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Abstract

Fragment-based screening has evolved as a remarkable approach within the drug discovery process both in the industry
and academia. Fragment screening has become a more structure-based approach to inhibitor development, but also towards
development of pathway-specific clinical probes. However, it is often witnessed that the availability, immediate and long-
term, of a high quality fragment-screening library is still beyond the reach of most academic laboratories. Within iNEXT
(Infrastructure for NMR, EM and X-rays for Translational research), a EU-funded Horizon 2020 program, a collection of
782 fragments were assembled utilizing the concept of “poised fragments” with the aim to facilitate downstream synthesis
of ligands with high affinity by fragment ligation. Herein, we describe the analytical procedure to assess the quality of this
purchased and assembled fragment library by NMR spectroscopy. This quality assessment requires buffer solubility screening,
comparison with LC/MS quality control and is supported by state-of-the-art software for high throughput data acquisition
and on-the-fly data analysis. Results from the analysis of the library are presented as a prototype of fragment progression
through the quality control process.
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Introduction

Fragment-based screening by NMR has evolved as a remark-
able approach within the drug discovery process 25 years
after the proposal of this approach (Shuker et al. 1996).
Since then, fragment-based drug discovery (FBDD) has
been an important tool in identifying initial hits against dif-
ficult targets and thereby has become one of the foremost
and popular methods to be used within the pharmaceutical
and biotechnology industry (Baker 2013; Murray and Rees
2009). Vemurafinib from Plexxicon, developed as an anti-
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melanoma, was the first approved drug using FBDD (Tsai
et al. 2008) and followed by several others which are now
either approved drugs or in the different phases of clinical
trials (Brough et al. 2008; Erlanson et al. 2020; Howard et al.
2009; May et al. 2011; Park et al. 2008; Wang et al. 2010;
Woodhead et al. 2010; Wyatt et al. 2008; Zhu et al. 2010).
FBDD has not only become a widely used technology in
industry but has been also successfully adopted in academia
(Bulfer et al. 2016). Historically, academic institutes have
been recognized as screening centers involved in developing
tool compounds for genomic studies. In this context large
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chemical libraries were introduced which further strength-
ened the academic screening campaigns. From thereon
academia has ventured into more challenging translational
projects, in particular addressing the “undruggable” target
classes and rare diseases. In comparison to high-throughput
screening (HTS), the advantage of FBDD has been realized
early on. FBDD uses only a few thousand fragments and
there by rendering the approach economically affordable.
Further, the necessary knowhow and the required infrastruc-
ture for performing FBDD (e.g., NMR spectrometers and
other instruments) are becoming more and more available
at most academic institutes worldwide.

Generally, it has been realized that after a very enthusi-
astic start of FBDD within academia, soon it becomes an
uphill task as these projects enter advanced stages of the
drug discovery unlike the industry-based screening cam-
paigns. One of the major struggles within academia-based
drug discovery is to develop an initial fragment hit to a lead
and drug candidate. In this context, the limited availability
of high-quality chemical libraries for academia narrows the
chances of discovering specific leads which can be devel-
oped into a drug candidate. The former challenge has been
overcome by initiating large consortiums involving several
academic institutes which work like a “gear-box” and assem-
bles the necessary manpower, materials and instrumenta-
tion and strive towards translational research. The latter
challenge involving the fragment libraries proves to be one
of the major hurdles partly attributed to the fact that the
pharmaceutical and biotechnology companies developed
and maintained their own specific libraries which were not
publicly available. Academic institutes generally resorted
to commercial vendors such as Maybridge, Chembridge,
Enamine, F2X-universal library, LiverpoolChiroChem, JBS
FragXtal screen and the MedChemExpress fragment library
and many others (Lepre 2011). Fragment libraries comprive
low molecular weight compounds up to a molecular weight
of 300 Da. One of their primary requirements is structural
diversity to sample a large chemical and structural space.
However, most of the commercially available libraries hosts
very large sets of fragments with low diversity, issues with
solubility or reactivity and therefore may not be suitable
for pursuing a screening project within the timeframe of
an academic environment. Another challenge which most
of these libraries posed is their quality (purity and chemi-
cal identity) and also the chemical properties needed for
downstream chemistry to pursue either fragment-linking or
-growing chemical campaigns with the aim of developing
high affinity inhibitors.

We are partners of the iNEXT (Infrastructure for NMR,
EM and X-rays for Translational research) consortium, a
European facility network to stimulate translational struc-
tural biology (iNext Consortium 2018). Within the design
of structure-guided drug discovery workflows, iNEXT
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contributed to FBDD by assembling and validating a frag-
ment library. After careful computational analysis of a large
collection of fragments (11,677 in total), a total of 782 frag-
ments were filtered and selected with the aim of “minimum
fragments and maximum diversity” to cover a large chemical
space and in particular based on the concept of “poised frag-
ments” with the aim to streamline downstream synthesis of
more complex and high affinity ligands (Cox et al. 2016).
These individual fragments were then purchased from vari-
ous vendors and assembled.

Quality control of the fragment library is an important
and indispensable prior and periodical requirement for pur-
suing screening measurements (Dalvit et al. 2006). Previ-
ously, many researchers have extensively reported several
measures to be taken in assessing the quality of a fragment
library (Bentley et al. 2018; Dalvit et al. 2006; Gossert and
Jahnke 2016; Lepre 2011; Taylor et al. 2018). Importantly,
most of these analyses were based on 1D proton NMR spec-
tra. However, there is little information across the literature
pertaining to a detailed presentation of the quality control
process and were mostly based on a single biophysical tech-
nique in determining the quality of the fragments. Further,
although considerable research has been devoted to qual-
ity assessment of the fragments, rather less attention has
been paid to the speed of the assessing protocol. In order
to close-in this gap, we present here an integrated approach
using commercially available state-of-the-art software Com-
plete Molecular Confidence for quantification (CMC-q) and
CMC-assist (CMC-a) developed by the company Bruker,
"H-NMR measurements and liquid chromatography-mass
spectrometry (LC/MS) for characterization of the integ-
rity and solubility of the fragments. CMC-q and CMC-a
efficiently facilitate automated NMR-data acquisition and
“on-the-fly” analysis and extract information from complex
NMR data, conduct consistency and concentration assess-
ments. Manual cross-validation of the automated NMR
software-based quality assurance results together with the
LC-MS data was performed for a subset of the fragment
library. Approximately 30% of the purchased fragments do
not pass the QC and had to be discarded.

Chemical quality of the library

The design principle of a fragment library holds the key
for any successful screening campaign. The iNEXT frag-
ment library was collected using the initial library of “poised
fragments” (fragments contain at least one functional group
which can be synthesized using a robust, well-character-
ized reaction). The principle of building and designing such
library is described previously (Cox et al. 2016).

In order to estimate the chemical diversity of the library,
we performed a molecular clustering analysis of the library
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using the Knime analytics platform (www.knime.com). The
protocol workflow (provided in the Supp. Mat.) of the clus-
tering was performed using the FCFP4 fingerprints (Rogers
and Hahn 2010) with a Tanimoto distance matrix calcula-
tion followed by a hierarchically clustering of the distance
matrix (Threshold of 0.6 to assign a member to a cluster).
For the 782 compounds (Supplementary excel sheet), a total
of 391 distinguished chemical clusters were found, 198 clus-
ters contain only a single molecule. The clustering analysis
suggests a high chemical diversity of the library with a high
number of fragments belonging to clusters with 1, 2 or 3
members (Fig. 1a). Examples of molecular clusters are also
shown in Fig. 1b and all class IDs and class size are reported
in the excel file (Supp. Material).

To assign the drug likeliness of the library, many com-
mon molecular descriptors were calculated (see Knime
protocol and excel Table in Supp. Mat.). The analysis of
molecular weight indicates that around 80% of the frag-
ments are in the range 200-250 Da with hydrogen-bond

donor and hydrogen-bond acceptor atoms below three,
which clearly satisfies the widely adopted “rule of 3” guide
(Congreve et al. 2003; Jhoti et al. 2013).

Since all the fragments comply with the Lipinski rule
of 5, we further investigated drug-likeness of the library
by calculating the quantitative estimate of drug-likeness
(QED) of all the molecules. The concept of QED was
introduced by Bickerton et al. (2012) to reflect the under-
lying distribution of molecular properties and quantify
the drug-likeness. The QED with the optimal 1000 weight
combinations that give the highest information content
(QEDw, mo) was calculated for all the fragments using
the equation reported in the above article and the values
are listed in Table (Supp. Mat.).

The calculated QED values range from 0.36 to 0.9 with
an average value of 0.77. The highest value indicates the
most drug-like molecule. 94% of the fragments have a
value of QED higher than 0.6 and 44% of the fragments
have a value higher than 0.8 indicating a large number of

Fig. 1 Chemical clustering of
the iNEXT-fragment library. a A
Cluster size versus cluster ID
(on the top right, an example
of compounds belonging to 2
cluster number 301 with five
class members). b Examples for
molecular clusters with 1, 2, 3
and 4 members
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Table 1 The average values of the molecular descriptors used for the
calculation of the QED

Molecular descriptors Mean

Molecular weight 219.80
SlogP 1.59
Number of hydrogen bonds donors 2.79
Number of hydrogen bonds acceptors 1.27
Topological polar surface area 55.36
Number of rotatable bonds 2.60
Number of aromatic rings 1.43
Number of unwanted substructure alerts 0.17
QED 0.77

Table 2 Number of compounds with unwanted substructures accord-
ing to Bickerton et al.

Unwanted substructures (Usub) Number of
compounds with
Usub
2-Halo pyridine 2
Acyl hydrazine 7
Aliphatic long chain 1
Aniline 37
Catechol 9
Cumarine 3
Cyanamide 2
Hydantoin 3
Hydrazine 8
Hydroquinone 7
Hydroxamic acid 3
Mercapto-1,3,4- thiadiazole 5
Oxygen—nitrogen single bond 29
Phenol ester 5
Thiocarbonyl group 11
Triple bond 9

the molecules in the library that can be potentially ini-
tiators of a drug candidate (according to QED concept)
(Table 1).

The QED equation contains a contribution term used for
the number of unwanted substructures that can be related to
compound stability, reactivity or toxicity. Using a substruc-
ture filter of the unwanted substructures listed in the Bick-
erton’s article, 111 compounds (14% of the library) were
found to have one or more of the unwanted substructures
and mostly not very dramatic ones (Table 2). The average
QED of this set of compounds is 0.68 showing a low weight
given to the unwanted substructure alerts in the calculation.

This simple analysis of molecular clusters and QED
underlines the fact that the iNEXT fragment library is rela-
tively of high quality in its composition and can be used
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for FBS with a higher chance to identify drug like lead
candidate.

Fragment purchase, stock preparation
and storage

A carefully crafted library is a prerequisite for its durability
and progression of over several screening campaigns. Typi-
cally, there could arise several practical scenarios during
the purchase, stock solution preparation and assembly of
compounds (Lepre 2011). In general, if the vendor provides
a certificate with the exact amount of compound delivered in
the vial, one could directly add the exact volume of solvent
to attain a desired concentration and avoid the much labori-
ous procedure of weighing and dissolving. DMSO, although
being a mild oxidant of some compounds (Prochazkova et al.
2012), is in general the solvent of choice for the prepara-
tion of the stock solutions. Typical storage conditions for
the fragment libraries is between 4 and — 20 °C in order to
avoid any degradation of the compounds over time. How-
ever, repeated freeze—thaw cycles can result in degradation
of some compounds and also DMSO being hygroscopic can
introduce atmospheric water into the stock solutions, thus
varying the stock concentration. Addition of 10% water pre-
vents the freezing of the DMSO solution at 4 °C and thus
overcomes the freeze—thaw problems (Gossert and Jahnke
2016). Considering all of the above facts, the INEXT library
was assembled by purchasing selected fragments from sev-
eral vendors, which were dissolved and stored as 50 mM
stock solutions in a mixture of 90% d,-DMSO and 10% D,0.
Freshly prepared stocks were dispensed and stored at 4 °C in
V-bottom 0.75 ml 2D-barcoded tubes (Matrix Cat. No 3731)
covered with SepraSeal septum caps (Matrix Cat. No 4463).

Fragment characterization: methods
of choice for quality control

A careful determination of ligand integrity and solubility
under the given condition is one of the prime aims within the
quality control of the fragment library. Some of the meas-
ures taken to ensure the quality of the fragments have been
elegantly discussed and described previously in the literature
(Gossert and Jahnke 2016). We used an integrated approach
utilizing the software Complete Molecular Confidence for
quantification (CMC-q) and CMC-a, "H-NMR experiments
and liquid chromatography-mass spectrometry for charac-
terization of the integrity and solubility of the fragments.
CMC-q is an automation software module within Topspin
for data acquisition, processing, analysis and quantification
of small molecules by NMR spectroscopy. CMC-a is a soft-
ware tool for interactive, assisted data analysis. It processes
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all 1D and 2D NMR datasets, performs automated analyses
on the different types of NMR experiments and conducts
consistency checks. CMC-q uses a '"H-NMR spectrum and
the corresponding structure file of the fragment for struc-
ture verification. Further, using the advanced options, the
user can customize and define signals of solvent or known
impurities that should not be considered within the struc-
ture verification process. In order to confirm the integrity
of the fragments, 'TH-NMR spectrum of the individual frag-
ments with a final approximate concentration of 1 mM in
dg-DMSO were acquired. Further, within the drug discovery
process, it is also important to have a good idea about the
concentration of the ligand in the sample. Several quantita-
tive NMR methods have been described within the literature
(Holzgrabe 2010). In general, by NMR the concentration
of the substance is determined relative to the known con-
centration of a standard. We used 1 mM of 1,4-dioxane as
an external standard and defined the integral of the signal
as Eretic Reference (Hoult 2000; Hoult and Richards 2011;
Wider and Dreier 2006) in CMC-q. After acquisition of each
spectrum, the analysis, consistency check with the structure
and concentration determination is performed “on-the-fly”
at the spectrometer.

Solubility and retaining integrity of the fragments in the
aqueous buffer is an important requirement for performing
ligand-detected NMR screening experiments. Especially,
hydrolysis-induced degradation in an aqueous buffer may
be overlooked if the QC was solely limited to DMSO solu-
tions. For the solubility analysis our typical NMR samples
contained ~ 1 mM compound in 50 mM Sodium phosphate
buffer at pH 7.4, 150 mM Sodium chloride, 90% H,0/10%
D,0 and 1 mM of 3-(trimethylsilyl)propionic-2,2,3,3-d, acid
sodium salt (TMSP-Na) added as an internal chemical shift
reference and quantification standard.

Automated analysis by CMC-a yields a graphical display
representing the analysis results of the whole fragment col-
lection (Fig. 2a). This compact representation of the result
displays the consistency of the spectra with the structure
and also the concentration. For a given fragment a green
colored circle indicates “consistent”, a red for “inconsist-
ent” and the size of the circles indicate the concentration.
An automated analysis resulted in approximately 65% of
the fragments as consistent and 35% as inconsistent both in
DMSO and buffer. Further, approximately 60% of the frag-
ments displayed exactly overlapping (consistent/inconsist-
ent) results between the DMSO and buffer measurements.
In an effort of identifying false negatives, we performed a
manual analysis over a subset of the “inconsistent” frag-
ments and found that approximately 30% additionally turn
consistent. Most often either compound signal overlap with
the solvent, missed peak picking or incorrect integrals were
the reasons for the failure of automated analysis. For exam-
ple, the methyl group signal of a compound in di-DMSO

appears at 3.4 ppm, however, is not resolved due to a overlap
with the water signal (Fig. 2b, bottom). Moreover, this sig-
nal (3.2 ppm) is resolved when measured in buffer (Fig. 2b,
top). Further, LC-MS data for the compound also revealed
that the fragment stock is 100% pure and has the expected
molecular mass. However, in an effort to identify the false
positives, < 1% of the fragments turned into inconsistent sug-
gesting that the automated analysis performed by CMC-a
is robust.

Integration of methods to eliminate
the inconsistent fragments from the library

In general, it is quite common to observe that a significant
proportion (between 15 and 40%) of the fragments fail in
the QC process (Keseru et al. 2016; Lau et al. 2011). A
critical analysis of the QC data obtained from NMR-based
automated analysis and LC-MS provides insights into some
of the potential causes. We found that most often the reason
for QC failure was degradation (Fig. 3a, b), compromised
purity, inconsistency with the structure and insolubility or no
compound. In couple of instances we observed mixtures of
compounds (Fig. 3c, d), though they were located two wells
apart in the same plate. This probably would have occurred
during the manual assembly of the library. Another chal-
lenge we faced was the inconsistency of the results between
NMR and LC-MS based QC. LC-MS of the fragment clas-
sifies it as not pure (Fig. 3b, g, h), however, the NMR spectra
of the same, both in DMSO and also in buffer shows that it
is consistent with the structure. Another frequent reason to
fail the QC is insolubility of the fragments or no compound
or very little compound in the stock (Fig. 3e, f). In general,
we adopted an optimized workflow protocol scheme (Fig. 4)
in order to streamline the elimination of inconsistent frag-
ments from the library. Initially, an automated analysis is
performed by CMC-a, which results in two classifications
(consistent-auto; inconsistent-auto). In order, to have a sec-
ond layer of quality check for those consistent fragments, we
then perform a manual assessment of peak patterns between
the DMSO and buffer spectra (compare DMSO vs buffer).
If they are similar, then they enter into the green zone of the
workflow and if not, then will enter into the manual interven-
tion workflow. Approximately, 30% of the fragments were
discarded.

Speed and periodic evaluation
of the fragment library
In general, long term stability of the fragment library is an

important requirement for performing several screening
campaigns. Therefore, periodic evaluation of the fragment
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Fig. 2 Quality control of the fragments. a Screenshot of the graphical
display representing the CMC-a based analysis of 358 fragments in
a compact form. This window displays the determined concentration
and structural consistency (green means consistent; red means incon-
sistent, blue indicates technical complications, light colors-results
from automation, intense colors-results from manual analysis). If the

library in terms of its quality is indispensable. In order to
economically meet these objectives, we took the advantage
of the latest state-of-the-art advanced hardware viz., the
Bruker robot system SamplePro Tube™, with which the
liquid sample collection can be filled into the 3 mm NMR-
tubes in an automated manner. '"H NMR spectra are then
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7.0 6.5 6.0 5.5
f

additional option to show the concentration is checked, then the sizes
of the displayed circles are proportional to the value. Samples within
the range of the expected concentration have a white background.
b'H-NMR spectrum of a fragment acquired in buffer (blue, top) and
in d,-DMSO (red, bottom). The proton signal overlapped by the water
signal in the red spectrum gets resolved in the blue spectrum

collected at 298 K using a 600 MHz Bruker Avance III HD
NMR spectrometer equipped with triple resonance 5 mm
TCI Prodigy cryogenic probe and a sample changer Sam-
pleJet™, which can handle more than 500 samples in a go.
This together with software tools of Bruker, like CMC-q
and CMC-a speeds up the data acquisition and analysis.
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Fig.4 Schematic representa-
tion of the workflow during the
stringent quality control of the
iNEXT fragment library
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Typically, for a fragment library comprising of around
782 fragments complete QC could be completed within a
span of 3 to 4 days. Maintenance of the library also implies
replacing fragments that turn out to be unstable. Storage of
the fragment solutions in matrix tubes instead of deep-well
plates is therefore preferred.

Conclusions

The progression of drug discovery within academia has
shown significant maturity and has imbibed FBDD as a more
commonly utilized approach. Challenges faced in academic
FBDD have been significantly overcome with more consor-
tium-based organizations, such as the iNEXT. Within this
framework, assembly of a robust fragment library, perform-
ing periodic QC and allowing the library to evolve can be a
demanding task. We through a set of examples and advanced
methods have demonstrated the ease with which one can
perform the QC in an academic setting. In general, an inte-
grated choice of methods, viz., NMR, LC-MS together with
software assisted validation of a fragment library ensures a
relatively high quality of fragments assessed for its integ-
rity, solubility and also stability to endure several screening
campaigns.

Methods
Sample preparation

The fragments were stored as 50 mM stock solutions in a
mixture of 90% d;-DMSO and 10% D,0. 'H-NMR spectrum
of the individual fragments with a final approximate concen-
tration of 1 mM in ds-DMSO /Phosphate buffer pH 7.4 were
acquired. The final sample volume was 170 pL with 5% D,0O
as locking solvent in a 3 mm NMR tube.

NMR spectroscopy

Spectra acquisition was carried out on a Bruker AVII-
IHD-500/600 NMR spectrometer. The fully automated
acquisition of the data was performed by using Bruker
CMC-q software interface within Topspin. The default
parameter sets provided within the software were used for
acquisition of the data at 298 K. All analysis were performed
using Topspin 4.0 with CMC-a addon.
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LC-MS
HRMS-instrument

Agilent Technologies 6230 Accurate Mass TOF LC/MS con-
nected to Agilent Technologies HPLC 1260 Series; Column:
Thermo Accucore aQ; particle size: 2.6 uM Dimension:
100 % 2.1 mm; Eluent A: H,O with 0.1% formic acid Elu-
ent B: MeCN with 0.1% formic acid; conditions: 0.00 min
95% A, 0.2 min 95% A, 2.1 min to 1% A as gradient, 4 min
as Stoptime, 1.5 min Posttime for reconstitution. Flow rate:
0.4 ml/min; UV-detection: 220 nm, 254 nm, 450 nm. Injec-
tion volume: 1 pl.

For MS analysis compounds were dissolved in 20 mM
DMSO and plated on a 384 well plate, 0.5 ul aliquot was
taken, diluted with acetonitril/water (1:1, 80 pl) to a con-
centration of 125 pM and filtered with a Whatman® 384
well plate (0.45 pm hydrophilic PVDF) before measurement.
The UV purity was determined based on the absorption at
254 nm.

Fragment library and the NMR software

The iNEXT fragment library (DSiP-library) can now be pur-
chased from Enamine (https://enamine.net/fragments/plate
d-libraries/dsi-poised-library). All Bruker software includ-
ing CMC-a can be downloaded from the Bruker web page.
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