

Benchmark Thermodynamic Properties of Methyl- and Methoxybenzamides: Comprehensive Experimental and Theoretical Study

Emel'Yanenko V., Zaitseva K., Nagrimanov R., Solomonov B., Verevkin S.
Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2016 American Chemical Society. The enthalpies of formation of 2-, 3-, and 4-CH₃-benzamide, as well as for 2-CH₃O-benzamide, were measured by using combustion calorimetry. Vapor pressures of the isomeric CH₃- and CH₃O-benzamides were measured by using the transpiration method. The enthalpies of sublimation/vaporization of these compounds at 298 K were obtained from temperature dependencies of vapor pressures. The enthalpies of solution of the isomeric CH₃- and CH₃O-benzamides were measured with solution calorimetry. The enthalpies of sublimation of m- and p-substituted benzamides were independently derived with help of a solution calorimetry-based procedure. The enthalpies of fusion of the CH₃-benzamides were derived from differential scanning calorimetry measurements. Thermochemical data on CH₃- and CH₃O-benzamides were collected, evaluated, and tested for internal consistency. A simple incremental procedure was suggested for a quick appraisal of vaporization enthalpies of substituted benzamides. The high-level G4 quantum-chemical method was used for mutual validation of the experimental and theoretical gas-phase enthalpies of formation. A remarkable ability of the G4-based atomization procedure to calculate reliable enthalpies of formation was established for the set of aliphatic and aromatic amides. An outlook for the proper validation of the G4-AT procedure was discussed.

<http://dx.doi.org/10.1021/acs.jpca.6b08027>
