points, large deviations of unbuffered parts of the

titrations and lack of agreement between different titration curves.
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The initial amount of reactant, the concentration of reactant and the standard electrode
potential can also be treated as variables and be refined. However, such a procedure is
clearly questionable if their values can be established with sufficient accuracy by a
known chemical method. This refinement possibility is designed for circumstances where
substances cannot be obtained in a state of high purity, for example because they are of
biological origin or extremely difficult to synthesise, in which case the quantity available
is small and purification difficult. The designers of the program call these variables
dangerous parameters and warn against their use except in unusual situations because
changes in concentrations can mask or mimic other systematic errors in the data, leading
to an erroneous model or incorrect values of stability constants. This kind of refinement

was not used in the determination of stability constants in this study.

Sometimes, for example in the study of protonation or simple binary complex equilibria,
especially from calculations of only one titration curve, it is possible to obtain standard
deviations for the logarithm of the constant with a third or even fourth decimal digit. This
implies higher accuracy in the determination than is reasonable. Even if all other sources
of error had been completely eliminated, the response of the electrode would still be at
the level of 0.1 mV. Thus, usually only the first two significant decimals digits of
stability constants can be considered reliable. As a means to improve the confidence
level, the error limits for log B values determined in this study are reported as three times

the standard deviation given by the program.

In comparisons of computer programs (MINIQUAD, SCOGS, LETAGROP, ESTA),
SUPERQUAD has proved to be an excellent tool for the potentiometric determination of
stability constants. '°" ' SUPERQUAD reaches the correct solution almost regardless of
the errors in the starting log f values, and the automatic elimination is highly useful when
the suggested model includes spurious components. However, the conclusion may be

wrong if the initial model is incomplete.
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5.3 Calculation procedure

After the liquid junction correction to the titration data (with coefficients obtained from
E, titration [3]), the data analysis was always started by drawing curves of Zy versus pH
(equation[4]). Comparison of Zy curves of protonation and complexation data (zero level
of the ligand being HL, for example; charges omitted here for clarity) gave an estimate of
the pH range where complexation occurs and sometimes rough estimates of the species
likely to be present. In all systems, Zy for complexation titration obtained the value -1
(compared to zero level of the Zy protonation curve) when the pH was increased,
indicating the coordination of ligand to metal in the form L. The formation of species ML
was dominant in all systems. This is logical because the aqueous complexation of a
polydentate ligand is expected to be characterized by the formation of a stable
mononuclear 1:1 metal to ligand complex as the major species. In such cases, a Zy value
lower than -1 for the complexation indicates the presence of hydroxo complex species,
M(OH)L. Besides the major species ML, hydroxo or acidic complexes (when Zy curves
of complexation diverge from Zy curves of protonation in acidic pH range before ML
complexes) often complemented the complexation models. In some cases, additions of
binuclear or bis complexes to models significantly improved the fit. These species may
significantly broaden the pH range of applications or they may be of only marginal
relevance to applications. Usually, SUPERQUAD succeeds well in finding the right
model and in rejecting species that are not present. A “wrong” model is usually rejected
without error, but the absence of an existing species in the calculations could cause the
rejection of another existing species or even ruin the calculation. In these cases, extra care
must be taken that all possible “right” species have been taken into account. Often Zy
curves gave only crude trend estimations, and the choice of the complexation model
given to SUPERQUAD was guided more by experience about similar kinds of ligands.
The prerequisite to accept additions to models was that they give significant improvement
to the fit.



6 Results
6.1 Protonation and stability constants

The results were obtained from SUPERQUAD as overall stability constants (log f),
following the chosen zero level described in section 5. The log S, results with error
limits (+ 36), number of points / titrations and y” / s statistics are shown in Tables 3-8. All
results were recalculated to the form used in the Critical Stability Constants Database
(i.e., stepwise stability constants, log K) to allow comparison with EDTA, DTPA and
some other reference ligands.”” '*'%7 The results are collected in Tables 9 and 10. The

reactions are included in the tables, but charges are omitted for clarity.

EDTA and DTPA were of particular interest for comparisons because they are currently
used in large quantities in the pulp and paper industry. Nitrilotriacetic acid (NTA) and
methylglycinediacetic acid (MGDA) were included as references for the chelating agents
used in detergents, while oxydisuccinic acid (ODS) and 3,6-dioxaoctane-1,2,4,5,7,8-
hexacarboxylic acid (TDS) were examples of ligands with only oxygen donors and with
similar functional groups to those of the studied ligands. Examination of the main
species, ML, which is dominant in wide pH area, showed that, in all cases, EDTA and
DTPA clearly form the most stable complexes. However, the complexes of the studied
ligands are strong enough that they can be applied for several purposes, as described in

section 8.

Besides the main species, ML, the complexation models were complemented by some
other species, which significantly improved the fit. M(OH)L was found in the basic pH
region of most of the studied ligand-metal systems, as for many of the reference systems.
It was not found in systems Hg(I[)-BCAG6, Fe(IlT)-BCA5 or Mn(I)-EDDS. For Hg(II)-
BCAG6 and Fe(IIT)-BCAS, the strong hydrolysis of the metal ions overcame the formation
of the M(OH)L species. Hydrolysis also significantly limited the pH range suitable for
complex formation in the basic area in the case of Fe(IIl) for ISA and BCAS and in the
Hg(ID-BCAG system.
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The metal ions formed acidic complexes with most of the studied ligands, as with most of
the reference ligands. The number of acidic species was greater for the BCA series and
TCAG6 than for ISA or EDDS and much greater than for EDTA or DTPA, but similar to
the models found for ODS and TDS. The carboxylic acid groups are more acidic in
EDTA and DTPA than in the BCA series and TCA6. The ligands with ether oxygen
groups have a wider pH area where acidic groups can exist. For example, ISA and ODS
are otherwise similar, but the nitrogen donor in ISA is replaced by ether oxygen in ODS,
and less acidic carboxylic acid groups and a greater number of acidic complex species are
found for ODS than for ISA. Probably the electron-withdrawing effect of the ether
oxygen in ODS isolates the two succinic acid groups more effectively than occurs in ISA.
Thus, the succinic groups in ligands containing ether oxygen act more independently,
producing more acidic species. Selected protonation profiles are compared in Figure 3,
where the similarity of BCA6, TCA6 and TDS can be seen. It is also noteworthy that
only mono- and triprotonated species were found in the EDDS-Zn(II) system. Probably a
change of complex geometry associated with the simultaneous dissociation of two
protons occurs when the pH is changed. The greatest number of acidic complexes was
found for ligands with highest negative charge, L%, i.e. BCA6 and TCA6. The trivalent
ions Fe(Ill) and La(Ill) usually formed less protonated species than did divalent metal

ions.

The complexation model was completed with binuclear species for all ligands except the
smallest one, ISA. More binuclear species were found for the ligands with several
carboxylic acid substituents located apart from one another, especially for TCA6 (Ca,
Mn, Cu, Zn, La) and BCAG6 (Ca, Cu, Zn, La), but also for BCAS (Cu, Zn, La), MBCAS5
(Cu) and EDDS (Cu). The same trend was seen with the larger reference ligands DTPA
(Mg, Mn, Cu, Zn, Cd, Pb) and TDS (Mg, Ca, Mn, Cu, Zn, Hg, Pb). As expected, bis
complexes were found only for the smaller ligands EDDS (Mn, Cu, Zn) and ISA (Pb)”
and for the reference ligands of similar size NTA (Ca, Mn, Fe, Cu, Zn, Cd, Pb, La) and
MGDA (La). As a curiosity, the trinuclear CasL species was found for TCAG6.
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When the work with ISA was done, reference values were available only for Mg*" and
Ca”".'® The compatibility of the present results with values published later ** for ISA, as
well as for EDDS, can be seen in Table 9. The complexation of ISA with some divalent
ions has recently been investigated by voltammetric method. ' The results published in
article II are in good agreement with the values of the stability constants for ML

complexes of ISA with Cu®" and Zn*" obtained by voltammetry.

Table 3. Protonation and complexation of ISA with Mn(I), Fe(II), Cu(Il), and Zn(II) in

aqueous 0.1 M NaCl at 25 °C. "

pqr log(Bpyr* 30) proposed formula
eq. [5,6,7] ISA HL*
H+
-101 -10.52 +0.03 L*
101 4.55+0.02 H,L™
201 8.08 +0.02 HiL
301 10.51 +0.04 HiL
401 12.02+0.15 HsL"
X' /s 14253/ 1.41
points / titrations 286 /4
an+
211 -14.52 £ 034 Mn(OH)L*>
-111 -3.26 +0.04 MnL*
/s 53.50/1.46
points / titrations 226/6
Fe5+
211 -1.96 £0.14 Fe(OH)L™
111 334+0.11 FeL
011 7.23+0.11 FeHL
/s 70.55/2.28
points / titrations 255177
Cu2+
211 -8.04 +0.12 Cu(OH)L*
-111 2.36+0.10 CuL™
011 6.75+0.07 CuHL"
111 9.88 +0.10 CuH,L
/s 73.25/2.98
points / titrations 266/ 4
Zn2+
211 -11.63+£0.18 Zn(OH)L*
111 -037+0.03 ZnL*>
011 4,04 +0.03 ZnHL
/s 82.20/1.45
points / titrations 345/7
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Table 4. Protonation and complexation of [S,S]-EDDS and EDDS mixture with Mn(II),
Fe(IIT), Cu(II) and Zn(II) in aqueous 0.1 M NaCl at 25 °C.!

pqr
eq.[10,11,12]
=

log(Bpgr% 30)
[S,S]-EDDS, H4L

log(fpqer+ 30) proposed formula

EDDS-mix, H4sL

H

401 2391 +0.02 2399 +0.01 L*

301 -13.80 £0.02 -13.87+0.01 HL*
201 -6.89 +0.02 -6.93 £ 0.01 H,L*
101 3.05+0.02 -3.08+0.01 HiL

101 1.37+0.19 1.59+0.07 HsL*
201 3.48+0.09 3.20+0.20 HeL*
/s 59.84/0.82 78.03/0.76

points / titrations 287/ 4 321/4

Mn®"

411 -14.94 +0.02 21530+ 0.02 MnL?*
311 21024 +0.12 21029+ 0.11 MnHL"
621 20.02+033 20.16+0.19 Mn(HL),"
/s 11.64/1.63 20.53/1.35

points / titrations 180/5 173/5

Fe3+

611 -20.87 +0.42 2091 +0.31 Fe(OH),L*
511 -11.03 £0.37 -11.18 £ 0.25 Fe(OH)L*
401 3.06+0.38 -3.95+0.16 FeL

/s 80.51/0.94 86.50/1.02

points / titrations 283/9 325/8

Ccu”™

511 -1627+0.16 -16.68+0.17 Cu(OH)L*
411 521+0.13 -5.65+0.12 Cul”
311 -1.62+0.13 -1.90+0.11 CuHL"
211 0.66 +0.15 0.64 +0.13 CuH,L
421 2.84+025 3.44+031 Cu,L
712 -16.52+0.19 -17.16 +£0.23 CuL(HLY”
612 9.42+0.17 977+0.15 Cu(HL),"
512 5.69+0.23 578 +0.16 Cu(HL)(H,L)*"
412 2.18+026 2.50+0.23 Cu(H,L),*
/s 2220/1.08 15.97/1.08
points / titrations 303/5 345/5

Zn2+

511 21.63+0.10 -21.89 +0.09 Zn(OH)L*
411 -10.32+£0.02 -10.84 £0.03 ZnL>
311 6.64+0.03 -6.66 +0.02 ZnHL
111 -0.72+0.14 -0.70 £0.12 ZnH;L"
612 -1497+0.11 -15.14 +0.09 Zn(HL),*
/s 4238/1.13 18.40/1.67
points / titrations 276 /5 378 /5
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Table 5. Protonation and complexation of BCA5 and MBCAS with Mg(II), Ca(1l),
Mn(II), Fe(I1I), Cu(Il) and Zn(II) in aqueous 0.1 M NaCl at 25 °C. vy

pqr log(Bpgr% 30) log(Bpgr+ 30) proposed formula
eq. [5,6,7] BCAS5, HL* MBCAS5, HL*
H+
-101 930 +0.04 -9.56 +0.03 L>
101 522+0.04 532+0.03 H,L*
201 9.68 +0.04 9.87 +0.02 HsL*
301 13.24 +0.05 13.83 +0.03 HL
401 16.00 +0.07 16.88 +0.03 HsL
501 18.33+£0.07 19.74 £ 0.03 HeL"
/s 72.03/1.83 17.38/0.58
points / titrations 460/ 4 251/3
Mg
211 -13.94+0.14 -14.91+0.11 Mg(OH)L*
111 3.38+0.04 447 +0.06 MgL*
011 2.99 +0.05 MgHL*>
/s 39.13/1.84 2298/1.77
points / titrations 226/3 95/3
Caz+
211 -12.73+£0.14 -13.45+0.08 Ca(OH)L*
‘111 -1.90 + 0.02 2.79 +0.04 Cal*
011 3.32+£0.03 2.67+0.08 CaHL*
/s 21.17/1.46 47.32/1.49
points / titrations 222/3 219/4
Mn*"
211 -12.52 +0.10 -11.18 +0.05 Mn(OH)L*
‘111 -1.80 £ 0.04 0.51 +0.05 MnL*
011 3.82+0.03 4.66 +0.03 MnHL*
111 8.59 +0.05 MnH,L
/s 29.62/1.36 21.08/1.24
points / titrations 148 /3 208 /4
Fe3+
211 1.11+0.15 Fe(OH)L*
‘111 3.33+0.10 739+0.12 FelL*
011 8.40 +0.08 11.85+0.13 FeHL"
111 12.38 £0.10 15.60 +0.12 FeH,L
211 1521+0.15 18.13+0.15 FeH;L"
021 13.46 £0.28 Fe,HL"
/s 2220/ 1.58 15.90/0.87
points / titrations 204 /4 171/3
Cu2+
211 -9.99 +0.18 7.15+0.17 Cu(OH)L"
111 0.27+0.07 3.13 £0.04 CuL*
011 5.86+0.07 8.25+0.03 CuHL*
111 10.13 £0.10 12.31 +0.04 CuH,L
211 13.81 +0.06 15.71 £0.02 CuH;L
311 16.46 +0.18 18.24 +£0.07 CuH4L"
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-121 436+0.15 734+0.12 CuL
021 938 +0.14 11.68 £0.18 Cu,HL
/s 21.93/1.69 42.20/0.69

points / titrations 232/3 296/ 4

Zn2+

211 -11.67+0.13 -9.99 £ 0.09 Zn(OH)L*
111 121+0.05 1.04 +0.03 ZnL*
011 433+0.07 6.22 +0.03 ZnHL*
111 8.64+0.08 10.39 +0.02 ZnH,L"
211 13.88 + 0.04 ZnH;L
‘121 1.78 £ 0.19 Zn,L
021 7.44+0.13 Zn,HL
/s 17.02/1.50 39.63/0.79

points / titrations 187/3 288 /4

La3+

211 -7.10£0.16 La(OH)L*
-111 2.06+0.10 LalL*
011 6.26+0.12 LaHL
/s 11.10/1.47

points / titrations 307/4
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Table 6. Protonation and complexation of TCA6 with Ca(Il), Mn(II), Cu(Il), Zn(II) and
La(III) in aqueous 0.1 M NaCl at 25 °C. "™V

pqr log (Bpyr = 30) proposed formula
eq. [5,6,7] TCA6, HL™
H+
-101 9.87 +0.05 L®
101 5.40 +0.03 H,L*
201 10.08 + 0.02 HsL*
301 1425 +0.03 HyL*
401 17.87 +£0.03 HsL
501 20.81 £ 0.05 HeL
601 23.56 +0.05 HL'
Y2 /s 148.81/0.46
points / titrations 364/3
Ca2+
211 -1527+0.17 Ca(OH)L>
‘111 3.72 £ 0.05 CaL*
011 2.02+0.49 CaHL*
111 7.58 +0.30 CaH,L*
-121 -0.97+0.13 CaL*
021 481+0.17 CaHL
-131 1.65+0.19 CasL
x> /s 10.22/0.58
points / titrations 240/ 5
Mn2+
211 -13.74 £ 0.28 Mn(OH)L™
-111 2.40+0.03 MnL*
011 2.99 +0.07 MnHL*
‘121 0.51 £0.06 Mn,L*
021 576 +0.11 Mn,HL"
Y2 /s 19.37/0.87
points / titrations 263 /4
Cu2+
211 9.44+0.10 Cu(OH)L™
111 0.39 +0.05 CuL*
011 5.68 £0.06 CuHL*
111 10.08 +0.10 CuH,L*
211 14.22 £0.05 CuH;L
311 17.36 £ 0.10 CuH4L
321 -10.53 £0.24 Cuy(OH),L*
221 230+0.31 Cu(OH)L*
‘121 5.02+0.07 Cu,L*
021 9.40 +0.12 CuHL
x/s 48.38/1.60
points / titrations 367/4
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Zn2+

211 -11.70 £ 0.25 Zn(OH)L™
111 -1.15+0.02 ZnL*
011 4.19 +0.02 ZnHL*
111 8.68 +£0.05 ZnH,L*
211 12.81 +0.03 ZnHsL
311 15.94 +0.39 ZnHsL
221 -4.97 +0.46 Zny(OH)L*
121 1.79 £ 0.07 Zn,L*
x?/s 28.80/0.56
points / titrations 342 /4
La3+
211 -7.88+0.14 La(OH)L*
111 3.15+0.03 LaL*
011 7.86+0.02 LaHL>
111 11.09 + 0.09 LaH,L
211 14.63 + 0.07 LaH;L
‘121 726+ 0.03 LaL
021 10.99 + 0.05 LaHL"
121 14.22 +0.09 La,H,L*
x2/s 42.53/1.02
points / titrations 374 /4
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Table 7. Protonation and complexation of [S,S,S]-BCAG6, [R,S,R]-BCA6 and BCAG6-
mixture with Mg(II), Ca(1l), Mn(1l), Fe(II), Cu(Il), Zn(Il) and La(III) in aqueous 0.1 M
NaCl at 25 °C. (*when CL < Cy, 1 /S 47.08/1.06, points/titrations 289/3) 'V"¥"V!!

pqr log (Bygr£30)  log (Bpgr+30) log (Bpgr+30)  proposed
eq. [5,6,7] [S.S,S]-BCA6 [R,S,R]-BCA6 BCAG6-mixture  formula
HL™ HL™ HL>

H+

-101 9.38+0.05 -8.99 + 0.04 -8.98 +0.03 L"

101 5.58 +0.04 5.58 +0.04 5.47+0.03 H,L*
201 10.30 £ 0.03 10.29 £ 0.04 10.20 £ 0.02 HiL*
301 14.32 £ 0.04 14.08 +£0.05 14.16 £ 0.03 HL>
401 17.49 + 0.04 17.09 £ 0.04 17.36 £ 0.03 HsL
501 19.86 +0.05 19.31 +0.06 19.92 +0.05 HeL
601 21.05+0.18 20.48 +0.26 21.89 £ 0.06 H,L"
/s 11.90/0.82 9.62/0.82 51.19/0.85

points / 168 /4 251/5 313/3

titrations

Mg2+

211 -1430+0.18 -13.64 +£0.17 -14.07 £0.12 Mg(OH)L™
-111 2.56+0.11 2.46+0.13 23.00£006  MgL*
011 4.13 £0.09 4.00£0.10 3.07 £ 0.08 MgHL*
111 9.22+0.12 9.14+0.13 7.99+0.17 MgH,L*
211 13.87 £0.09 13.58 £0.10 1249 +0.14 MgH;L
311 17.41+0.18 17.06 £0.15 16.11 £0.50 MgH4L
/s 24.00 / 1.60 25.50/2.10 3578 /1.25

points / 312/4 351/4 283 /4

titrations

Ca2+

211 -11.91+0.13 -11.26 +£0.09 -11.27+0.11 Ca(OH)L”>
11 -1.22+0.10 -0.62 +0.08 -1.27+0.03 CalL*
011 420+0.11 451+0.14 4.06 +0.04 CaHL*
111 8.97+0.16 9.08+0.19 8.47+0.10 CaH,L*
211 13.26£0.15 13.33+0.11 12.61 £0.10 CaHsL
311 17.06 £ 0.16 16.98 £0.13 16.11 £0.32 CaH4L
021 7.54 +0.30 6.03 +£0.35 Ca,HL
/s 15.38/1.81 27.79/1.03 12.10/0.92

points / 261 /4 179/3 265 /4

titrations

Mn2+

211 -10.25+0.16 -848+0.18 -10.79 +£0.52 Mn(OH)L*>
111 0.72+0.11 2.32+0.13 0.30+0.09 MnL*
011 5.59+0.13 6.91+0.12 5.56+0.07 MnHL?*
111 10.24+0.15 10.87 £0.21 10.04 +0.08 MnH,L*
211 14.01 £0.17 1422 £0.17 13.56 £0.15 MnH;L
311 17.58 £0.21 17.36 +0.40 16.52 +0.48 MnH,L
/s 3543 /2.03 20.94 /1.59 27.61/2.61

points / 263/4 215/4 372 /4

titrations
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211 0.10+0.31 0.18 +0.33 2.66+0.28 Fe(OH)L*
111 7.79+0.26 7.73+0.26 8.32+0.26 FelL>
011 12.85+0.28 12.24 +0.29 12.65 +0.28 FeHL>
111 17.11 £0.27 16.27 +0.27 16.36 +0.26 FeH,L"
211 20.11 +0.28 18.44 + 0.30 18.58 +0.30 FeH;L
/s 20.37/1.57 12.01/1.08 18.67 /0.96

points / 205/3 261/4 228/3

titrations

Ccu”™

211 -5.18+0.20 -5.61+0.23 -591+0.18 Cu(OH)L*
11 521+0.14 4.93+0.20 4.10+0.11 Cul*
011 944 +0.15 9.63+0.19 8.90+0.11 CuHL*
111 13.53+0.15 13.79 £ 0.21 13.01 £0.12 CuH,L*
211 16.53+0.11 17.11 £0.17 16.34+0.10 CuH;L"
311 19.47 +0.16 19.25 +0.27 18.99 +0.16 CuH4L
‘121 (7.84 + 0.20)* 787+0.12 Cu,L”
021 (12.16 + 0.49)* 11.89+0.17 Cu,HL
Y2 /s 36.62/2.48 28.09/1.77 46.42/1.77

points / 467/6 402/6 285 /4

titrations

Zn2+

211 -6.81+0.14 -6.57 £0.09 2753 +0.39 Zn(OH)L>
111 2.99 +£0.07 3.53+£0.06 2.36+0.05 ZnL*
011 731+0.06 8.12£0.07 7.25+0.04 ZnHL*
111 11.09 +0.12 12.29 +0.06 11.42+0.05 ZnH,L>
211 1428 +0.11 15.53 +0.03 14.92 +0.04 ZnHsL
311 17.42 +0.26 17.68 £ 0.19 17.62+0.12 ZnH4L
121 4.92 £030 Zn,L*
021 9.62 +0.43 Zn,HL
x2/s 18.42/1.81 4720/ 1.66 81.10/2.04

points / 367/5 420/5 349 /4

titrations

La3+

211 -6.60 £0.19 La(OH)L*
111 4.44 +0.05 LalL*
011 9.19+0.03 LaHL*
111 1267 +0.02 LaH,L"
211 1534+ 0.05 LaH;L
‘121 7.87 +0.08 La,L
021 11.61+021 La,HL"
/s 4936/1.08

points / 326/4

titrations




Table 8. Protonation and complexation of BCA6 with Cd(1), Hg(II) and Pb(Il) in 0.1 M
NaNOj; aqueous solution at 25 °C. vi

pqr log(Bpg-% 30) proposed formula
eq. [5,6,7] BCA6, HL”
H+
-101 -8.84 +0.03 L*
101 5.50 +0.05 H,L*
201 10.29 + 0.04 H;L>
301 1430 + 0.05 H,L*
401 17.55+0.05 HsL
501 20.19 + 0.05 HeL
601 21.79 + 0.09 H,L"
/s 49.79/0.86
points / titrations 349 /4
Cd2+
211 -7.37+0.10 Cd(OH)L™
111 2.25+0.05 cdL*
011 7.33+0.05 CdHL*
111 11.69 £ 0.04 CdH,L*
211 15.26 +0.03 CdH;L
311 17.74 + 0.09 CdHJL
/s 16.64 /0.80
points / titrations 400/4
Hg2+
-111 6.01 £ 0.06 HgL*
011 11.29 +0.09 HgHL>
111 15.79 + 0.08 HgH,L*
211 19.95 + 0.09 HgHsL
311 23.25+0.08 HgHsL
411 25.80 +0.08 HgHsL"
/s 37.99/0.75
points / titrations 355/4
Pb2+
211 -7.90+0.11 Pb(OH)L™
111 1.98 + 0.08 PbL*
011 7.22+0.07 PbHL*
111 11.58 +0.08 PbH,L*
211 1532 +0.07 PbH;L
311 18.07 £0.12 PbH,L
-121 6.76 £ 0.16 Pb,L*
021 11.52+0.13 Pb,HL"
121 1520 +0.21 Pb,H,L
/s 23.16/1.25

points / titrations 343/5
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Figure 3. Percentage distribution of different protonation stages of BCA6, TCA6, EDDS,
TDS, EDTA and DTPA.
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Table 9. Protonation and complexation of TCA6, BCA6, BCAS, MBCAS, EDDS and
ISA, "™V 2 Jog K values at 25 °C, in p= 0.1 (> at 20 °C, ®in p = 1.0), *ref. 92.

reaction TCA6  [SS8]- [RSR]- BCA6- BCA5 MBCA5 [SS]- EDDS-mix ISA
HL BCA6 BCA6 mix HLYW HLY EDDS H,L! HLT
LV Hvan Hvan HeL H,L 1
IVAAS
. . e 10.12/ 10.52/
L+ HsHL 9.87 9.38 8.99 8.98 9.30 9.56 10.11 10.01° 10.00°
HL + H = ILL 5.40 5.58 5.58 5.47 5.22 5.32 6.91 6.94/6.84"  4.55/4.24"
L + H = H,L 4.68 4.72 4.71 4.73 4.46 4.55 3.84 3.85/3.86"  3.53/3.24"
H;L + H=H,L 4.17 4.02 3.79 3.96 3.56 3.96 3.05 3.08/2.95"  2.43/1.97°
H,L + H=H;L 3.62 3.17 3.01 3.20 2.76 3.06 2.11 1.61 1.52
H,L + H=HgL 2.94 2.37 2.22 2.56 2.33 2.86 1.37 1.59
L+ H =L 2.75 1.19 1.17 1.97
Mg(1D)
M(OH)L + H 5 ML 11.74 11.18 11.07 10.56 10.44
M + L= ML 6.82 6.53 5.98 5.92 5.09 6.01° 5.45°
ML + H = MHL 6.69 6.46 6.07 6.37 5.8
MHL + H = MILL 5.09 5.14 4.92
MH,L + H = MH;L 4.65 4.44 4.50
MH,L + H = MH,L 3.54 3.48 3.62
Ca(ID)
M(OH)L + H = ML 11.55 10.69 10.64 10.00 10.83 10.67
M + LML 6.15 8.16 8.37 7.71 7.40 6.77 4.58" 43"
ML + H = MHL 5.74 5.42 5.13 5.33 5.22 5.46 68"
MHL + I = MILL 5.56 477 4.57 4.41
MH,L + H = MH,L 4.29 4.25 4.14
MH;L + H = MH,L 3.80 3.65 3.50
ML + M = M,L 2.75
MHL + M = M,HL 2.79 3.03 1.97
M,L + H = M,HL 5.78
ML + M = ML 2.62
Mn(1T)
M(OH)L + H = ML 11.34 10.97 10.80 11.09 10.72 10.67 11.26
M + LsML 7.47 10.10 11.31 9.28 7.50 9.05 8.97 8.69/8.57" 726
ML + H = MHL 5.39 4.87 4.59 5.26 5.62 5.17 4.73 5.01/4.91°
MHL + H = MILL 4.65 3.96 4.48 3.93
MH,L + H = MH,L 3.7 3.35 3.52
MH,L + H = MH,L 3.57 3.14 2.96
ML + M = M,L 2.91
MHL + M = M,HL 2.77
M,L + H = M,HL 5.25
MHL+ HL = M(HL), 4.02 4.00
Fe(III)
M(OH)L + H = ML 7.69 7.55 5.66 6.28 7.97 7.23 5.30
M(OH),L + H= 0.84 073
M(OH)L
M + L =ML 17.17 16.72 17.30 12.63 16.95 20.85 2004220 566
ML + H = MHL 5.06 451 4.33 5.07 4.46 3.89
MHL + H = MIH,L 426 4.03 3.71 3.98 3.75
MH,L + H = MH,L 3.00 2.17 2.22 2.83 2.53
MHL + M = M,HL 5.1
Cu(ID)
M(OH)L + H = ML 9.83 10.39 10.54 10.01 10.26 10.28 11.06 H‘;;/ 10.40
p p 5 A5 . . o - 18.34/ 12.88/
M+ L =ML 10.26 14.59 13.87 13.08 9.57 12.69 18.70 184 12.69°
ML + H = MHL 5.29 423 4.70 4.80 5.59 5.12 3.59 3.75/3.61"  4.39/4.01°
MHL + H = MH,L 4.40 4.09 4.15 4.11 4.27 4.06 228 2.54 3.13/2.95°
MH,L + H = MH,L 4.14 3.00 3.33 3.33 3.68 3.40
MH,L + I = MH,L 3.14 2.94 2.14 2.65 2.65 2.53
My(OH)LL + H = 623
M,(OH)L
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M,OHL + H=ML 732

ML + M = M,L 463 (352) 377 4.09 421 237 221

MHL + M = M,HL 3.72 261)  2.99 3.52 3.43

ML + H = M,HL 438 (432)  4.02 5.02 434

ML + HL = ML(HL) 249 236

ML(IL) + H = R

ML, 7.10 7.39

M(HL), + H = 3.73 400

M(HL) (L)

MIEL)ILL) + H = a5t 598

M(ILL),

Zin(1D)

MOH)L + H = ML 1054 9.80 1010 9.89 1046 11.03 1131 11.05 11.26
. . . . , i 13.15/ 10.15/

M + L= ML 8.72 1237 1252 1134 8.09 10.60 RTINS E o s

ML + H = MHL 534 432 459 4.89 554 518 3.68 418/329°  4.41/4.29°

MHL + H = MH,L 449 3.78 417 417 431 417 /2,64

MH,L + H = MH,L 413 3.19 324 350 3.49

MHL + 2 H = MH,L 5.92 5.96

MH,L + H = MH,L 3.13 314 215 2.70

MJOH)L + H=ML 676

ML + M = M,L 2.94 2.56 2.99

MHL + M = M,HL 2.37 3.11

M,L + T = M,IL 470 5.66

MHL+ HL = M(HL), 547 5.39

Ca(1m

M(OH)L + H = ML 9.62

M + L= ML 11.09 10.9° 8.33"

ML + H = MHL 5.08 3.6" 468

MHL + H = MH,L 436 3.28"

MH,L + H = MH,L 3.57

MH,L + H = ML 2.48

Hg(1D) .

M(OH)L + H = ML 6.6

M+ LML 14.85 175)°

ML + H = MIL 5.28 (5.0)°

MHL + H = MH,L 450

MH,L + H = MH,L 416

MH,L + H = MH,L 3.30

MH,L + H = MH,L 2.55

Pb(I)

MOH)L + H = ML 9.88

M+ L= ML 10.82 12.7° 9.75°

ML + H = MIL 5.24 3.2°

MHL + H = MH,L 436

ML + H = MH,L 3.74

MH,L + H = MH,L 2.75

ML + M = M,L 478

MHL + M = M,HL 430

ML + H = M,HL 476

MILL + M = M,H,L 3.62

M,HL + H = M,H,L 3.86

M+ 2L=ML, 1627

La(I

M(OH)L + H = ML 11.03 1L.04  9.16

M + L= ML 13.02 1342 11.36 11.98"

ML + H = MHL 47 475 420

MHL + H = MH,L 3.24 3.48

MHL + H = MH,L 354 2.67

ML + L = M,L 411 3.43

MHL + M = M,HL 313 2.42

ML + H = M,HL 3.73 3.74

ML + H=MLL 323
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Table 10. Protonation and complex formation of EDTA, DTPA, NTA, MGDA, ODS and
TDS, ** %197 Jog K values at 25 °C, in p=0.1 (*at 37 °C, in p=0.15, " at 20 °C, “in p =
1.0,%inp=0.5%np=125).

reaction EDTA DTPA NTA MGDA [SR]- [SS]- TDS

H4L 92,103 H5L 92,104 H3L 92.105 HSL 92 oDS ODS HGL
92,107

L + H = HL 9.52-10.37  9.90-10.79  9.46-9.95 (9.85) 5.97 5.97 5.97

HL + H = H,L 6.13-6.24 8.40-8.60 2.38-2.95 (2.58) 4.85 4.79 5.40

H,L + H=sH,L 2.69-2.79 4.28-4.30 (1.81) 1.5)" 3.98 3.40 4.40

H,L+ HsHL 2.00-2.2 2.70-2.77 (1.0)-1.68 2.07 2.57 3.69

H,L+HsHL 1.34"-(1.5) 2.0 2.99

H.,L + HsH,L 0.0)-0.12"  (1.6)-1.7° 2.28

H,L+ HsH,L (0.7)-0.9"

H,L+ HsHL (-0.1)

Mg (1)

M + L= ML 8.79-8.9 9.27-9.3 5.50 5.84¢ 5.09 4.44 4.40

ML + H = MHL 4.0 6.85-6.9 4.05 4.18 5.41

MHL + H = MH,L 3.44 411

MH,L + H = MH,L 3.74" 3.30 2.77

ML + M = M,L 2.07 1.59

Ca(I)

M + L= ML 10.65-10.73  10.7-10.75 6.3-6.64 6.97" 5.82 5.42 6.86

ML + H = MHL 3.1 6.10-6.11 4.43 4.35 5.33

MHL + H = MH,L 3.7 3.53 3.53 4.31

MH,L + H = MH,L 3.41 2.72 2.91

MH,L + H = MH,L 2.36

ML + M = M,L 1.6-2.0" 2.63

M + 2 L= ML, 8.8-9.27

Mn(II)

M + L= ML 13.8-13.89 15.2-15.5 7.27-7.46 5.69 5.40 7.00

ML + H = MHL 3.1 4.3"-4.45 423 4.02

ML + 2 H = MILL 4.67

MHL + H = MILL 2.4) 372

MH,L + H = MH,L (4.25) 313 4.03

MILL + H = MH,L 3.54

ML + M = M,L 2.09" 2.57

M+2L ‘——,ML2 10.44-10.94

Fe(IID)

M(OH)L + H = ML 7.39 9.66 (4.36) 3.96 3.87 7.01

M(OH),L + H = M(OH)L (7.58) 5.49 5.37

M(OH),L + H = M(OH),L 10.72

M + L =ML 25.1 27.8-28.0 15.9-16.26" 12.01 1143  20.96

ML + H = MHL 1.3) 3.56 (1.0)" 2.37 2.49

ML + 2 H = MH,L 7.8

2 M + L =M,(OH)L + I 22.98

M,(OH),L+ H= .

M,(OH)L 212

M,(OH);L + H = My(OH),L 4.04

M,(OH),L + H = M,(OH);L 5.20

M,(OH);L + H = M,(OH),L 5.96

M + L= ML, 24.0-24.76"

2 M(OH)L = M,(OH),L, 2.8 (9.14)°

2M + 2 LisM,L, 30.9¢
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Cu(II)

M(OH)L + H = ML (11.4)-11.71 9.14-9.2

M + L= ML 18.78 21.2-21.5 12.7-13.3 13.88"  8.38 7.65 9.24
ML + H = MHL 3.1 4.79-4.80 1.6 3.91 3.11 4.40
MHL + H = MH,L 2.0 2.88-2.96 2.44 2.87 2.52
MH,L + H = MIL,L 2.29

MH,L + 2 H= MH,L 3.78
ML + M = M,L 1.3 5.5"-6.79 3.57
M+ 2 L= ML, 17.4

Zn(II)

M(OH)L + H =ML (11.6) 10.06-10.1

M + L= ML 16.5-16.68"  18.2-18.6 10.45-10.66  10.98"  7.60 6.62 8.09
ML + H = MHL 3.0 5.43" -5.60 3.95 3.64 4.45
MHL + H = MH,L (1.2)° 2.35" 2.24 2.96 3.60
MH,L + H = MH,L 1.6 2.49 2.81
ML + M = M,L 4.4"-4.48 3.22
M+ 2 L= ML, 14.24-14.28"

Cd(Im)

M(OH)L + H =ML (13.2)¢ 11.25

M + L= ML 16.4-16.5 19.0-19.3 9.76-9.80" 10.61"  5.38 4.94 7.02
ML + H = MHL 2.9 4.06"-4.17 4.32 4.28 4.79
MHL + H = MH,L (1.6)° 2.79" 3.41 3.74 411
MH,L + H = MH,L (3.49) 3.05 3.17
ML + M = M,L 2.3-3.0° 2.52
M + 2 L s ML, 14.47

Hg(I)

M(OH)L + H= ML 8.9-9.3 8.26
M+ L =ML 21.5-21.65 26.4-26.7° 14.3-14.6 1437 1382 15.49
ML + H = MHL 3.2 4.24 5.72 5.89 5.48
MHL + H = MH,L 2.1¢ 4.70 4.62 5.20
MH,L + H = MH,L 3.72 3.16 4.04
2M + L= M,OH)L + H 22.33
M,y(OH);L + 2 H = M,(OH)L 17.17
M,(OH); L+ 2 H = My(OH);L 18.34
Pb(II)

M + L= ML 18.0-18.3" 18.8-18.9" 11.48 1207 7.71 7.44 8.66
ML + H = MHL 2.4°2.8" 452" 2.3¢ 3.98 3.74 4.80
MHL + H = MH,L .7 2.84 2.64 4.05
MH,L + H = MIL,L 1.2) 1.7 2.04 3.18
ML + M = M,L 3.41° 5.93
M+ 2 LML, 12.8"

La(I1T)

M(OH)L + H= ML (7.9)

M + L =ML 15.36 19.49 10.36-10.47  11.02"

ML + H = MHL 2.24 2.60°

M+ 2 LML, 17.6-17.84 (18.24)"
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6.2 Estimation of chelating efficiency

The complexation efficiency of ligands can be estimated by calculating the distribution of
metal among different species for the conditions of interest. In this study, the percentage
distribution curves of the complexes were drawn in concentration areas used in the
measurements (1 mM solutions). The efficiency limit was defined as over 80% of the
metal ion bound to ligand. The pH ranges where such efficiency is achieved for the metal
to ligand ratio 1:1 are shown in Table 11. The effective chelation is restricted to the
acidic pH area in the case of Fe(II)-ISA, Fe(Il)-EDDS and Hg(II)-BCA6 because of
strong hydrolysis of the metal ions. The scarcity or weakness of acidic species restricted
the effective chelation to the basic region for Mg(Ill) with all studied ligands and in
systems Ca(Il)-BCAS, Ca(Il)-TCA6, Mn(I)-EDDS, Mn(II)-ISA and Mn(Il)-TCAS6.

As an example, Figure 4 shows the percentage distribution curves drawn for Cu(Il)
complexes of the studied ligands and of EDTA and DTPA. Dilution of the solution, e.g.
to micromolar concentration, raises the lower pH limit of the effective chelation region to
more basic direction. In the case of Fe(Ill) and Hg(Il) ions, the competitive binary
hydrolysis of metal ions is so dominant in the micromolar concentration area that it
overcomes the complex formation, or the complexation is markedly limited to very

narrow pH range.

Tablell. Chelation efficiency derived from percentage distribution curves: pH ranges
where over 80% of metal ions are bound to ligands, 1 mM solutions, M:L=1:1
(* calculated from values in ref. 92).

metal EDTA DTPA EDDS ISA BCA6 BCAS MBCAS TCAG6
ion * *

Ca”  5-12 6-12 10-12*%  11-12* 6-12 6-12 7-12 8-12
Mg*  6-12 7-12 8-12%* 9-12%  7-12 8-12 9-12 -
Mn*"  3-12 4-12 7-12 7-11 5-12 6-12 5-12 7-11

Fe*"  1-11 1-12 2-10 3-6 2-9 3-5 2-9 -
cu?t 112 2-12 2-12 3-12 3-12 4-11  3-12 5-11
Zn* 212 312 412 5-11 4-12 6-10 4-12 6-11
cd®* 2-12 3-12 6-12*%  7-12*  4-12 - - -
Hg"  1-12 1-12 2-12% - 1-8 - - -
Pb"  2-12  3-12 5-12*%  5-11*%  4-12 - -
La®"  3-12  3-12 5-12% - 4-12 512 - 5-12




Another way to estimate the chelation efficiency is to calculate the conditional stability
constants of the complexes.'"’ Such values are often used as the criterion when
estimating the complexation efficiency for industrial applications. The conditional
stability econstant, log Ky, for the major complex species ML"™ is given by the equation

[16]:

K'ML — OmL .KML [16]
Oy - O

where the side reaction coefficients , , and ; are defined as in equations [17], [18]

and [19] and K, is as in equation [20]:

_I(H), (M),

17
vEE [17]

Ay

_IH), L)

oy 4[1?]7 [18]

IHT),M™ )L,
a =
ML I_MLIH‘J

(19]

Ky, = KM + L¥ = ML™) [20]

As an example, the values of conditional stability constants for Cali, Fel., Cul. and
MnL complexes of the studied ligands are calculated with the aid of the equilibrium
constants and protonation constants determined in this study and the binary hydrolysis

constants of the metal ions

. The conditional stability constants, as also the
corresponding values for EDTA and DTPA, vary as a function of pH, as shown in
Figure 5. In this analysis, values log K’;, 2 6 are often considered as the criterion for
an efficient complexation. Defined on this basis, the approximate pH ranges suitable for
use of the present ligands are about the same or 1-2 pH units narrower than the ranges

estimated above from the percentage distribution curves.
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Figure 4. Percentage distribution of Cu(Il) complexes of EDTA, DTPA, EDDS, ISA,
BCA6, TCA6, BCAS and MBCAG versus pH (Cyy=CL =1 mM).
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Figure 5. Conditional stability constants for a) CaL, b) FeL, ¢) CuL and d) MnL
complexes of EDTA, DTPA, EDDS, ISA, BCA6, BCAS, MBCAS and TCAG6 as a
function of pH.
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6.3 Order of protonation constants and stability order of ML complexes
6.3.1 Order of protonation sites
Although potentiometric data does not give any information about the protonation order

of the different carboxylate groups, estimations can still be made. The order of the

protonation steps suggested '"' for ISA is as follows:

"O0C-CH,-CH(COO")-NH-CH(COO")-CH,-COO" logk"
"00C-CH,-CH(COO")-NH,"-CH(COO)-CH,-COO 10.52
HOOC-CH,-CH(COO")-NH, -CH(COO")-CH,-COO’ 4.55
HOOC-CH,-CH(COO")-NH,"-CH(COO")-CH,-COOH 3.53
HOOC-CH,-CH(COOH)-NH, -CH(COO0’)-CH,-COOH 243
HOOC-CH,-CH(COOH)-NH, -CH(COOH)-CH,-COOH 1.52
and the order suggested ''? for carboxymethyloxysuccinic acid (CMOS) is
"00C-CH,-CH(COO)-0-CH,-COO" logK '
HOOC-CH,-CH(COO’)-0O-CH,-COO" 5.0
HOOC-CH-CH(COO’)-0O-CH,-COOH 3.8
HOOC-CH,-CH(COOH)-O-CH,-COOH 25

Similar trends have been suggested for oxydisuccinic acid (ODS), 1-hydroxy-3-
oxapentane-1,2.4,5-tetracarboxylic acid (TMS) and 3,6-dioxaoctane-1,2,4,5,7,8-hexa-
carboxylic acid (TDS) by comparison with acetic acid (log K 4.56), succinic acid (5.24,
4.00), malic acid (4.68, 3.24) and tartaric acid (3.95, 2.82). Higher protonation constants
are estimated for carboxylates lacking electron-withdrawing substituents, that is to say,
where the carboxylate is at the end of the “longer arm” of the succinate group. The
protonation constants of carboxylates in “shorter arms” near the ether oxygen would have

smaller values. % 1%7

This same reasoning could be applied for the carboxylate groups of BCA6, BCAS,
MBCAS and TCAG6. The ether oxygens may also decrease the basicity of nitrogen in these
ligands relative the basicity of nitrogen in ISA (log K values for the protonation of nitrogen

are ISA 10.52, BCA6 8.98, BCAS 9.30, MBCAS 9.56, TCA6 9.87) in analogy to the



relationship between nitrilotriacetic acid (NTA, log K 9.46-9.84) and triethanolamine
(TEA, log K 7.85). >

6.3.2 Trends in stability orders of ML complexes

A number of trends became evident when stabilities of the different ML complexes were
compared for each ligand. Tables 12 and 13 show the ascending orders of complexation
strengths for the ligands with different metals and the metals with different ligands

respectively.

6.3.2.1 Irving-Williams order for transition metal ions Mn>*, Cu’*and Zn**

The stability of the ML complexes of the ligands studied here and the reference ligands
follows the Irving-Williams order for divalent transition metal ions (Mn®" < Fe*" < Co*" <
NiZ" < Cu?t> Zn2+). 45

EDDS: log Ky (8.69) < log Kcor (14.0)” < log Knir (16.7) ** < log Kcu (18.3) > log
Kz (13.15)

ISA: log Kwnr (7.26) < log Keeanr (9.00) ' < log Kcor (9.96) ' < log Knir (11.68) ' <
log Kcu (12.88) > log Kzq (10.15)

TCAG6: log Kyt (7.47) <log Kcuw (10.26) > log Kz (8.72)

BCAG: log Kuinr (9.28) < log Kreanr (9.8) ''° < log Keur (13.08) > log Kzu. (11.34)
BCAS: log Ky (7.50) < log Kcu (9.57) > log Kz (8.09)

MBCAS: log Kmvnr (9.05) <log Kew (12.69) > log Kzar, (10.60)

6.3.2.2 Trends for alkaline earth metal ions Mg** and Ca**

The lowest stabilities of the ML complexes were found with Mg*‘and Ca®" for both
studied and reference ligands (Table 12). The order of the stability constants of alkaline-
earth metal complexes varies with the nature of the ligand. The following three orders are
reported: ''” a) Mg > Ca > Sr> Ba for small or highly charged anions and some mono- or
bidentate ligands, b) Mg < Ca < Sr < Ba for anions of inorganic oxoacids, such as iodate,
nitrate, sulfate, and thiosulfate and c¢) Mg < Ca > Sr > Ba for hydroxycarboxylic,
polycarboxylic and polyaminopolycarboxylic ligands. Only Mg*‘and Ca®" ions were

studied here and only for some of the ligands. Comparison of measured values for these
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two ions indicate the order c¢) (for hydroxycarboxylic, polycarboxylic and
polyaminopolycarboxylic ligands, Mg < Ca) for ligands in the BCA series, while the
literature values for ISA and EDDS * follow the order Mg > Ca. The complexes of the
small Mg®" ion are destabilized by the presence of neutral oxygen donors. The stabilities
of the Ca®" ion complexes increase with the number of carboxylate groups, and Ca®" is
stated to benefit greatly from the introduction of a single neutral oxygen donor. * This
can be seen for ODS.

BCAG6: log Kmgr (5.98) <log Kca (7.71)

BCAS5: log Kmgt (5.92) <log Kcar (7.40)

MBCAS: log Kmgr (5.09) <log Kca (6.77)

EDDS: log K (6.01) > log Kcar. (4.58)

ISA: log Kugr (5.45) * > log Kca (4.30)

6.3.2.3 Trends for Cd**, Hg*", Pb*", La’" and Fe’*

Tons Cd*', Hg*" and Pb*" were studied here only for BCA6. The logKyy values for Cd*
and Pb*" are located near the logKy value for 7Zn*" for both studied and reference
ligands, except for the ligands that contain only oxygen donors (Table 12). In these cases
the logKwy values for nitrogen-favouring Cd** are smaller than those for oxygen-
favouring Ca®’, which has an ionic radius close to that of Cd*". Another oxygen-
favouring metal ion, La’*, appears to benefit from the presence of ether oxygens in
TCA6, BCA6 and BCAS. This can be seen in the higher log Ky values than those
obtained for nitrogen-favouring Cu®*. The logKy values for the Fe** ion are the highest
in the series followed by those of Hg”" for all ligands discussed here except ODS, which
favours Hg®" at the expense of Fe*". °* 1% 17 1t is not surprising that the hard Fe’" ion
forms stable complexes with ligands that have several hard carboxylic acid donors. The
strength of the complexes of the soft Hg*" ion, even with ligands containing only oxygen
donors, is apparently due to the capability of Hg”" to bond well to both nitrogen and
oxygen, the presence of neutral ether oxygen donors and the suitable size of the Hg*" ion.
The complex stability of large ions, such as Hg*', La**, Ca®" and Pb*, is reported to
increase with the addition of a neutral oxygen donor to the ligand, but for small metal
ions the benefit of the addition is reduced by the increase in steric strain. This correlation

appears to be mainly with ionic size rather than with e.g. hard/soft acid character. *%** 3
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Although the addition of neutral oxygen donors is reported to increase the stability of large
jons, the Pb*" jon may behave exceptionally. When nitrogen donors are added to neutral
oxygen-containing ligands, the stability of Pb*" complexes is found to decrease. The
decrease is attributed to the change from inactive lone pair (6s” electrons) to active lone
pair which is generally accompanied by shortening of the Pb-N bond lengths by about 0.3
A. The Pb*" ion then behaves as a smaller and more covalent ion and gains no benefit from
neutral oxygen donors. Such behaviour is reported for ligands with three or more nitrogen

39,48, 57 E120 This type of effect is also said to be possible with ligands containing

donors.
less than three nitrogen donors, when a large number of acetate groups are present. Thus,
the Pb*" complex of ether-oxygen-containing oxybis(ethylenenitrilo)tetraacetic acid
(EEDTA) is less stable than the corresponding EDTA complex, whereas the complexes of
other large ions (Sr*", Hg*" and La’") with EEDTA are more stable than the corresponding
EDTA complexes. *** For BCAG6, note that the stability of the Pb*" complex is lower than

that of the Zn*" and Cd*" complexes, while for TDS the order is the opposite.

Table 12. Strength of ML complexes in ascending order according to metal.

ligand log Kw,

TCA6 Ca* Mn*  Zn** Cu” La*

BCA6 | Mg* Ca® Mn* Pb**  Cd* zZn* Ccu” La* Hg” Fé'
BCA5 | Mg* (Ca** Mn*"  Zn** Cu** La* Fe**
MBCAS5 | Mg*  Ca* Mn** Zn** Cu® Fe**
NTA Mg  Cca® Mn* Ccd* zn®* La** Pb* Cu* Hg* Fe*
ISA Ca*  Mg* Mn** Cd&* Pb* zZn* Cu* Fe**
EDDS | Ca®™ Mg* Mn* Cd* zn®* La** Pb* Cu* Fe’'
EDTA | Mg* Ca* Mn* La** Cd* zZn* Pb* Cu* Hg* Fe'
DTPA | Mg Ca*' Mn®** zZn** Pb** Cd* La¥* Cu* Hg” Fe*
oDS Mg*  Cd* Mn* Ca®* zZn®* Pb* Cu** Fe’*  Hg™
TDS Mg® Cd* Ca¥ Mn® Zn” Pb* Cu?' Hg> Fe'




Table 13. Strength of ML complexes in ascending order according to ligand.

metal | log Ky,

ion

Mger TDS MBCA5= ODS ISA NTA MGDA BCA5 BCA6 EDDS EDTA DTPA
Ca%*t ISA EDDS ODS TCA6 NTA MBCA5 TDS MGDA BCA5 BCA6 EDTA DTPA
Mn?* ODS TDS ISA NTA TCA6 BCA5 EDDS MBCA5 BCA6 EDTA DTPA
Fe*t 0DS BCA5 ISA NTA MBCA5 BCA6 EDDS TDS EDTA DTPA
Cu** ODS TDS BCA5 TCA6 MBCA5 ISA BCA6 NTA MGDA EDDS EDTA DTPA
7n>t ODS TDS= BCA5 TCA6 ISA MBCA5 NTA MGDA BCA6 EDDS EDTA DTPA
Cazt 0DS TDS ISA NTA MGDA EDDS BCA6 EDTA DTPA
Hg’—’+ 0DS BCA6 TDS EDDS EDTA DTPA
Ph>t 0DS TDS ISA BCA6 NTA MGDA EDDS EDTA DTPA
La’** NTA MGDA BCA5 EDDS  TCA6 BCA6 EDTA DTPA

6.4 Effect of adding ether oxygen to amines or carboxylic acids

Besides containing succinic acid groups rather than acetic acid arms and different
numbers of nitrogens and carboxylate groups, BCA6, BCA5, MBCAS5 and TCAG6 differ
from EDTA and DTPA in the presence of ether oxygens. The effect of ether oxygen
added to amines or carboxylic acids is discussed here in the light of some examples. In
the “middle arm” of BCA6, BCAS and MBCAS, five- or six-membered rings can be
formed through nitrogen and carboxylic acid group, but all other possibilities for the
formation of such rings are through ether oxygen separated from nitrogen and
carboxylate donor groups by methylene or ethylene groups. In TCA®6, only the latter is

possible.

6.4.1 Amines with ether oxygen

A study of diamine compounds from ethylenediamine to pentamethylenediamine showed
the protonation constants of these compounds to be closely similar, as presented in Table
14 (log Ky" values for ligands 1-4). °* Note, however, that the ionic strength was not
always the same in the different measurements, so that the values in Tables 14 and 15 are
not always completely comparable. Taking the CuL complex as a reference, it can be
seen that the complex species is found only for ethylenediamine (five-ring, log Kcur
10.49, Table 14, ligand 1) and trimethylenediamine (six-ring, log K¢y 9.70, ligand 2). In
tetra- and pentamethylenediamine (ligands 3 and 4), the nitrogen donor atoms are located
too far from each other to allow stable ring formation. If the methylene group in the

middle of pentamethylenediamine is replaced by amine  producing
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NH,CH,CH,NHCH,CH,;NH, (diethylenetriamine, ligand 5 in Table 14) or by ether
oxygen producing NH,CH,CH,OCH,CH,;NH, (oxybis(ethyleneamine), ligand 6), the
length of the molecule chains does not change, but the nitrogen or oxygen donors at the
centre of the compounds enable the formation of two five-membered rings. The situation
with diethylenetriamine resembles that with ethylenediamine; with an extra five-
membered ring the complex formation is strengthened (log Kcu 16.2). With
oxybis(ethyleneamine) the oxygen donor allows the formation of two five-membered
chelate rings. Because of the weaker donor atom, however, the stability constant of the

complex is lower (log Kcu. 8.97).

If two further ethyleneamine groups are added to ligands 5 and 6 so as to produce
NH,CH,CH,NHCH,CH,NHCH,CH,NHCH,CH,NH; (tetracthylenepentaamine, ligand
8) and NH,CH,CH,NHCH,CH,OCH,CH,NHCH,CH,;NH; (oxybis(diethylenediamine),
ligand 9), the number of chelate rings is increased to four and the stability of the
complexes is increased, to log K¢y 22.8 for ligand 8 and log K¢y 17.96 for ligand 9. No
data were available for the complexation of 1,4,10,13-tetraazatridecane (ligand 7) with
Cu(Il) or Ca(Il). %2 The effect of ether oxygen is twofold: it is a weaker donor than amine
nitrogen and it decreases the basicity of the adjacent amine nitrogens owing to its
electron-withdrawing effects. The oxygen atom is not, however, expected to influence the
terminal basic nitrogens six atoms away. '>' These ligands (8 and 9) are still viable
chelating agents, as is true for TCA6, BCA6, BCAS5 and MBCAS. Both
oxybis(ethyleneamine) and oxybis(diethylenediamine) (ligands 6 and 9) are reported to
coordinate through all their donor atoms and to form two and four five-membered chelate
rings. ' ¥ Part of the ligands of the BCA series resemble mono- and diethanolamine,
and TCAG is akin to triethanolamine (ligands 10-12 in Table 14), which are also reported

to form stable five-membered chelate rings through N and O atoms with copper(Il) ion.
123, 124
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6.4.2 Carboxylic acids with ether oxygen

The protonation constants of simple compounds with one carboxylic acid group are
closely similar, as reported in Table 15. °* The addition of a hydroxyl or ether group does
not significantly change the value, so long as this is not located close to the acid group.
The same is true for compounds with two or more acid groups. When hydroxyl group or
ether oxygen is located near the carboxylic acid group, the protonation constants are
decreased to some extent. Chelate formation is not possible for compounds a-d, and the
stability constants of the complexes are very low. The formation of chelate rings
increases the stability constants of the complexes if the chelate ring is five- or six-
membered. In ligands BCA6, BCAS, MBCAS and TCAG6, the succinic acid group is
separated from the ether oxygen by the methylene group. Succinic acid as such (ligand k
in Table 15) can form only a seven-membered ring, which is not very stable in
comparison with the complex formed with ligand j (six-membered ring). In the studied
ligands, five- or six-membered chelate rings can be formed through ether oxygens. For
ligands o-t in Table 15 (which resemble the studied ligands), the possibility to form five-
or six-membered rings through the ether oxygen appears to promote the complexation. In
the BCA series, some of the rings can be formed through nitrogen and carboxylate
groups, but in TCAG6 the formation of five- or six-membered rings can occur only through
ether oxygen, as in the small ligands (o,p,1,s,t). In TCAG6, the polydentation serves to
enhance the complexation, as is also seen with ligands s and t. Oxydiacetic acid (ligand o)
coordinates tridentately with several metal ions. '*"'*" Both oxydiacetic acid and
carboxymethoxybutanedioic acid (ligand s) are biodegradable ligands and have been

studied for detergent applications, but their Ca-binding capability is not adequate. '**
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Table 14. Protonation and complexation of selected ligands containing nitrogen and ether
oxygen. 2 H"+H,,L=H,L, log K" and M + L = ML, log Kur.

ligand log log log log log log log
Ky Ki' Ko Ki' Ki' Kew Kea
1 H,N-CH,CH,-NH,, ethylenediamine ~ 9.92 9.61 1049 0.11
2 H,N-CH,CH,CH,-NH,, 10.59 8.78 9.70
trimethylenediamine
3 H,N-CH,CH,CH,CH,-NH,, 10.72  9.46
tetramethylenediamine
4 H,N-CH,CH,CH,CH,CH,-NH , 10.99 10.05
pentamethylenediamine
5 H,N-CH,CH,-NH-CH,CH,-NH,, 9.99 9.26 4.64 16.2 02
diethylenetriamine
6 H,N-CH,CH,-O-CH,CH,-NH,, 9.89 9.16 8.97
oxybis(ethyleneamine)

7 CH,(CH,CH,-NH-CH,CH,-NHy,),, 10.6 9.9 7.74 7.03
1,4,10,13-tetraazatridecane
8 NH-(CH,CH,-NH-CH,CH,-NH,),, 9.85 9.27 8.19 445 2.97 22.8 1.8

tetracthylepentaamine

9 0-(CH,CH,-NH-CH,CH,-NH,), , 9.81 9.24 6.89 5.98 17.96
oxybis(diethylenediamine)

10 H,N-CH,CH,-OH, ethanolamine 9.52 4.50

11 HN-(CH,CH,-OH),, diethanolamine =~ 9.02 4.20

12 N-(CH,CH,-OH)j, tricthanolamine 7.85 4.07 0.78

Table 15. Protonation and complexation of selected ligands containing carboxylate and
ether oxygen. > H'+ Hy L = H,L, log K" and M + L = ML, log Ky

ligand log log log log log log
Ky' Ka' K Ka' Kcu Kea

a H-COOH, formic acid 3.57 1.61 0.27
b  CH;-COOH, acetic acid 4.56 1.79 0.55
¢ CH;CH,-COOH, propanoic acid 4.69 191 0.50
d CH;CH,CH,-COOH, butanoic acid 4,62 1.7 0.51
¢ HO-CH,-COOH, hydroxyacetic acid 3.62 2.40 1.11
f CH;-O-CH,-COOH, methoxyacetic acid 332 1.38 1.12
g HO-CH,CH,-COOH, 3-hydroxypropanoic acid ~ 4.40 2.05
h  HO-CH,CH,CH,-COOH, 4-hydroxybutanoic 4.54 1.82

acid
i HOOC-COOH, oxalic acid 3.80 1.2 4.85 2.46
j  HOOC-CH,-COOH, malonic acid 527 2.65 5.04 1.50
k  HOOC-CH,CH,-COOH, succinic acid 5.24 3.99 2.70 1.24
1  HOOC-CH,CH,CH,-COOH, glutaric acid 5.06 4.19 2.37 1.18
m HOOC-CH,CH,CH,CH,-COOH, adipic acid 5.04 4.26 23 2.19
n HOOC-CH,CH,CH,CH,CH,-COOH, pimelic 5.08 431 22

acid
o HOOC-CH,-O-CH,-COOH, oxydiacetic acid 3.94 2.02 395 3.38
p HOOC-CH,CH,-O-CH,CH,-COOH, 4.62 3.77 2.52

3,3’-oxydipropanoic acid
q HO-CH-(COOH),, hydroxymalonic acid 4.24 2.02 5.34 2.27
r  HO-CH-COOH(CH,COOH), malic acid 4.68 324 3.63 1.95
s HOOC-CH,-O-CH-COOH(CH,COOH), 5.00 3.77 2.52 4.06

carboxymethoxybutanedioic acid
t  O-(CH-COOH(CH,COOH)),, 5.97 4.85 3.98 2.07 8.38 5.82

oxybisbutanedioic acid
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In summary, although ether oxygen is a weak donor, it appears to strengthen the
stabilities of complexes where it makes chelate formation possible. In the ligands of this
study, the location of the ether oxygen between N and carboxylate groups enables
multidentate chelation and adequate ring sizes, so that the stability constants of the
complexes are higher than those of complexes with the smaller reference ligands, which

are unable to form as many rings.

6.5 Comparison of stabilities of ML complexes of the studied and reference ligands

Since all ligands of the study form ML complexes as main species, it was reasonable to
employ values of the respective stability constants as a measure of the complexation
efficiency. Different factors may affect the strength of the complexation, as discussed in
general in section 2.4. Some of them were noted in section 6.3 as well. These factors
include the affinities of different metal ions to different donor atoms, not only to the
strongly coordinating nitrogen and carboxylate oxygens but also to ether oxygens. Open-
chain ligands containing neutral oxygen donor atoms tend to be poor ligands, but when
the neutral oxygen is a part of a ligand that contains more strongly coordinating groups it
may enhance the overall strength of complexation. The strength of complexation is also
affected by the size of chelate rings formed in complexes, by the ionic radii of metal ions
and by the basicity of N-donor atoms. The basicity of N-donor atoms would be expected
to have a clearer effect on metal ions like Cu?*, which favour N-donors, than on metal
jons like Ca®>" and La*", which favour O-donors. Another factor to be considered is the
size of the chelate ring relative to the size of the coordinating metal ion: for steric
reasons, large metal ions prefer five-membered chelate rings, while small metal ions
favour six-membered rings (see section 2.4). ¥ 46483260 129 130 ywhen some or all of these
factors are operating at the same time and sometimes in different directions, it may be
impossible to distinguish their contributions to the strength of complexation. Some trends
can nevertheless be detected as illustrated in the comparisons of the complexation

tendencies of the ligands that follow.

The only difference between EDTA and EDDS is the size of chelate ring. With EDTA,

only five-membered rings are formed between metal ion and N- and/or O-donors,
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whereas with EDDS two of the chelate rings are six-membered. Comparison of log Kyr
values (Figure 6 a) shows that increase in the size of some of the rings from EDTA to
EDDS causes a slighter decrease in the log Ky values for complexes with smaller ions
like Mg**, Cu**, Zn*" than for complexes with larger ions like Hg**, Pb*", Cd*", Ca®" (and
Mn*" as “medium”-size ion). This trend logically follows from the differences in ring size
selectivity and ionic radii discussed above. The effect is not seen for trivalent Fe>* and

La*".

The same kind of comparison can be made between NTA and ISA, although in addition
to the size of the ring there is a difference here in the number of carboxylate groups
(NTA: five-membered rings and three carboxylates, ISA: five- and six-membered rings
and four carboxylates). The log Kmi. values of complexes with smaller ions, Mg2+, Cu”™,
Zn*" and Mn*', are closely similar for the two ligands, while those of complexes with
larger ions, Pb*", Cd*" and Ca®", are smaller for the ligand with larger size of some of the
rings (ISA). Here, ring size appears to be the dominant factor for the O-donor-favouring
Ca®" ion, but Fe*" does not appear to gain any benefit from the fourth carboxylate group

(Figure 6 b).

It is also interesting to compare ISA with ODS. The two ligands are similar except for the
replacement of the nitrogen donor in ISA by the ether oxygen in ODS. The large O-
donor- favouring Ca”™ ion prefers ODS to ISA, but all other metal ions (Mg2+, Mn2+,
Zn*, Cd*', Pb*", Fe’" and especially Cu®") prefer ISA with its stronger N-donor group
(Figure 6 c).

The following observations can be made when TCAG6, which has six carboxylate groups
and three ether oxygens, is compared with EDDS and ISA, which have four carboxylates
and do not contain ether oxygens. All three ligands have the potential to form both five-
and six-membered chelate rings, but in TCAG6 the rings can be formed only through ether
oxygens. This does not create any disadvantage for the large O-donor favouring Ca®>" and
La®" ions, which form stronger complexes with TCA6 than with EDDS or ISA. On the

other hand, Mn%, Zn** and Cu** ions, which favour N-donors, form stronger complexes



with EDDS and ISA, and this tendency is clearly strengthened when the number of N-
donors increases from ISA to EDDS (Figure 6 d).

There are only O-donors in TDS, and both five- and six-membered chelate rings can be
formed only through ether oxygens. Comparison of TDS, TCA6 and BCA6 shows that, in
most cases, BCA6 with its six carboxylate groups, and the ability to form five- and six-
membered rings also without ether oxygens, forms the strongest complexes. TDS is a
stronger chelating agent than TCA6 for Ca®* and a stronger chelating agent than BCA6 for
Hg*" and Fe*" (Figure 6 e).

In many practical applications, BCAG6 appeared to be the most suitable of the new ligands.
Thus it is reasonable to compare its performance with that of the other ligands studied here.
Figure 6 f shows that BCA6 is the strongest chelating agent excluding two N-donor
containing EDDS for Pb*, Zn*", Hg?", Fe*" and especially Cu®".

In addition to the comparison of ISA and ODS above, the general benefit of nitrogen donor
to the complexation can be seen in a comparison of DTPA, BCAS and MBCAS. All these
ligands have five carboxylate groups, but the three nitrogens of DTPA give it a substantial
advantage over BCAS5 and MBCAS with their one nitrogen and two ether oxygens.

The ligand MGDA is derived from NTA by addition of one CH3 group. The protonation
constants of the nitrogen atom and one of the carboxylic acid groups are closely similar for
the two compounds, but the acidity of the two other COOH-groups is greater in MGDA,
which forms more stable complexes than NTA (Tables 10 and 13) with all metal ions
tested here. The same kind of structural difference is present in BCAS and MBCAS, but the
additional methyl group in MBCAS does not have an increasing effect on the acidities of
the carboxylic acid groups, which are located apart from each other. The stronger basicity
of nitrogen in MBCAS, however, allows more stable complexes than BCAS with Mn2+,
Fe**, Cu*" and Zn*". With Mg2+ and Ca?", the order is the reverse.

ISA and ODS can also be compared by plotting log Ky (ISA)-log Ky (ODS) as a
function of log Ky (NH3). Figure 7 shows the greater basicity of the secondary nitrogen
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than of nitrogen in ammonia. The preference of the Ca®" ion for oxygen over nitrogen
donor can also be seen. Although Fe®* forms stronger complexes with ISA than with
ODS, its strong affinity to oxygen donors makes the difference between the ligands
smaller than the value of the ammine complex. Note, however, that the log Ky value of

131

the ammine complex of Fe’" is an estimated value *', while stabilities for the other metal

. . 2
jons are experimental values. ’
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6.6 Differences between isomers
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Two ligands, EDDS and BCA6, were studied as isomeric mixtures and as selected pure
isomers: [S,S]-EDDS, [S,S,S]-BCA6 and [R,S,R]-BCAG6 (Tables 4, 7 and 9). Interest in
studying the complexation of isomers was sparked by the significant difference in the
biodegradability of EDDS isomers. One would expect differences in stability constants or
complexation models of the isomers to be relevant to the applicability of those forms. In

the case of EDDS, close dependence has been demonstrated between the biodegradability
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and the isomeric form of the compound: the [S,S]-isomer is completely biodegraded
while the [R,R]-isomer is only marginally degraded in the standard Sturm test (OECD
301B). » Poor availability has so far prevented biodegradability studies on the pure
isomers of BCA6.

In the case of EDDS, differences in the strength of complexes of the [S,S]-form and the
EDDS mixture were small. The complexation models obtained were the same, and most
of the differences in the values of stability constants were within experimental error. For
all metal ions studied with EDDS (Mn*", Zn*", Cu®" and Fe®"), the stability of the major
species ML“™" was 0.3-0.8 log units higher for the [S,S]-isomer than for the isomeric
mixture. While this indicates a slight difference in stereospecificity, the difference is

immaterial as regards practical applications of EDDS.

For BCAG, two stereoisomers, [S,S,S]- and [R,S,R]-forms, were compared with each
other and with a BCA6 mixture containing all isomers of the ligand. Again, the
complexation model was closely similar for the two isomers, but some differences
appeared in the binuclear species. Binuclear species were found in complexes of the
BCA6 mixture with Ca2+, Cu®" and Zn*". The species Ca,HL', found for the BCAG6
mixture, could not be calculated for the [S,S,S]-isomer but was found for the [R,S,R]-
isomer and with clearly higher stability than for the isomeric mixture. Binuclear species
M2L2' and M,HL" were found for Cu*" and Zn*" with the BCA6 mixture but neither
species could be calculated for either metal ion with the [S,S,S]-isomer nor for the Zn*'-
[R,S,R]-system. With the [R,S,R]-isomer, Cu,L” and Cu,HL could be calculated only
from data where C. < Cy. The differences between the values of stability constants for
these species and the corresponding values for the BCA6 mixture were within

experimental errors.

In the case of mononuclear species, the complexation models were the same for the pure
isomers and the isomeric mixture, and for most species the differences in the
corresponding stability constants were close to or within experimental errors. It is

noteworthy, however, that for MnL* the value of the stability constant is over one
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logarithm unit higher with the [R,S,R]-isomer, and for CuL" it is about one logarithm
unit higher with the [S,S,S]-isomer. For ZnL* and Fe(OH)L" the differences between the
values for the isomers and the BCA6 mixture, which has the lowest values, is about
logarithm unit. Evidently, the stabilities of these species are even lower for some

unmeasured isomer than for the isomeric mixture.

Figure 8 illustrates the differences between the major (ML) species of EDDS and BCAG6.
A similar comparison for ODS is included. '* The effect of stereoselectivity in the
millimolar concentration area (Cyy = CL = 1 mM, where C consists of equal amounts of
[S,S]-EDDS and EDDS mixture or [S,S,S]-BCA6 and BCA6 mixture) is illustrated in
Figure 9, where the percentage distribution of the different Cu(Il) and Fe(Ill) complex
species is presented as a function of pH. Increase in ligand-to-metal ratios increases the

difference in the distributions of species for the isomer and mixture.

Instead of in terms of proton association reactions, the values of the stability constants of

.. o
acidic complexes, MH,L™¢"

, can also be compared by rewriting the formation reactions
so that the ligands contain the same number of protons as the complexes, as described in

equations [21]-[24] (charges omitted for clarity).

M + HL = MHL Ky =% [21]
M+HLsMHL Ky, = m [22]
M+H;LsMHL Ky, = m [23]
M+HLsMHL K, = m [24]

This presentation allows a direct comparison of the tendencies of the protonated forms of
the ligands to form the corresponding protonated metal complexes. Although the

differences are generally small, some trends can be seen, as shown for ligand BCA6 in
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Table 16 and Figure 10. The log Kymir values of all protonated complexes of Mg®" and
Fe*" are somewhat higher for the [S,S,S]-isomer than the [R,S,R]-isomer. With Ca2+,
Mn®, Cu®" and Zn*, however, the values are higher for the [R,S,R]-isomer. The
difference suggests that there could be some structural factor related to the ion size,
which makes the [S,S,S]-isomer more favourable for the smaller ions and the [R,S,R]-
isomer for the larger ions. Another interesting observation is that the order of magnitudes
of the log Kymio values for Ca*" and Mg2+ ions changes with the degree of protonation.
This trend is strongest for the [S,S,S]-isomer, somewhat weaker for the [R,S,R]-isomer
and least for the BCA6 mixture. The trend may be explained by the order of protonation
of the carboxylic acid groups: when only some of the carboxylates take part in the
complex formation the effect of their positions will be expressed more clearly in the

stability constants.

It can be concluded from the above that there is a small degree of stereospecificity for
BCAG, but, again, this is insignificant for any practical applications of the ligand. From
the environmental perspective, it would be of interest to know if the different isomers of
BCAG, like those of EDDS, biodegrade at significantly different rates. This would be an

important question for the future.
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Table 16. Comparison of log Kmuir

13

values expressed as addition of the 12 isssHacas
metal ion to HL (as defined in s el
equations [21]-[24]). % — o
g 7] cu”
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7 Structure estimations

No solid-state data was available for the BCA series and TCA6, but computational
density functional methods (geometry optimizations, continuum-solvation model, mixed
cluster-continuum model and Car-Parillo molecular dynamics simulation) have been used
in estimating coordination geometries for BCA6, EDDS, ISA, ODS, EDTA and DTPA
complexes with Mg*", Ca**, Mn*", Fe*"and Zn*".'** Six-coordinated complex geometries
were found for BCA6 and all these metals. At higher coordination numbers, the strain on
the ligand backbone forces at least one coordinating atom much further away from the
metal. Fe*" favours six-coordination over eight-coordination to BCA6 by 50 kJmol™. The
coordination environment of Fe*" involves five-membered rings from ether oxygens to
shorter arms of the succinate group and a six-membered ring from nitrogen to the longer
carboxylate arm. Although the complexation energies primarily support five-membered
rings over six-membered rings, in the case of Fe(ll)-BCA6 the structure where the
carboxylate arm from the central nitrogen atom forms a six-membered ring is more stable
than the five-membered ring by 10 kJmol'. For [Ca-BCA6]* an eight-coordinate
structure where the carboxylate arm from nitrogen forms a five-membered ring with
metal is about 20 kJmol™ more stable than the structure with comparable six-membered
ring. Potential sources of error are the assumption that only 1:1 complexes are formed,
the ligands are completely deprotonated and possible dimers, polymers, ML, or M,L
complexes were not taken into consideration in the calculations. The 1:1 approximation is
reasonable, however. The EDTA complex geometries obtained in the calculations were
reported not to correspond directly to the available X-ray data, but the agreement was

generally good. '*2

The coordination geometries of the [S,S] or [R,S] forms of EDDS with Fe3+, C02+, cu*
and Ni*" are known in the solid state from X-ray diffraction studies. '****’ In all these
complexes the central metal atom is coordinated by two nitrogen atoms and by one
oxygen atom from each of the four carboxylate groups. There is virtually no doubt that
the basic structures of the solid complexes of Mn®" and Zn** are similar. Computational

methods have shown the geometry of minimum energy to be a corresponding model
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132 Hexadentate

involving both nitrogen donors and all four carboxylate oxygens.
coordination has also been concluded from investigations by infrared (IR), proton
magnetic resonance (PMR), electronic absorption and circular dichroism (CD) for [S,S]-
EDDS with trivalent ions Cr**, Co>* and Rh*". 3140 [n the case of Cr*" and Rh*", EDTA

139, 141
has been reported

to form pentadentate complexes with one free acetate arm.
Binding of one aqua molecule to metal gives the coordination number six. Thus, it seems
that hexadentate complexes of EDDS, with its two longer carboxylate chains, will have

less strain in chelate rings.

Although EDTA can act as a hexadentate ligand, the coordination number of the metal
ion is often greater than six. X-ray studies have demonstrated hexadentate coordination
for Co*", Co*" and Mn**. '**'* The addition of one aqua molecule raises the coordination
number to seven, e.g., with Mg®" and Mn?". '**'*® Six coordination can also be achieved
by pentadentate coordination of EDTA and further coordination of one aqua molecule, as
reported for Rh*", Cr*’, Ru**, Ru’* and Ni**, '3 ¥ 19130 EDTA has been proposed to
coordinate hexadentately or pentadentately with Fe', with aqua ligand raising the
coordination number to seven and six, respectively. '*' Coordination numbers 9 and 10
with three and four aqua molecules have been found for EDTA complexes with La®" ion.
132153 Tt has been suggested that if the ionic radius of the metal ion is larger than 0.79 A
and the d-electron configuration is other than d°, d° or d'°, EDTA may be pentadentate
with a monodentate ligand occupying the sixth position. The coordination number may
increase from 6 to 7 or 8 in the case of a metal ion with 0, 5 or 10 d-electrons and ionic
radius greater than 0.79 A. '** This suggestion seems to describe the above-mentioned

cases.

According to with some structural studies on ISA and its metal complexes, the [Fe(IIT)L]
anion of ISA has the same structure as the corresponding EDTA and EDDS complexes.
'35 For Ni**, a structure has been found where coordination is through nitrogen and three
oxygen atoms, two from the shorter and one from the longer arms, and one aqua
molecule. '°® A similar structure is reported for Co?", but instead of an aqua molecule, the

ethylenediamine molecule is coordinated to the metal by both its nitrogens, one of these
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forming a hydrogen bond with the uncoordinated carboxylate oxygen in ISA. '’ In IR
studies of acidic complexes of ISA (H,ML) with several transition metal ions, nitrogen
and two carboxylate groups were found to be coordinated, but it was not clear from
which of the four possible groups they were derived. '** Computational studies of
complexation geometries suggest that ISA is coordinated with Fe** by nitrogen and all
four carboxylate groups in minimum energy geometry. In the case of Ca’', one
carboxylate group is detached and the metal is coordinated on average by three water

132
molecules.
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8 Applications of the ligands

Stability constants of the complexes studied here were somewhat lower than those of
complexes formed by EDTA and DTPA. The complexation capability of these new
ligands is nevertheless sufficient for several practical applications. Moreover, the
somewhat lower chelation efficiency of BCA6 than of EDTA and DTPA for Cd(Il),
Hg(Il) and Pb(Il) is an environmental advantage because, in conjunction with the better
biodegradability, it probably lowers the capability of BCA6 to remobilize toxic heavy
metal ions from sediment. The results obtained from complexation studies of EDDS,
ISA, BCA6, BCAS, MBCAS and TCAG6 have been utilized in several application tests
and further research. Some examples of applications and other related studies of these

ligands are described in the following.
8.1 Method to determine BCA6 and BCAS

EDTA and DTPA have been quantified in pulp and paper mill process and waste waters
by liquid chromatographic method as their Fe(IlI) complexes, which are highly stable in

. 159
aqueous solutions.

Fe(III) complexes have also been used in determinations of EDTA,
EDDS and ISA in cosmetic products by high performance liquid chromatography
(HPLC) and capillary electrophoresis (CE). '®* As well CE method has been utilized for
the determination of Fe(IIl) and Cu(I) complexes of EDDS in wood pulp. '°' On the
basis of the complexation data of BCA6 and BCAS produced in this work, a method for
the determination of these ligands relying on reversed-phase HPLC with UV detection
was developed for lake water and for a pulp and paper mill effluent leaving wastewater
treatment. ' Cu(Il) complexes were chosen for the determination of BCA6 and BCAS
because they are the most stable complexes over a broad pH range and also in the uM

concentration area where hydrolysis of Fe(Ill) would cause problems. Moreover, no

interference of other metal ions was observed when Cu(Il) chelates were applied. 162
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8.2 Pulp bleaching applications

Pulp bleaching methods based on oxygen chemicals have been developed with the aim of
reducing the consumption of chlorine-based chemicals. Oxygen, ozone, hydrogen
peroxide and peracetic acid are the common replacements for chlorine chemicals. Pulp
usually contains traces of transition metal ions, such as iron and manganese, which
catalyse the decomposition of hydrogen peroxide and peracids during bleaching. '®* The
presence of these metals results in excess chemical consumption, poorer pulp strength
and reduced whiteness. Their removal by chelation is an essential step, therefore, when
bleaching is carried out with oxygen-based chemicals. EDTA and DTPA are common
complexing agents for the chelation, but both are virtually nonbiodegradable in the

61-63

conditions of waste water treatment plants and are difficult to remove from bleaching

effluents.

Results obtained in pulp bleaching tests with ISA and EDDS showed EDDS to be a
realistic alternative to EDTA and DTPA as a chelating agent for totally chlorine free
(TCF) bleaching of chemical pulp. ISA is a competitive biodegradable alternative
particularly in the bleaching of high yield pulp. Successful full-scale mill trials with ISA

as chelating agent have also been carried out with thermomechanical pulp (TMP). '*

The performance of BCA6, BCA5 and MBCAS was studied in TCF bleaching of
eucalyptus pulp (E. Globulus). Although the stabilities of chelates of these ligands with
Mn(1) and Fe(III) are somewhat lower than those of EDTA and DTPA, they appear to be
sufficient for pulp bleaching applications. As chelating agents the new ligands showed
equal performance to EDTA and DTPA. The somewhat lower chelation efficiency of the
new ligands than of EDTA and DTPA for Mg(Il) and Ca(Il) is an advantage in fact,
because alkaline earth metal ions have a stabilizing effect in peroxide bleaching. ' '
More importantly, the Mn complexes of BCA6, BCAS and MBCAS appear to be inert in
peracetic acid solution, in contrast to Mn-EDTA and Mn-DTPA complexes, which are

capable of decomposing peracetic acid. This would also be an environmental advantage

due to the savings in chemicals and process steps with these new ligands. EDDS and ISA
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do not have this advantage; like the Mn complexes of EDTA and DTPA they decompose
peroxy compounds. Overall, BCA6 proved to be the most effective of these new

chelating agents in pulp bleaching. ' 105168

8.3 Modelling

As mentioned above, computational methods have been used to estimate the coordination
geometries for BCA6, EDDS, ISA, ODS, EDTA and DTPA with several metal ions. '
Metal ion complexation with polymeric ligands has also been studied, using functional
methods and a continuum-solvation model (COSMO). In these studies the most effective
poly(carboxylic acid) ligand, poly(epoxy succinic acid) (PESA), was compared with
EDTA, DTPA, BCA6, EDDS and ISA in regard to (uncorrected) complexation energies
for Mn(II) and Fe(IIT). For Mn(II), PESA seemed to perform better than ISA or EDDS,
but worse than DTPA, EDTA or BCA6. In the case of Fe(Ill), all the compared ligands

performed clearly better than PESA. '®

The chemical speciation simulation program JESS (Joint Expert Speciation System)' ™"
has been used to assess the efficiency of EDTA, [S,S]-EDDS, ISA and NTA for use in
the pulp and paper industry. ' Calculations of the Speciation Efficiency Index (SEI)
showed EDDS to be superior to the other three ligands. The SEI value takes into account
the efficiency to sequester undesired transition metals, Mn, Fe and Cu, but also the
sequestration of desired Mg and Ca as a decrease in the SEI value. An extra advantage of

[S,S]-EDDS is that it is readily biodegradable.

EDTA, BCAG6 and nitric acid have been studied in modelling of metal removal from
hardwood (birch) kraft pulp by displacement chelation and acid displacement. Fe and Cu
were better removed by EDTA and BCAG6 than by acid. '™

The complexation properties of BCA6 have also been utilized to model the chemical

effects of cumulating metal in closed loop bleaching. BCA6 was compared with DTPA in

regard to metal complexing abilities as well as to cost efficiency. Washing effluents
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cannot be cycled when DTPA is used for chelation because of the lowered bleaching
performance due to the reactions of DTPA with other bleaching chemicals. Such effects

do not interfere in the case of BCA6 and the water in the D/Q sequence can be cycled. '

8.4 Detergent applications

Many compounds have been examined in the search for substitutes for sodium
triphosphate in detergent applications because sodium triphosphate is considered to
accelerate eutrophication. Only a few compounds have been found to be both
ecologically acceptable and commercially viable. To be acceptable, a complexing agent
should have a log K¢, value at least between 4 and 5. 128, 130 At first, NTA was
considered a promising substitute, but it is no longer generally accepted because of the
possible carcinogenic effects. When attention was subsequently focused on ligands
containing only carbon, hydrogen and oxygen, it was found that polymeric materials (e.g.
polymaleates, copolymers of maleic acid and ethylene or vinyl ethers, polyacrylates and
oxidized starch), which have excellent washing performance, are not sufficiently
biodegradable. Lower molecular weight compounds (e.g. CMOS or citric acid), in turn
may have good biodegradability but weak calcium binding ability.

The features needed for high calcium binding capacity are reported to be as follows. '**
The sequestrant should have at least five chelating groups for each calcium ion, and the
chelating groups should form six- or preferably five-membered rings. Particularly
suitable chelating groups for calcium are carboxylate groups, tertiary nitrogen atom, and,
to a lesser extent, ether or alcohol oxygen atoms. In oxydiacetate (ODA) and
ethyleneglycoldiacetate (EGDA) complexes of calcium, for example, the weaker
complexing ether oxygens are present together with stronger carboxylate groups, making

126,

the formation of five-membered rings possible. 176 Both ligands are readily

biodegradable, but K¢, is rather low for effective calcium binding. '**

In the attempt to
avoid nitrogen, test has been made of several nitrogen-free compounds with acetate,
malonate or succinate groups. Unfortunately, it seems that good biodegradability and

sufficient calcium binding strength are not found in the same compounds. '** '*°
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Evidently, at least one tertiary nitrogen group is needed to raise the stability constant of
calcium (Kcar) to sufficient level. In any event, it seems that compounds that are readily
biodegradable will contain groups like —CH»-O-CH(COOH)-CH,COOH or —CH,-O-
CH,COOH rather than ~CH,-O-CH(COOH)-COOH. '** Succinic acid groups appear to
be more favourable to biodegradation than are malonic acid groups. Succinic acid groups
were included in the ligands studied here. It is also stated that biodegradability depends
on the nature and number of nitrogen atoms. Complexing agents with a single nitrogen
atom in the molecule biodegrade relatively easily, whereas compounds with two or more
tertiary amino groups are biologically highly stable. ® This relationship was also observed

for most of the chelating agents studied here.

In study III, the calcium binding ability of TCA6 was measured in NH4CI1-NHj3 buffer at
pH 9.5 at hardness level of 1000 ppm (calculated as CaCOs) with comparison made to
EDTA, DTPA, MGDA, NTA, EDDS and ISA. Each chelating agent was added to
buffered calcium solution until the molar ratio Ca:ligand was 1:1, and the free calcium
concentration was measured with an ion selective electrode. The performance of BCA6

was only slightly poorer than that of TCA6 (Figure 11). '’

hardness left %

added chelating agent (100 % = Ca:L = 1:1)

Figure 11. Chelation of Ca(II) at hardness level of 1000 ppm.
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8.5 Applications to plant growth

The results of the complexation studies have also been utilized in research on nutrient
uptake by plants. The uptake of iron was compared for different compounds of iron:
FeSOs4, Fe-EDTA, Fe-EDDS and Fe-EDDHA (ethylenediimino-bis(2-hydroxyphenyl)
acetic acid). The iron complexes of [S,S]-EDDS and an isomeric mixture of EDDS were
also compared. These studies showed EDDS to be as effective as the more resistant
ligands EDTA and EDDHA in providing iron to plants in sand media. The use of
biodegradable ligands like [S,S]-EDDS to sustain iron availability may be especially
valuable in drip irrigation, where ligand accumulations may pose a threat to groundwater

quahty 178,179

A new invention that uses biodegradable compounds ISA and EDDS as fixing agents for
coating seeds provides strong adherence to trace metals and nutrient salts. Detachment of
the nutrients from the seeds is reduced, “burns” caused by salts are eliminated, the initial
development of the seed is intensified and a more flexible addition of nutrients through

the seed coating is facilitated. '*°
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9 Conclusions

Potentiometric determinations of protonation and stability constants of EDDS, ISA,
BCA6, BCAS, MBCAS and TCA6 with Mg(Il), Ca(Il), Mn(II), Fe(1ll), Cu(Il), Zn(II),
La(Il), Cd(I), Hg(Il) and Pb(I) ions were carried out as part of a broad project
investigating the suitability of these chelating agents to replace EDTA and DTPA.
Kemira Oyj coordinated the project and, in addition to the complexation studies, several
research groups at Kemira and at different universities took part in investigations dealing
with biodegradability, modelling, and pulp and paper, detergent and plant growth
applications. During the investigations it emerged that some of these ligands are suitable
candidates to replace EDTA and/or DTPA, not only because of their chemical behaviour
in applications but also for their cost effectiveness. The research on complex formation of
the ligands was an essential part of the project on the way from ideas to applications. The
ligands were confirmed to form complexes strong enough for practical use. The
information on complexation ability obtained in the potentiometric studies was sufficient
for planning of the applications. For the future it would be of value to study the structures
of the metal complexes of these ligands by X-ray diffraction, though the preparation of
crystals for solid-state studies has turned out to be very difficult. This work is in progress
and will hopefully give additional information about the behaviour of the ligands. It
would also be useful to widen the selection of metal ions, especially for BCA6, the most
promising of the new chelating agents. This would be of interest not only to increase
understanding of the complexation behaviour of the new ligand but also to obtain
information relevant to other potential applications of this environmentally friendly

chelator.
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