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The Crystal Structure of Guanosine Dihydrate and Inosine Dihydrate 
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Pasadena, California, U.S.A. 

(Received 14 August 1969) 

Crystals of the dihydrates of guanosine (C10H13NsOs) and inosine (C10H12N405) are nearly isostruc­
tural. They are monoclinic, space group P21, with cell dimensions a= 17·518, b= 11 ·502, c= 6·658 A, 
P=98·17° (guanosine) and a=17·573, b=11·278, c=6-654A, P=98·23° (inosine). There are two nu­
cleoside molecules and four water molecules per asymmetric unit. Data were collected on an automated 
diffractometer; the structures were solved by Patterson and trial-and-error methods and refined to R 
indices of about 0·035. The structure features hydrogen bonding between purine bases to form ribbons 
parallel to b and parallel stacking of purine bases along c; the separation between adjacent rings within 
a stack is 3·3 A. The conformations about the glycosidic C-N bond and the puckerings of the sugar 
rings arc quite different for the two molecules in the asymmetric unit. 

Introduction 

Guanosine (I) and inosine (II) are constituents of the 
ribonucleic acids (RNA). Guanosine is a major com­
ponent of most types of RNA; inosine is a minor 
constituent of the transfer RN A's in which it is believed 
to occupy the 5' terminal position (the 'wobble' posi­
tion) in a number of the anticodon triplets. 

Several tautomeric forms of the purine ring can be 
formulated for guanosine and for inosine. Since the 
possible existence of rare tautomers has important im­
plications regarding base pairing and the correspond­
ing biological properties of the nucleic acids, we felt 
that the detailed crystal structures of these compounds 
should be determined. Knowledge of the crystal struc­
tures of these nucleosides would also furnish additional 
information about nucleoside conformation, hydrogen 
bonding capabilities, and the forces which govern 
parallel stacking of purine rings in the solid state. We 
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were particularly interested in obtaining structural data 
which might help explain the mechanism of self asso­
ciation of guanine derivatives in aqueous solution 
(Gellert, Lipsett & Davies, 1962; Sarkar & Yang, 1965; 
Michelson, 1958), and the unusually stable secondary 
structures of oligo- and polyguany lie acids (Lipsett, 
1964; Pochon & Michelson, 1965; Radding, Josse & 
Kornberg, 1962; Fresco & Massoulie, 1963; Ralph, 
Connors, Schaller & Khorana, 1963). 

We report here the crystal structures of guanosine 
and inosine which demonstrate that these compounds 
are in their normal tautomer form in the solid state and 
support the importance of parallel stacking of purine 
bases as a stabilizing force in the interactions between 
nucleic acid constituents. 

A preliminary report of this work has been published 
(Bugg, Thewalt & Marsh, 1968). 

Experimental 

Crystals of guanosine, in the form of thin elongated 
plates, were obtained by slowly cooling a hot saturated 
solution; inosine was crystallized as thin needles from 
water by evaporating a saturated solution at room 
temperature. Crystals of the two compounds were 
cleaved and fragments were mounted in several dif­
ferent orientations for X-ray study. 

Weissenberg and oscillation photographs showed the 
Laue symmetries to be C2h-2/m. The space groups P21 
or P2if m were indicated for both compounds by the 
systematic absence of reflections OkO with k odd; the 
space group is necessarily P21 since the nucleosides are 
optically active. Similarities in the unit-cell parameters 
and in the intensity patterns on Weissenberg films 
indicated that guanosine and inosine are isostructural; 
this was verified by the subsequent structure determi­
nations. 

Accurate values for the unit-cell parameters were 
obtained from Straumanis-type Weissenberg photo-
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graphs taken about the b and c axes. The positions of a 
number of high-angle reflections were measured using 
a travelling microscope and a calibrated steel scale and 
were included in a least-squares determination of the 
cell parameters and eccentricity and absorption coeffi­
cients. The indicated eccentricity and absorption cor­
rections were insignificantly small. Crystal data, along 
with the densities measured by flotation, are listed in 
Table 1. 

Table 1. Crystal data 
A. (Cu K!X) = 1-5418 A 

Guanosine 
Stoichiometry C10H13NsOs. 2H20 

Space group 
z 
a (A) 
b 
c 
p (0) 
De (g.cm-3) 
Do (g.cm-3) 

P21 
4 

17·518 (3) 
l 1 ·502 (1) 
6-658 (1) 

98·17 (3) 
1 ·597 
l ·591 

Inosine 
C10H12N40s.2H20 

P21 
4 

17·573 (1) 
11 ·278 (1) 
6·654 (1) 
98·23° (1) 

1·548 
1·542 

The guanosine crystal used for collecting intensity 
data had dimensions 0·2 x O· l x 0·05 mm; the inosine 
crystal had dimensions 0·25 x 0·2 x O· l mm. Intensity 

data were collected on a Datex-automated, General 
Electric XRD-5 diffractometer using nickel-filtered 
copper radiation and a scintillation counter. The in­
tensities were measured using a 8-2 8 scanning tech­
nique; a scanning speed of 2 ° per minute was used for 
the guanosine measurements, and the inosine meas­
urements were made with a scanning speed of 4° per 
minute. Background was counted for 30 seconds for 
guanosine and 10 seconds for inosine. The scan ranges 
were adjusted to account for er:1-a2 splitting. A check 
reflection was monitored every fifteen reflections. For 
guanosine, intensity data were collected from two 
Friedel-related quadrants of the sphere of reflections. 
In each of the two quadrants, intensity measurements 
were made for the 2967 reflections in the region be­
tween 2 () = 7 ° and 2 () = 154 °. Since the inosine crystal 
used for the photosraphic work suffered X-ray damage 
which especially affected the high-angle reflections, the 
diffractometer measurements were carried out more 
rapidly than for guanosine and were confined to the 
1431 reflections in the. range between 2 () = 7 ° and 
2 () = 100 °; only one quadrant from the sphere of re­
flection was measured. There was no significant fall-off 
in intensity of the check reflection for either compound. 

The measured intensity values were assigned vari­
ances, a2(J), according to the statistics of the scan and 

Table 2. Final guanosine heavy-atom parameters and their standard deviations 
The values have been multiplied by 104. The temperature factors are in the form 

T=exp (-Pnh2 -P22k2-fi33[2-P12hk-fi13h/-fi23k/). 

The final value for the extinction parameter g (Larson, 1967) was 6·7 (± 0·3) x 10-6. 

ATOM Bu s 22 B33 B12 B 13 B 23 

~ 

N(l) 4580(1) 4420(2) 5165(3) 136(6) 292(15) 1440(48) 82(15) 187(27) 21(43) 
C(2) 3823(1) 4146(2) 5232(3) 157(7) 317(18) 1186(51) -24(19) 111(30) 17(50) 
ll(2) 3657(1) 3010(2) 5233(4) 185(8) 306(17) 2269(65) 20(19) 201(35) -4(53) 
N(3) 3267(1) 4920(2) 5278(3) 139(6) 284(15) 1336(49) -22(15) 157(27) 62(43) 
C(4) 3535(1) 6021(2) 5198(3) 137(7) 297(17) 1032(50) 7(18) 126(30) 17(48) 
C(5) 4278(1) 6384(2) 5127(4) 145(7) 286(17) 1333(57) 3(18) 164(32) -20(50) 
C(6) 4868(1) 5542(2) 5082(4) 139(7) 346(18) 1238(50) -28(19) 95(31) 8(53) 
0(6) 5556(1) 5715(2) 4970(3) 124(5) 488(16) 2245(51) 12(15) 284(26) 46(45) 
N(7) 4316(1) 7589(2) 5043(3) 156(7) 280(15) 1636(54) -65(16) 212(30) 2(45) 
C(8) 3608(1) 7928(2) 5044(4) 188(8) 271(18) 1536(60) -27(20) 197(34) 11(53) 
ll(9) 3097(1) 7020(2) 5126(3) 152(6) 266(15) 1204(45) 51(16) 148(25) 10(43) 
C(l)' 2269(1) 7079(2) 5151(4) 141(7) 316(18) 1154(52) -4(18) 174(29) 12(50) 
0(1)' 1896(1) 6433(1) 34~0(2) 183(6) 333(13) 1303(41) 66(14) -32(23) 220(37) 
C(2) 1 1950(1) 8314(2) 4870(4) 153(7) 287(17) 1287(56) 35(19) 210(32) -23(50) 
0(2)' 2037(1) 8991(2) 6656(3) 222(6) 332(14) 1373(43) -43(15) 294(25) 313(40) 
C(3)' 1119(1) 8092(2) 3936(4) 154(8) 379(19) 1420(57) 38(19) 281(33) 85(54) 
0(3)' 651(1) 7821(2) 5454(3) 185(6) 538(16) 1951(49) -99(17) 643(27) 441(48) 
C(4)' 1183(1) 6997(2) 2659(4) 124(7) 425(20) 1441(57) 16(20) 126(30) 74(56) 
C(5)' 1209(1) 7195(3) 0424(4) 183(8) 568(23) 1412(60) 47(23) 80(35) 21(63) 
0(5)' 1903(1) 7755(2) 0074(3) 237(7) 507(16) 1586(44) 23(17) 426(27) 292(44) 

GUANOSINE 8 

N(l) 4606(1) 6890(1) 10100(3) 137(6) 313(16) 1547(51) -49(16) 243(28) -17(45) 
C(2) 3850(1) 7175(2) 10126(3) 149(7) 320(18) 1128(52) -41(19) 179(30) 65(50) 
N(2) 3681(1) 8317(2) 10030(4) 176(7) 258(16) 2189(63) 1(18) 280(33) 8(50) 
ll(3) 3291(1) 6402(2) 10213(3) 128(6) 293(14) 1326(47) 00(15) 194(26) -47(43) 
C(4) 3559(1) 5290(2) 10240(3) 145(7) 327(18) 1086(51) -54(18) 127(30) 6(49) 
C(5) 4306(1) 4923(2) 10182(3) 159(7) 296(17) ll44(53) 41(18) 202(31) 24(46) 
C(6) 4894(1) 5763(2) 10103(4) 166(8) 375(20) 1130(50) -18(19) 184(31) -41(51) 
0(6) 5587(1) 5593(2) 10032(3) 134(5) 449(15) 2270(51) -11(15) 367(26) -67(46) 
N(7) 4348(1) 3721(2) 10194(3) l59(V 316(15) 1594(52) 15(17) 201(29) 65(45) 
C(S) 3637(1) 3386(2) 10258(4) 176(8) 282(18) 1800(66) -2(20) 285(34) -39(56) 
N(9) 3136(1) 4291(2) 10306(3) 138(6) 298(15) 1480(48) -17(16) 230(27) 32(44) 
C{l)' 2309(1) 4202(2) 10310(4) 137(7) 304(18) 1677(59) -68(19) 320(32) 50(54) 
0(1)' 2174(1) 3353(2) 11750(3) 176(6) 544(16) 1462(43) -197(16) 168(24) 298(43) 
C(2)' 1859(1) 3756(2) 8335(4) 153(7) 445(20) 1507(58) -23(20) 320(33) 104(57) 
0(2)' 1737(1) 4578.(2) 6768(3) 192(6) 877(21) 1969(51) 12(19) 355(29) 1023(54) 
C(3)' 1102(1) 3390(2) 9067(4) 151(8) 462(21) 1743(65) -97(21) 227(35) -109(61) 
0(3)' 600(1) 4355(2) 9144(3) 161(6) 684(19) 1867(51) 116(17) 313(27) 429(50) 
C(4)' 1373(1) 2993(2) 11244(4) 163(8) 525(23) 1653(63) -72(21) 344(35) 167(61) 
C(5)' 1321(2) 1699(3) 11606(5) 217(10) 637(27) 2652(92) -184(25) 330(46) 712(79) 
0(5)' 1619(1) 1031(2) 10101(4) 258(8) 563(18) 3463(74) 7(20) -44(38) -343(61) 

~ 

0(10) 7073(2) 5945(2) 3612(5) 325(10) 700(23) 4618(102) 289(25) 668(52) -1050(77) 
0(11) 6947(1) 5510(2) 7962(5) 230(8) 779(23) 3090(81) -115(22) 88(4) 169(73) 
0(12) 9983(1) 5612(2) 5896(4) 360(9) 709(22) 1964(58) -97(23) 477(56) 313(59) 
0(13) 9573(1) 4722(2) 1970(3) 233(7) 649(19) 1829(51) 36(19) 328(31) 186(51) 
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background counts but including an extra term 
(0·02S)2, S being the scan counts. For guanosine, the 
measurements from the two quadrants were averaged 
and the appropriate standard deviations for the aver­
ages were calculated. Finally, the intensities and their 
standard deviations were corrected for Lorentz and 
polarization factors and placed on an approximately 
absolute scale by means of Wilson plots. 

The trial structure 

The structure of guanosine was solved first. A sharp­
ened three-dimensional Patterson map had major 
features in the two sections w=O and w=0·5, sug­
gesting that the planar purine rings are approximately 
parallel to the (001) plane and are separated by c/2. We 

Ribose(a) 

(a) 

Ribose(b) 

(b) 

utilized only these two sections in initial efforts to 
obtain trial coordinates. 

The vector set expected for the 9-methylguanine 
moiety was plotted on tracing paper and rotated about 
the origin of the Patterson map; only one orientation 
(plus the three other orientations related by the 2/m 
symmetry of the Patterson map) satisfactorily ex­
plained the observed features, suggesting that the two 
crystallographically-independent bases have related 
orientations. 

On the basis of packing considerations, we quickly 
settled on a model in which the two crystallographi­
cally-independent purine rings were hydrogen bonded 
together across a pseudo center of symmetry. [A center 
of symmetry had been strongly indicated by a Howells, 
Phillips & Rogers (1950) plot.] This model required that 

( .. :, 
'JI 

R•bose(b) Ribose(a) 

R bose(o) 

0 

Ribose(b) 

Fig. l. Possible models for hydrogen bonding between guanine bases as determined from the c axis projection. (a) incorrect model, 
(b) correct structure. 
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two different tautomers be present in the crystal struc­
ture: the usual one shown in (I) and a second, zwitter­
ionic tautomer in which N(7) rather than N(l) is pro­
tonated. In this proposed structure [Fig. l(a)], the two 
independent bases lie at z=0·25 and are joined by 
three hydrogen bonds. Approximate x coordinates for 
the atoms of this base pair were obtained from the 
W = O· 5 section of the Patterson map; since the space 
group is polar, the location of the dimer in the b direc­
tion is arbitrary. 

Efforts to locate the ribose atoms from three-di­
mensional Fourier syntheses phased with the trial co­
ordinates for the guanine atoms were unsuccessful. We 
then concentrated on the hkO data, for although the 
purine rings were closely superimposed when projected 
down c we anticipated that the sugar rings would be 
resolved. We wrote a computer program to examine 
the R index ( = 2l1Fol-1Fcl l/2Fol) for the 260 low­
angle hkO reflections as a function of the orientations 
of the sugar rings about the glycosidic [C(l ')-N(9)] 
bonds; the assumed geometry of the sugar rings 
themselves was that reported for cytidylic acid b' 
(Bugg & Marsh, 1967), atom 0(5') being excluded. 
The atoms of one ribose ring (nucleoside A) were 
easily located by this method, a plot of the R index 
against the angle of rotation around the glycosidic 
bond showing a pronounced minimum at R=0·50. 

b-~ 

a 

I 

0 Gb 
0 

Fig. 2. The guanosine structure viewed down the c* direction. 

Table 3. Final guanosine hydrogen atom parameters 
and their estimated standard deviations (positional 

parameters x 103) 

ATOM B(A2) 

fil!A...!!.Qfil!!.U 

H(l) 217(1) 672(2) 644(3) 1.0(.4) 
H(2) 219(1) 872(2). 390(4) 1.9(.5) 
H(3) 87(1) 878(3) 306(4) 3.0(.6) 
H(4) 75(1) 643(2) 283(4) 1.8(.5) 
H(5) 191(2) 869(4) 763(6) 7.0(1.2) 
H(6) 63(2) 850(3) 617(4) 4.0(.7) 
H(7) 77(2) 761(3) -9(4) 3.8(. 7) 
H(8) 114(2) 637(3) -30(4) 3.3(.7) 
H(9) 234(2) 716(4) 26(7) 8.9(1.3) 
H(lO) 344(1) 872(2) 504(4) 2.7(.6) 
H(ll) 494(2) 382(3) 512(3) 4.2(.7) 
H(l2) 405(2) 247(3) 525(4) 3.7(.7) 
H(l3) 317(2) 286(3) 512(4) 3.7(.7) 

~ 

H(l) 215(1) 498(2) 1069(4) 2.0(.5) 
H(2) 215(1) 301(3) 790(4) 3.1(.6) 
H(3) 88(1) 276(2) 825(4) 2.3(.5) 
H(4) 106(2) 345(3) 1217(4) 3.4(.6) 
H(5) 220(2) 464(3) 634(5) 6.l(l .O) 
H(6) 47(2) 472(3) 800(5) 5.3(1.0) 
H(7) 154(2) 149(3) 1297(5) 4.5(.8) 
H(8) 76(2) 153(2) 1146(4) 3.4(.7) 
H(9) 214(2) 74(4) 1064(6) 7.3(1.l) 
H(lO) 351(1) 256(2) 1025(4) 3.1(.6) 
H(ll) 494(2) 743(3) 996(5) 3.3(.7) 
H(l2) 408(2) 893(3) 1001(4) 4.2(.7) 
H(l3) 321(2) 856(3) 1029(4) 3.2(.6) 

~ 

H(lO) 735(2) 540(3) 320(5) 4.8(.9) 
H(lO)' 659(3) 600(5) 292(7) 11.0(l.7) 
H(ll) 698(2) 567(4) 681(7) 7.9(1.5) 
H(ll)' 644(2) 565(4) 808(6) 7.8(1.2) 
H(l2) 1022(2) 631(4) 578(6) 6.3(1.1) 
H(l2) 1 989(2) 541(4) 455(8) 8.9(1.4) 
H(l3) 992(2) 472(4) 115(5) 6.l(l.O) 
H(l3)' 916(2) 511(3) 141(5) 4.6(.9) 

Fig. 3. The inosine structure viewed down the c* direction. 
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Table 4 (cont.) 
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The results obtained by rotating the other ribose the atoms of the purine rings resulted in an entirely 
moiety (nucleoside B) were ambiguous; in retrospe~t, different but eminently reasonable hydrogen bonding 
the difficulty was due to small errors in the positions arrangement. After shifting the z coordinates, we im-
of atoms C(l ') and N(9) and to differences between the mediately found a complete three-dimensional trial 
conformations of this ribose ring and the ribose ring of structure (R=0·35). 
cytidylic acid. The coordinates of the atoms of the two The correct arrangement of purine rings is shown in 
purine rings and of the ribose ring of nucleoside A were Fig. l(b). In this arrangement the two crystallographi-
improved by ~he use of difference electron density cally-independent bases form separate hydrogen-hon-
projections, whereupon rotation of the ribose ring of ded ribbons, each ribbon lying on a 21 axis. In the ori-
nucleoside B resulted in a minimum at R=0·38. Fi- ginal, incorrect model [Fig. l(a)], on the other hand, 
nally, the water oxygen atoms and atoms 0(5') of the both kinds of bases are contained in a single ribbon and 
ribose moieties were located from difference maps and the 21 axes lie midway between successive ribbons. We 
the projection trial structure was refined by Fourier find it a bit surprising that two hydrogen-bonded 
techniques to R=0·22. arrangements of bases, each reasonable but so funda-

The only remaining task appeared to be the assign- mentally different from one another, should have such 
ment of suitable z coordinates to the atoms of the sugar a simple structural relationship. 
rings. However, many attempts - including trial-and-
error, Fourier, and least-squares calculations based on Refinement of the structures 
the hOl reflections and low-angle three-dimensional 
data - were unsuccessful. We eventually noted that Three-dimensional refinement of the trial structures 
agreement between Fobs and Fcal was consistently bet- was carried out mainly by least-squares. The quantity 
ter for reflections with l even than for those with I odd; minimized was Iw(F~- k~ ~)2. Each reflection was 
we also noted that shifts of 0·25 in the z coordinates of 
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assigned a weight w equal to 1/a2(F~) except for those 
with measured intensities below the background level, 
which were assigned weights of zero. Atomic scattering 
factors for the non-hydrogen atoms were obtained from 
International Tables for X-ray Crystallography (1962), 
and those for the hydrogen atoms were from Stewart, 
Davidson & Simpson (1965). 

The structure of guanosine was completely refined 
before any attempt was made to refine the inosine 
structure. The heavy-atom positional parameters and 
isotropic temperature factors were refined by full­
matrix least squares to an R index of 0· 18. At this 
point, the heavy atoms were assigned anisotropic tem­
perature factors, and during all additional refinements, 
the anisotropic temperature parameters were varied 
along with the positional parameters. Because of the 
limited core storage size of the computer, full-matrix 
refinement of all these parameters was not practicable; 
therefore, various combinations of parameters were 
distributed among several full matrices. In this manner 
the heavy atom parameters were adjusted to give an R 
index of 0·08. A difference map was then calculated, 
from which the positional parameters for all but four 
of the 34 hydrogen atoms were readily determined. 
Several additional least-squares cycles reduced the R 

a 

Fig. 4. Hydrogen bonding in guanosine and inosine as viewed 
down the c* axis. The dashed lines represent hydrogen 
bonds. The numbers in parentheses represent the hydrogen 
bond lengths for inosine; other lengths correspond to guano­
sine. (lnosine lacks the amino group.) 

index to 0·06, at which stage the remaining hydrogen 
atoms were located. The refinement was completed 
with several cycles of multiple-matrix refinement dur­
ing which all the positional parameters, anisotropic 
temperature parameters for the heavy atoms, and iso­
tropic temperature factors for the hydrogen atoms were 
adjusted, together with the scale factor and an extinc­
tion parameter (Larson, 1967). 

The final R index for the 2946 reflections of non-zero 
weight is 0·036. In the last cycle of refinement, no 
parameter shift exceeded one-fifth of its indicated 
standard deviation. The final 'goodness of fit', 
[.~)v(F~ -F~/k2)2/(m-s)]112, is 1 ·5. The average estima­
ted standard deviations in the final positional coordi­
nates are 0·002-0·003 A for the C, N, and 0 atoms and 
about 0·03 A for the H atom, corresponding to e. s. d. 's 
of about 0·004 A for bond lengths involving only heavy 
atoms, 0·03 A for bonds involving hydrogen atoms, 
and about 0·5 ° for bond angles. In view of the good 
agreement for the bond lengths and angles in the crys­
tallographically independent guanosine molecules, 
these estimated errors appear to be reasonable. At the 
conclusion of the refinement, a three-dimensional 
electron-density difference map was calculated; this 
map showed no peaks or troughs exceeding 0·25 e.A-3 in 
magnitude. 

The final heavy-atom parameters and their estimated 
standard deviations are listed in Table 2; the hydrogen 
atom parameters and their estimated standard devia­
tions are listed in Table 3. Observed and calculated 
structure factors are given in Table 4. 

Multiple-matrix least-squares refinement of the ino­
sine structure was initiated using the atomic parame­
ters found for guanosine (excluding the amino groups). 
During the latter stages of this refinement, all the 
positional parameters of the heavy atoms were included 
in one matrix, and the near-singularity of the matrix 
was removed by holding they parameter of atom N(9) 
fixed. In the last cycle of refinement, no parameter 
shift exceeded one-fifth of its standard deviation. The 
final R index was 0·032 for the 1423 non-zero-weight 
reflections; the final 'goodness-of-fit' was 1 ·7. The 
average estimated standard deviations in the final 
positional parameters are 0=0·004, N =0·004, C= 
0·005, and H = 0·05 A; these standard deviations are 
larger than those for guanosine because only low­
angle data (2() 5: 100 °) were collected for inosine. The 
standard deviations in the bond lengths are approxi­
mately 0·006 A for bonds between heavy atoms and 
0·05 A for bond lengths involving hydrogen atoms; 
the e.s.d.'s in the bond angles are about 0·5°. 

The heavy atom parameters and standard deviations 
for inosine are shown in Table 5, and the hydrogen­
atom parameters and standard deviations are listed in 
Table 6. Observed and calculated structure factors are 
given in Table 7. A three-dimensional electron-density 
difference map calculated at the conclusion of the re­
finement showed no peaks or troughs exceeding 0· 15 
e. A-3 in magnitude. 
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Table 5. Final inosine heavy-atom parameters and their standard deviations. 
The values have been multiplied by 104. The temperature factors are in the form 

T=exp (-P11h2-P22k2 -p33/2-P12hk-p13hl-P23k/). 

The final value for the extinction parameter g was 28·0 (± 0·7) x 10-6. 

ATOK Pu 622 633 612 613 Bi3 

INOSINE A 

N(l) 4447(2) 4449(4) 5180(6) 169(17) 430(36) 1343(122) 56(43) 181(70) -52(114) 
C(2) 3687(3) 4302(4) 5314(8} 270(24) 363(43) 1225(144) -37(52) 187(90) -24(138) 
N(3) 3181(2) 5148(3) 5361(6) 191(15) 385(34) 1103 (117) -24(39) 208(69) -11(108) 
C(4) 3503(2) 6235(4) 5185(7) 181(19) 296(39) 926(129) 24(49) 145(78) 27(129) 
C(5) 4264(3) 6493(4) 5061(7) 169(20) 450(45) 832(134) 51(45) 97(83) -36(125) 
C(6) 4804(3) 5549(4) 5015(8) 208(22) 541(44) 1110(136) 61(53) -9(95) -5(138) 
0(6) 5486(2) 5617(3) 4861(5) 133(14) 770(33) 2505(121) 44(35) 476(65) 176(110) 
N(7) 4368(2) 7694(3) 4916(6) 159(16) 430(38) 1840(134) -21(41) 134(74) 131(113) 
C(8) 3682(2) 8142(5) 4953(8) 219(23) 440(47) 1567(161) -45(56) 287(95) -39(147) 
N(9) 3133(2) 7309 5093(6) 167(15) 413(34) 1129(114) -59(41) 156(68) 67(111) 
C(l)' 2308(2) 7472(4) 5104(8) 133(17) 424(39) 1055(144) 18(45) 279(85) -34(143) 
C(l)' 1917(2) 6841(3) 3426(5) 213(13) 434(28) 1307(96) 67(33) -71(58) -106(95) 
C(2)' 2047(3) 8755(4) 4775(8) 186(20) 452(41) 1182(145) 28(48) 313(88) -138(146) 
0(2)' 2180(2) 9464(3) 6549(6) 280(15) 486(31) 1366(111) -46(36) 366(68) -313(118) 
C(3)' 1210(3) 8592(4) 3878(8) 165(20) 477(47) 1664(157) 83(51) 242(97) 240(157) 
0(3)' 741(2) 8334(3) 5389(6) 219(14) 633(36) 1945(116) 6(38) 704(66) -313(118) 
C(4)' 1234(3) 7489(4) 2562(8) 150(18) 428(40) 1614(151) 16(50) -158(86) 45(144) 
C(5)' 1274(3) 7673(5) 327(8) 227(23) 721(52) 1240(151) 68(61) -25(95) -14(161) 
0(5)' 1977(2) 8253(3) 25(6) 301(17) 718(33) 1513(~05) -5(42) 493(67) 116(107) 

~ 
N(l) 4685(2) 6980(2) 10060(6) 166(17) 593(39) 1524(130) -124(47) 294(74) -188(117) 
C(2) 3954(3) 7344(4) 10089(8) 314(25) 383(45) 1359(155) -125(51) 267(94) -94(141) 
N(3) 3354(2) 6669(3) 10177(6) 160(16) 363(34) 1419(ll9) -70(37) 145(69) 116(106) 
C(4) 3555(2) 5501(4) 10193(7) 116(19) 485(44) 962(134) -26(50) 137(82) 66(134) 
C(5) 4266(3) 5026(4) 10124(7) 166(20) 396(43) 1121(142) -57(45) ll1(84) -59(127) 
C(6) 49ll(3) 5799(4) 10052(8) 221(23) 715(54) 1096(138) 5(53) 50(93) 98(141) 
0(6) 5589(2) 5535(3) 9987(6) 141(13) 1037(37) 2381(122) -39(39) 274(68) 9(119) 
N(7) 4249(2) 3803(3) 10152(6) 159(17) 488(40) 1549(124) 40(40) 301(73) -95(114) 
C(6) 3529(3) 3564(4) 10227(6) 272(26) 359(46) 1630(158) -3(58) 176(97) -241(140) 
N(9) 3075(2) 4549(3) 10256(6) 145(14) 373(34) 1425(121) -15(39) 192(68) -153(110) 
C(l}' 2250(3) 4551(5) 10280(8) 156(19) 449(44) 1976(170) -139(46) 518(93) -121(162) 
0(1)' 2100(2) 3761(3) l1819(5) 222(13) 776(33) 1360(94) -276(36) 240(58) 264(105) 
C(2)' 1780(3) 4086(5) 8352(6) 190(21) 501(47) 1650(163) 24(51) 472(97) 197(164) 
0(2)' 1657(2) 4916(4) 6760(6) 197(15) 1053(41) 1989(120) 17(41) 404(70) 982(124) 
C(3)' 1035(3) 3749(5) 9146(8) 173(20) 574(48) 1622(160) •64(55) 303(93) -63(162) 
0(3)' 558(2) 4748(4) 9255(7) 180(14) 832(40) 2ll6(133) 168(38) 386(72) 404(126) 
C(4)' 1323(3) 3315(4) 11291(8) 175(21) 606(43) 1506(160) -89(53) 286(96) -99(159) 
C(5)' 1330(4) 1994(5) 11585(11) 260(25) 805(55) 2216(207) -152(62) 274(128) 417(195) 
0(5)' 1661(2) 1386(3) 10055(6) 287(17) 696(35) 3187(144) 68(41) 187(86) -421(127) 

~ 

0(10) 6899(3) 6524(4) 3664(8) 264(19) 801(42) 3985(172) 58(48) 240(98) -310(133) 
O(ll) 6913(3) 5823(5) 7987(10) 262(19) 1188(52) 3087(180) -67(47) 429(97) -649(165) 
0(12) 10031(3) 6140(5) 6006(9) 327(18) 839(44) 1965(133) -126(46) 426(80) 264(141) 
0(13) 9551(3) 5216(4) 2115(6) 258(17) 780(39) 1710(l19) 57(43) 306(79) 289(115) 

The hydrogen-bonding scheme and the The crystal packing and hydrogen bonding 

Figs. 2 and 3 show the structures of guanosine and ino­
sine projected down the c* direction. In spite of the 
extra amino group in guanosine, there are only slight 
differences in the crystal structures of the two com­
pounds. 

hydrogen 
bond lengths are shown in Fig. 4. The purine rings are 

A pronounced feature of the crystal structures is the 
intimate parallel stacking of purine bases to form col­
umns parallel to c. The separation between successive 
purine rings within the stacks is 3·3 A. Parallel stacking 
of purine and pyrimidine rings is a major mode of 
interaction in aqueous solutions (Chan, Schweizer, 
Ts'o & Helmkamp, 1964; Chan, Bangerter & Peter, 
1966; Solie & Schellman, 1968; Ts'o & Chan, 1964; 
Ts'o, Melvin & Olsen, 1963) and is an important struc­
tural feature in the crystal structures of other nucleic 
acid constituents (Sundaralingam, Rao & Bugg, 1969); 
however, the extent of base overlap is much greater in 
crystals of guanosine and inosine than in any of the 
previously reported crystal structures of nucleic acid 
constituents. Interactions between guanine derivatives 
in aqueous solutions are also unusually pronounced 
(Gellert, Lipsett & Davies, 1962; Sarkar & Yang, 1965; 
Michelson, 1958), suggesting that the intimate stacking 
we have observed in these crystals may also occur in 
solution. 

Table 6. Final inosine hydrogen atom parameters and 
their estimated standard deviations 

(positional parameters x 103) 

ATOK B(A2) 

~ 

H(l) 216(3) 710(4) 637(8) 3.4(1.2) 
H(2) 238(2) 913(4) 374(6) 1,8(,9) 
H(3) 101(2) 926(3) 313(6) .3(.8) 
H(4) 80(2) 691(4) 270(6) 2.6(1.0) 
H(5) 210(3) 913(4) 753(7) 2.1(1,4) 
H(6) 68(3) 896(5) 601(8) 3.3(1.4) 
H(7) 83(3) 817(4) -28(7) 4,0(1.3) 
H(8) 119(3) 688_(5) -39(8) 4,0(1,3) 
H(9) 239(4) 777(6) 28(10) 7.7(2,1) 
H(lO) 361(3) 895(5) 486(7) 3,0(1.2) 
H(ll) 475(3) 370(4) 509(8) 3.9(1,2) 
H(l2) 358(2) 350(4) 547(6) 1,5(,9) 

~ 

H(l) 213(2) 540(4) 1059(6) 1,3(.9) 
H(2) 200(2) 335(4) 800(6) 2.1(1,0) 
H(3) 76(2) 311(4) 833(7) 2,8(1,1) 
H(4) 101(3) 368(4) 1220(7) 3,0(1,2) 
H(5) 207(3) 509(6) 633(9) 5,9(1.9) 
H(6) 41(4) 509(6) 823(9) 5.8(2,1) 
H(7) 157(3) 189(5) 1286(9) 4,4(1,6) 
H(8) 75(3) 175(5) 1158(8) 4.8(1,3) 
H(9) 215(4) ll6(6) 1055(10) 7.4(2.0) 
H(lO) 332(2) 280(4) 1022(6) .8(.9) 
H(ll) 511(3) 764(5) 1005(9) 5.2(1,4) 
H(l2) 387(2) 828(3) 1001(6) 1,6(.9) 

~ 

H(lO) 722(4) 581(7) 319(11) 11.5(2,5) 
H(lO)' 649(3) 640(6) 333(10) 5,5(2.2) 
H(ll) 682(5) 605(8) 683(13) 11,3(3,6) 
H(ll)' 651(4) 573(6) 843(11) 7.8(2.5) 
H(12) 1022(4) 692(7) 600(10) 8,1(2.1) 
H(l2)' 999(5) 592(8) 514(6) 11,7(4.0) 
H(l3) 986(3) 505(6) 113(9) 6,8(1.9) 
H(l3)'. 915(3) 559(5) 160(9) 5.1(1,8) 
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hydrogen bonded together so as to form ribbons run- It is especially interesting that inosine forms the same 
ningin the b direction. In guanosine, adjacent bases are crystal structure as guanosine in spite of the fact that 
joined by two hydrogen bonds [N(I). .N(7) and it lacks the amino group which is an integral part of 
N(2). . 0(6)] while tn inosine, which lacks the amino the hydrogen bonding scheme. This suggests that other 
group, a single N(l). .N(7) hydrogen bond joins features of the crystal structure, and primarily the 
adjacent bases. All hydrogen atoms which are covalent- parallel stacking of the purine rings, are of preponder-
ly bonded to oxygen or nitrogen atoms appear to ant importance in determining the structure. 
participate in hydrogen bonding. Two hydrogen atoms 
apparently form bifurcated hydrogen bonds, for one of Bond distances and angles 

the amino hydrogen atoms of guanosine B points The bond distances and angles for guanosine and 
approximately midway between a hydroxyl oxygen inosine are shown in Figs.5 and 6 respectively. For the 
atom and a water oxygen atom, while one of the hy- most part, the bond distances and angles for nucleo-
drogen atoms of water molecule 0(11) is shared by two sides A and B agree well; in guanosine the root-mean-
carbonyl oxygen atoms. square differences between equivalent bond lengths and 

Table 7. Observed and calculated structure factors for inosine 

From left to right, the columns contain values of h, lOFo, lOFc and cc, the phase angle:(in degrees). A blank value for lOFo signi-
fies that the integrated intensity was below background level. 
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1098 STRUCTURES OF GUANOSINE DIHYDRATE AND INOSINE DIHYDRATE 

(a) 

(b) 

Fig. 5. The bond distances and angles involving heavy atoms 
in guanosine (a) molecule A; (b) molecule B. 

(b) 

Fig.6. The bond distances and angles involving heavy atoms 
in inosine, (a) molecule A; (b) molecule B. 

Fig. 7. A stereoscopic view of the purine stacking and the thermal motion in the guanosine structure. The atoms are represented 
by ellipsoids defined by the principal axes of thermal vibration. 
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Nucleoside conformations angles in the two nucleosides are 0·006 A and l · l 0 

while in the inosine structure these differences are 
0·009 A and l ·2°. In both structures, the largest dif­
ferences between the bond lengths and angles occur in 
the ribose moieties and can probably be attributed to 
differences in the ribose conformations. 

Stereoscopic views of the nucleosides are shown in 
Figs. 7 and 8. Table 8 lists values for the conventional 
torsion angles which are routinely used to describe 
nucleosides and nucleotides. 

The bond distances in the purine rings of guanosine 
and inosine are significantly different. These differences 
are essentially confined to the six-membered rings and 
can probably be attributed to the different substitucnts 
on atom C(2). 

The largest difference between nucleosides A and B 
is in the conformations around the glycosidic bonds. 
The torsion angle around this bond (<pCN; see Donohue 
& Trueblood, 1960; Sundaralingam & Jensen, 1965) 
is -42° for nucleoside A and -123° for nucleoside B; 
both are in the anti conformation. These large differ­
ences in torsion angle are consistent with a recent 
review (Haschemeyer & Rich, 1967) which suggests 

Average values for the C-H, N-H, and 0-H dis­
tances are 0·99, 0·91, and 0·90 A in guanosine and 0·99, 
l ·03, and 0·84 A in inosine. 

Table 8. Torsion angles in guanosine and inosine (see text for explanation of angles) 

Angle Guanosine A Guanosine B Inosine A lnosine B 

<{JCN -123-3° -43-90 -121·2° -47·8° 
<{JOO 50·9 73-8 55·3 73-4 
<{Joe 67·9 46·4 64·0 47·0 
<{JC(l')---+ 0(1') -22·1 -38·5 -22·5 -31-2 
<{JC(2') ---+ C( l ') 34-8 44·2 36·9 41·2 
<{JC(3') ---+ C(2') -33·3 -32·4 -36·6 -34·7 
<{JC(4') ---+ C(3') 21 ·5 11·1 24·4 17-8 
QJO(l ') ---+ C( 4') 0·3 17·0 -1-3 8·0 

Table 9. Deviations of atoms from the best planes of the ribose rings 

Deviation A 

C(l') 
0(1') 
C(2') 
C(3') 
C(4') 
0(2') 
0(3') 
C(5') 

Guanosine A 
0·001 * 

-0·002* 
-0·548 
-0·001* 

0·002* 
-0·216 

1·346 
-1-183 

Guanosine B 
0·609 
0·044* 

-0·041* 
0·063* 

-0·066* 
0·590 
1·342 

-1·355 

lnosine A 
-0·004* 

0·007* 
-0·589 

0·004* 
-0·007* 
-0·319 

l ·353 
-1 ·178 

lnosine B 
0·028* 
0·045* 

-0·605 
-0·026* 

0·043* 
-0·287 

1·279 
- l ·025 

* Atoms included in the calculations of the least-squares planes. 

The equations of the least-squares planes, with the coefficients of X, Y and Z equal to the direction cosines with respect to the 
crystallographic axes, are: 

Guanosine A: -0·5827X-0·5238Y+0·6977Z= -4·1897 A 
Guanosine B: -0·2658X+0·9292Y+0·29l6Z= 4·8081 
Inosine A: - 0·6207 X -0·4972 Y + 0·6887 Z = -4· 3651 
Inosine B: -0·4733X+0·7752Y+0·4816Z= 5·3742 

Fig. 8. A stereoscopic view of the purine stacking and the thermal motion in the inosine structure. The atoms are represented by 
ellipsoids defined by the principal axes of thermal vibration. 

AC 26B-4* 
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that in purine nucleosides there is relatively little 
restraint to rotation about the glycosidic bond. 

The conformations of the ribose rings are also con­
s~derably different in the crystallographically inde­
pendent nucleosides. Table 9 lists deviations of the 
individual atoms from the least-squares planes through 
the ribose rings. In other crystal structures of nucleic 
acid constituents, the ribose rings have been found to 
pucker with four of the atoms lying in a plane and 
either atom C(2') or atom C(3') displaced from the 
plane of the other four atoms (Sundaralingam, 1965). 
Nucleoside A assumes a conformation of this type with 
atom C(2') displaced to the same side of the plane as 
atom C(5') (the endo conformation). However, nuc­
leoside B assumes an unusual conformation with no 
four ring atoms forming a satisfactory plane. The 
·ribose ring of guanosine B is best described by a plane 
through atoms 0(1'), C(2'), C(3'), and C(4') with atom 
C(l ') displaced to the opposite side of the plane from 
atom C(5'). The ribose of inosine Bis best described by 
a plane through atoms C(l'), 0(1'), C(3'), and C(4') 
with atom C(2') displaced to the same side of the ribose 
plane as atom C(5') (endo). 

The ribose rings can also be described in terms of 
torsion angles around the ring bonds (Brown & Levy, 
1963). In this notation, for example, the conformation 
around the C(l ')-0(1 ') bond is described in terms of a 
torsion angle qJC(l ') ~ 0(1 '), the angle, measured 
counter-clockwise, that the projection of bond 
C(l ')-C(2') makes relative to the projection of bond 
0(1')-C(4') when one looks in the direction of the bond 
C(l')-0(1'). The conformation around the C(4')-C(5') 
bond, described by the angles qJoo and qJoc (Shefter & 
Trueblood, 1965), is gauche-gauche for both nucleo­
sides in the inosine and the guanosine structures. 

The deviations from least-squares planes through 
the purine moieties of the nucleosides are listed in 
Table 10. As usually found for purines and pyrimidines 
in crystal structures, the bases in these two structures 
are significantly nonplanar. 

Thermal vibration 

Stereoscopic views of the ellipsoids of thermal vibra­
tion are shown in Figs. I and 8. The overall patterns of 
thermal anisotropy are similar in guanosine and ino­
sine; however, the thermal motion in inosine is more 
pronounced than in guanosine, possibly because of the 
less cohesive (lower density) structure resulting from 
the removal of the amino groups. Vibration effects on 
bond lengths, which are probably small, were ig­
nored. 
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The Crystal and Molecular Structure of Inosine 
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(Received 14 July 1969) 

The structure of inosine (C1oN405H 12) which crystallizes in the space group P21 with one molecule per 
asymmetric unit and with unit-cell dimensions: a=4·818 ± 0·005, b= 10·45 ± 0·01, c= 10·97 ± 0·01 A 
and P= 90° 43' ± 2', has been determined from X-ray intensity data collected from linear and four-circle 
diffractometers. The structure was solved by a Patterson function interpretation method and the posi­
tional and thermal parameters were refined by the method of least squares, using anisotropic thermal 
parameters for the non-hydrogen atoms. The final R value for the 1298 observed reflexions was 0·046 
and the standard deviations in the bond lengths and angles are about 0·004 A and 0·3 ° respectively. The 
purine ring in inosine is planar, but both 0(10) and C(l ') are significantly displaced from this plane. 
The dihedral angle between the base and sugar planes is 71 ·0° and the glycosidic torsion angle, <pcN is 
-10·6°. Atom C(3') of the ribose ring is displaced by 0·63 A from the plane of the remaining ring atoms 
and is in the endo conformation. The orientation of the C(5')-0(5') bond is gauche to C(4')-0(1 ') and 
trans to C(4')-C(3'), the <poo and <poc angles being 74·7 and 169·0° respectively. All available groups 
participate in the hydrogen bonding. There is in addition one particularly short C-0 distance involving 
a hydrogen atom. 

Introduction 

The determination of the structure of inosine was 
undertaken as part of a series of structure determina­
tions of nucleic acid components in progress in this 
laboratory. Inosine is a nucleoside which occurs 
occasionally in ribonucleic acid (RNA), particularly 
in molecules of transfer RNA. In transfer RNA inosine 
appears to form part of a number of anticodons and it 
has been suggested (Crick, 1966; Woese, 1967) that it 
is important because it can form a base pair with any 
of the bases, adenine, uracil or cytidine. Accurate 
structural information may help towards an under­
standing of the function of inosine in the anticodon 
and may be useful if model-building is required for the 
solution of the structure of crystalline transfer RNA. 
The determination of this structure provided an 
opportunity to test the usefulness of incorporating the 
rotation function of Rossmann & Blow (1962) into the 
Patterson function interpretation procedure in use in 
this laboratory. A preliminary account of this work has 
been given (Tollin & Munns, 1969). 

Experimental 

Crystals of inosine (C10N 40 5H 12), whose structural 
formula appears in Fig. 1 along with the numbering 
system used in this paper, were obtained by evapora­
tion from aqueous solutions. Three distinct crystal 
forms were obtained depending on the rate of evapora­
tion and the temperature at which it took place. The 
first form, obtained by fast evaporation at 20 °C, 
consisted of colourless needles showing apparent 
orthorhombic symmetry and cell dimensions a= 
8· 16 ± 0·04, b= 13·3 ± 0·2, c=21·4±0·2 A. However, 
these crystals showed a marked tendency to form 
twinned crystals and were not investigated further. 
Slow evaporation from partially sealed test tubes at 
19 °C produced needle crystals of monoclinic symmetry 
with cell dimensions a= 6·68 ± 0·05, b = 11·3 ± O· l, c = 
17·4±0·1 A, P=98·3 ± O· l 0

, belonging to the space 
group P21• This structure has been determined by 
Bugg, Thewalt & Marsh (1968) and independently in 
this laboratory. A comparison of the results of the two 
structure determinations is in preparation (Munns, 
Tollin, Wilson & Young, 1970). 


