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Abstract

Modern reconstruction techniques of positron emission tomography/computed
tomography (PET/CT) data are optimised for whole body imaging. Such optimisation
is less developed for brain imaging. This study aimed at investigating the effect of
different image reconstruction parameters (varying number of iterations, scan duration,
relaxation parameter (smoothing levels) and the use of time of flight (TOF)) on PET/CT
images with the objective of evaluating the algorithms for quantification of

fluorodeoxyglucose (FDG) PET brain imaging.

Materials and methods

A Philips® Gemini TF Big Bore PET/CT scanner was used for acquiring the data. The
study was based primarily on phantom and limited patient data for preliminary
validation. Three dimensional (3D) Hoffman brain phantom (HBP) data and data of
patients attending the Western Cape Academic PET/CT Centre for oncological
purposes, with low probability of neurological pathology, were included in the study.
The data was reconstructed using two different iterative reconstruction algorithms, row
action maximum likelihood algorithm (RAMLA) and spherically symmetric basis
function ordered subset algorithm (BLOB or BLOB OS), with variation in the number of
iterations, scan acquisition duration, switching TOF on and off for BLOB OS and by
varying the relaxation parameter. The set of output images were analysed using
MATLAB code.

Results

From the HBP data, in all regions of the brain, the grey matter/white matter ratio, and
the mean and the normalised mean counts increased as the number of iterations
increased, reaching a plateau after 15 iterations for all algorithms. When comparing
the algorithms with relaxation values A=0.7 and A=1.0, it was found that the latter
converged faster. Overall, BLOB TOF (A=1.0) proved to have faster convergence
followed by BLOB TOF (A=0.7). The coefficient of variation (COV) for all volumes of
interest showed BLOB TOF to be superior compared to all the other algorithms. The
COV results for different scan durations showed that there is minimal improvement
after 5 min in high-activity regions (GM) and after 10 min in low-activity region (WM).
The patient data was used as proof of principle but the numbers were too small to
analyse further, as no pattern of behaviour could be identified for the different

algorithms in the three patient images available.
ii
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Conclusions

A higher number of iterations, such as 15, than currently used by the vendor of the
PET scanner led to improved image quality for all algorithms. An acquisition time of 10
min provided an optimal trade-off between image quality and scan time irrespective of
the reconstruction algorithm used. Including the TOF in the reconstruction algorithm
improved the image quality, proving that TOF also improves image quality for small
objects such as the brain similar to that seen for larger anatomical diameters as

indicated in the literature.
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Opsomming

Moderne rekonstruksietegnieke van PET/RT data word geoptimaliseer vir
heelliggaambeelding. Sodanige optimalisering is minder ontwikkel vir breinbeelding.
Die doel van hierdie studie was om die effek van verskillende
beeldrekonstruksieparameters (aantal iterasies, die duur van die skandering,
veslappingsparameters (vergladdingsvlakke) en die gebruik van “tyd-van-viug”
(Engels: “time of flight” (TOF)) inligting) met PET/RT te ondersoek, om sodoende die
verskillende rekonstruksie-algoritmes vir kwantifisering van FDG PET breinbeelding te

evalueer.

Materiaal en Metodes

‘n Philips® Gemini TF Big Bore PET/RT is gebruik om die data te versamel. Die studie
het hoofsaaklik fantoom- en beperkte pasiéntdata ingesluit. Data van ‘n 3D Hoffman
breinfantoom asook van pasiénte wat die Wes-Kaapse Akademiese PET/RT Sentrum
vir onkologiese ondersoeke besoek het en lae waarskynlikhheid vir neurologiese
patologie gehad het, is in die studie gebruik. Die data is met twee verskillende
iteratiewe rekonstruksie-algoritmes, RAMLA en BLOB OS gerekonstrueer, met
variasies in die aantal iterasies, tydsduur van beeldopname, met en sonder TOF vir
BLOB OS en met variasie van die verslappingsparameter. Die beelde wat verkry is, is
met MATLAB kodes ontleed.

Resultate

Die Hoffman breinfantoomdata het getoon dat die verhouding van grysstof tot witstof
(GS/WS) vir alle areas in die brein toegeneem het met 'n toenemende aantal iterasies
en vir alle algoritmes na 15 iterasies ‘n plato bereik het. As die algoritmes met
verslappingsparameters van A=0.7 en A=1.0 vergelyk is, is daar gevind dat (A=1.0)
vinniger as (A=0.7) konvergeer het. Van al die algoritmes het BLOB TOF(A=1.0) die
vinnigste konvergeer, gevolg deur BLOB TOF (A=0.7). Die variasiekoéffisiént (VK) vir
alle volumes-van-belang het getoon dat BLOB TOF beter was as die ander algoritmes
wat vergelyk is. Die VK resultate vir verskillende beeldingstye het getoon dat daar in
hoé aktiwiteitsareas (GS) na 5 min minimale verbetering plaasgevind het, en in lae
aktiwiteitsareas (WS) na 10 min. Die pasiéntdata is as bewys van beginsel gebruik,
maar die getalle was te klein vir verdere analise, omdat daar geen identifiseerbare

patrone vir die verskillende algoritmes in die data van die drie pasiénte was nie.
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Gevolgtrekking

Meer iterasies as wat tans deur die verskaffer van die skandeerder gebruik word,
byvoorbeeld 15, het tot 'n verbetering in beeldkwaliteit vir al die algoritmes gelei. ‘n
Beeldingstyd van 10 min het, onafhanklik van die rekonstruksie-algoritme, ‘n optimale
kompromis tussen beeldkwaliteit en beeldingstyd gegee. Die insluiting van TOF in die
rekonstruksie-algoritme het bewys dat TOF ook die beeldkwaliteit van klein organe
soos die brein verbeter, soortgelyk aan wat met groter anatomiese deursnit voorwerpe

ondervind word, soos ook in die literatuur aangedui is.
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Chapter 1: Introduction

Positron emission tomography (PET) is a nuclear medicine functional imaging modality
used for measuring the uptake of radioactivity, e.g. ['8F] fluorodeoxyglucose (FDG) in
the body of the patient, amongst others in the brain. Modern reconstruction techniques
have been developed and optimised for whole body imaging. Similar optimisation has
not been implemented for brain imaging. This research was instituted to optimise brain

reconstruction techniques.

1.1 Background: Physics of PET

1.1.1. Introduction

After intravenous administration of ['8F]-FDG, it is taken up according to the normal
biodistribution of FDG. '8F decays by positron emission, therefore the positron
undergoes annihilation by combining with an electron with the production of two
annihilation photons of 511 keV travelling in opposite directions. The photons emitted
from the organ of uptake are detected by a PET camera equipped with the electronics
to allow the simultaneous recording of the two opposing photons. The line connecting
the opposing detectors is called the line of response (LOR), along which the point of

annihilation will fall. The detailed function of the PET camera will be discussed below.

1.1.2. Radionuclides

Positron emitters do not normally exist in nature. They are artificially produced using
cyclotrons. This process involves the acceleration of charged particles (e.g. protons
and alpha particles) to high energies. These high-energy particles are then used to
bombard stable target elements to produce unstable proton-rich radioactive isotopes
which decay by either electron capture or positron emission (Turkington, 2001; Spinks,
2000). Positron emitting radionuclides attain stability by undergoing radioactive decay

with the emission of a positron (e*) and a neutrino (v) (equation 1).

WXy = 74y +et+u equation (1)

Where : A= mass number
Z= atomic number
N= neutron humber
X= parent radionuclide
Y= daughter nuclide
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The neutrino produced in the process is not useful for nuclear medicine imaging but
causes variation in the energy of the positron as the gamma energy is shared between
the positron and the neutrino. Radionuclides that are used in PET imaging include ''C,
150, 8F and 3N, which have characteristic properties that lead to their successful
application as in vivo radiotracers. The desirable characteristics are:
i) short half-life with relatively low radiation dose to patients, and ii) isotopes of elements
that make up organic molecules normally present in the body enabling their
incorporation without altering biochemical behaviour when used as labels (Spinks,
2000; Surti et al., 2004). Table 1.1 lists the positron energies of positron emitters

commonly used in PET imaging and their range in soft tissue.

Table 1.1: Positron ranges in soft tissue for the principal positron emitters (Surti et al., 2004)

Positron Half life Positron energy Positron range in soft
emitter (min) (MeV) tissue (mm)
Maximum Mean Maximum Mean
18F 109.8 0.635 0.250 2.6 0.61
68Ga 67.7 1.900 0.820 9.0 2.90
"C 20.3 0.970 0.386 4.2 1.23
BN 9.97 1.200 0.491 5.4 1.73
50 2.07 1.740 0.735 8.4 297

The positron emitted from the radionuclide follows a tortuous path in the medium while
undergoing similar interactions to an electron including loss of energy through
ionisation and excitation of atoms. After losing nearly all of its energy by Coulomb
interaction with atomic electrons, the positron will combine with an electron in an
annihilation event within a defined range of approximately 1 mm (Turkington, 2001;
Spinks, 2000). This results in the disappearance (annihilation) of both particles and the
production of two photons of 511 keV energy travelling in opposite directions, based

on the annihilation equation below:

et+e oy+y equation (2)
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The back to back photon emission is a result of the law of conservation of momentum
(see Figure 1.1). However, the 180 degree angle between the photons’ directions will
only be achieved if during annihilation the net momentum of the two particles is zero.
In practice, a small amount of momentum of the electron-positron pair can lead to +
0.3 degrees of angular spread, which together with the positron range determine the
physical limits of spatial resolution for PET (Spinks, 2000; Surti et al., 2004).

e S Im“;_/
" i e

i
Figure 1.1: Physics of positron decay and annihilation. 1) After travelling a short distance, Il) the positron

annihilates with the electron, Ill) resulting in two annihilation photons along a straight line of response
(LOR) (Lonsdale and Beyer, 2010)

The two opposing annihilation photons are detected in coincidence by detectors

around the patient.

1.1.3. PET Detector

A PET system commonly consists of scintillation crystals that are coupled to
photomultiplier tubes. The choice of radiation detectors to use in PET systems is based
on several physical characteristics and properties of the detectors, which include a)
photon stopping power (efficiency), b) output signal strength, c) energy resolution, d)
signal response (decay) time for high count rate applications, €) timing characteristics
for time of flight (TOF), f) coincidence timing characteristics,

g) ruggedness and h) hygroscopicity.

Early detector materials in PET have been sodium iodide (Nal) infused with an impurity
of thallium (TI) and bismuth germinate (BiaGe3O12 or BGO). Nal(Tl) has a high light
output and for this reason has been a detector of choice in radionuclide imaging.
However, its low sensitivity and poor stopping power for 511 keV photons led to the
development of BGO in search of a replacement for Nal(Tl). BGO has high stopping
power and increased sensitivity for 511 keV photons, but it has poor energy resolution
because of its low light output compared to Nal(Tl). PET scanners with Nal(Tl) or BGO

detectors also have long scanner dead times because of their long scintillator signal

3
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decay time (Saha, 2010; Surti et al., 2004). These shortfalls led to the replacement of

older generation PET scintillators with cerium doped lutetium oxyorthosilicate (LSO)

because of its high light output, high stopping power and short scintillation decay time

(Saha, 2010). The short scintillation decay time of LSO has reduced the coincidence

window from 12 ns, typical for BGO scanners, to 6 ns and later 4 ns with development

of faster electronics (Conti, 2009). Recently yttrium activated lutetium orthosilicate

(LYSO) detectors that have the same properties as the LSO have also been developed

and used in time of flight (TOF) PET scanners. See Table 1.2 for the characteristics of

PET scintillators.

Tablel.2: Characteristics of some scintillation detectors used in PET (Spinks, 2000; Saha, 2010)

Property Thalium Bismuth Lutetium Yttrium
doped germanate orthosilicate activated
sodium (BGO) (LSO) lutetium
iodide orthosilicate

(Nal(TI) (LYSO)
Density (g.cm3) 3.7 7.1 7.4 7.2
Effective atomic number 51 75 66 65
Scintillation efficiency (% of Nal(TI) 100 15 75 80-85
Scintillation decay time (ns.) 230 300 40 50
Hygroscopic Yes No No No

A dedicated PET system is designed with a ring of detectors arranged around the

patient. The geometry of the block detectors can be configured in different ways

depending on the scintillation detector used. Examples of typical detectors are

represented in Figure 1.2.

Figure 1.2: A) Full ring; B) Partial ring of detector blocks that rotates; C) Hexagonal ring (Cherry,

Sorenson and Phelps, 2012)
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1.1.4. PET Detection

Annihilation coincidence detection

PET is based on the detection of two 511 keV photons in coincidence by two opposing
scintillation crystals that convert the photon energy into scintillation photons, which in
turn will yield an electronic signal (Surti et al., 2004; Saha, 2010). Simultaneous pulses
from two opposing detectors is an indication that the annihilation has occurred
somewhere along the path between the two detectors. This path between the two
detectors is referred to as a line of response (LOR), and the simultaneous detection of
two photons is referred to as coincidence (Turkington, 2001). Not all annihilation
photons can be detected as some might not be detected within the coincidence window
setting and will, therefore, be rejected. The rate of events processed by each detector

is referred to as the single event rate for that detector.

The prompt coincidence event rate is the rate of events simultaneously detected by
two detectors. Figure 1.3 depicts the event rates from two detectors in a detector ring
system (Lewellen and Karp, 2004). The types of prompt coincidence events may

include true events, scattered events and random events.

Coincidence events

Figure 1.3: Basic PET scanner with illustration of events in coincidence (Lewellen and Karp, 2004)

True coincidence

These events occur when two 511 keV photons are produced by a single positron

decay and detected without undergoing any interaction in the patient's body (Figure
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1.4a). This is known as a true coincidence representing the true signal coming from

the imaging object (Lewellen and Karp, 2004).

Scattered coincidence

This occurs when either one or two photons undergo Compton scatter with an atomic
electron inside the body of the patient. Many of these scattering photons can still fall
within the energy window and because they originate from the same annihilation, can
still be detected by a detector pair within the coincidence window (Saha, 2010) (Figure
1.4b). Scattered coincidences are a contributing factor to increased image background

and decreased contrast.

a)  True k) Scattered c) Random
coincidence coincidence coincidence

Figure 1.4: a) True coincidence; b) Scattered coincidence; c) Random or accidental coincidence (Lewellen

and Karp, 2004)

Random or accidental coincidence

Random events occur when two unrelated 511 keV photons from two separate positron
annihilations are detected by a detector pair within the coincidence window (Saha,
2010) (Figure 1.4c). The amount of accidental coincidence increases with a higher

single event rate.

1.1.5. Theory of TOF PET

The idea of time of flight applies the use of time information when each photon is
detected and the time difference between their detection. The information is used to
estimate the position of annihilation along the LOR. Conventional PET systems only
determine if two photons are detected within a time window of approximately 5-10
nanoseconds to verify if they belong to the same coincidence pair. When the two

photons are detected within the timing window then the LOR will be formed by
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activating all the voxels along the line without estimating the point of annihilation.
(Conti, 2009) (Figure 1.5A).

The benefit of using TOF PET was first recorded in the early 1980’s with the first
generation TOF PET. However, due to the poor spatial resolution and sensitivity of the
caesium fluoride (CsF) and barium fluoride (BaF2) scintillation detectors, the first
generation TOF PET systems was never used beyond the research environment
(Conti, 2009).

Detector B

Patlent owtiine

Detector A

Figure 1.5: (A) Without TOF information, the annihilation is located with equal probability along the
LOR; (B) Using TOF information; the annihilation point can be localised to a limited range (Townsend,
2008)

In modern PET systems TOF information helps to predict the location of the annihilation
along the LOR between the two detectors (Conti, 2011). This is illustrated in Figure
1.5. Suppose the detectors are equidistant from the centre of the field of view (CFOV)
with distance (d), and the positron is annihilated in the patient body at position (*) at a
distance where Ad = d1 from the CFOV. The two photons travelling to the detectors
during annihilation will travel the distance d-Ad and d+Ad respectively. Since the
photons are travelling at the speed of light (c), the time difference At=ta-tg of arrival of
the two photons at the detectors A and B can be calculated using equation 3. The
location of the positron annihilation along the LOR can be estimated by measuring the
time difference between the detection of the two annihilation photons. The accuracy of

this estimate will depend on the PET system’s precision. This is demonstrated in Figure
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1.5B, in contrast to 1.5A where all the voxels within the LOR are activated (Townsend,
2008).

At=2Ad/c (equation 3)

1.1.6. PET Spatial Resolution

The ability of the scanner to discriminate between two closely placed radioactive point
sources determines the system’s spatial resolution. Two point sources closer than the
spatial resolution will appear as one, and poor spatial resolution results in decreased
image contrast and inaccurate quantitation of small lesions (Daube-Witherspoon,
Zubal and Karp, 2003; Tarantola, Zito and Gerundini, 2003). The method for measuring
the spatial resolution of a detector system is by stimulating the detector system with a
single point input and observing how it responds (Bushberg et al., 2002). The
coincidence detector pair resolution is normally specified as a full width at half
maximum (FWHM) of the point spread function (PSF) from the convolution of two
individual detectors’ PSF’s (Lewellen and Karp, 2004). The PSF is a reflection of the
widened LOR that occurs particularly near the edge of the field of view (FOV),
especially with longer scintillation crystals (Mittra and Quon, 2009). The PSF describes
the blurring properties of an imaging system (Bushberg et al., 2002).

The PSF is narrow for sources near the scanner axis but is wider for sources further
from the scanner CFOV, due to the oblique penetration of the detector by the
annihilation photons (Lewellen and Karp, 2004; Townsend, 2008). Figure 1.6 shows
that the PSF of events near the central axis (*) is narrower than for events that occur
farther away from the central axis (#). A wider PSF results in poor spatial resolution.
There are three factors which limit the spatial resolution of PET scanners; i) the intrinsic
spatial resolution of the detectors; ii) the average range of the positrons before
annihilation and iii) the fact that the annihilation photons are not moving in exactly

opposite directions to each other (Bushberg et al., 2002).
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~crystal thickness ™

Figure 1.6: Coincidence interaction between A and B (*) results in little uncertainty in the LOR;
Coincidence interaction between B and C (#) results in greater uncertainty in the LOR, which can be
overcome by reducing the detector thickness which would also cause reduced detection efficiency
(Bushberg et al., 2002; Lonsdale and Beyer, 2010)

1.1.7. Image Reconstruction

During imaging, after the collection of the raw data, it must be reconstructed to form an
image to be used for diagnostic purposes. Two reconstruction methods are commonly
used, i.e. initially filtered backprojection (FBP) and later iterative reconstruction (Mittra
and Quon, 2009). The most popular of the iterative reconstruction algorithms are the
maximum likelihood (ML) and the ordered subset expectation maximisation (OSEM)
methods. The ML and OSEM have gained favour over FBP due to reduced streak
artefacts, better signal to noise ratio in regions of low counts, and the ability to directly
incorporate attenuation, scatter and resolution corrections, thereby producing higher

quality images (Basu et al., 2011; Mittra and Quon, 2009).

An emission tomography problem can be formulated as an estimation problem where
the distribution of the radiotracer inside the object has to be determined, given:

e a set of projection measurements,

e information about the imaging system used for measurement,

e a statistical description of the data, and

e a statistical description of the object.

The purpose of emission computed tomography is to obtain an image of the
radioactivity distribution in the patient, thereby providing a true reflection of
physiological and pathophysiological information (Vandenberghe et al., 2001).
Reconstruction of a two-dimensional (2D) image from a series of one-dimensional (1D)
projections is required for CT, SPECT and PET. A number of samples of 1D projections
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p1, P2, P3 - - . ., Pnare acquired by a stationary system consisting of a ring of detectors.
Depending on the imaging modality, the reconstructed images correspond to
Hounsfield units in CT, and in SPECT and PET the reconstructed images represent
the biodistribution of the injected radioactive agent (Smith and Webb, 2011). Generally,
the detector is at an angle of ¢ degrees to the x-axis for a particular measurement, with
¢ having values between 0 and 360 degrees. The measured projection at every angle
can be represented as p(r, @), where p(r, ) is defined as the number of scintillations
detected at any location r along the detector when the detector head is at an angular
position @, and f(x,y) is defined as the estimated number of photons or positrons

emitted at any point (x,y) (Figure 1.7).

y

A

Figure 1.7: Principle of tomographic acquisition (Smith and Webb, 2011)

In SPECT, the gamma camera rotates around the patient and with the use of
mechanical collimation the perpendicular incident photons are detected and produce a
2D planar image of activity distribution in the body of the patient. In PET, a detector
ring is used to detect directly opposing photons from annihilations which are recorded
by the electronic coincidence circuit (Vandenberghe et al., 2001). The 2D projections
p(x,z|@) in SPECT (all planar 2D images covering the whole circle (¢ = 360°)) are
rebinned into nz (nz = number of axial slices in z direction) 2D sinograms p(r,¢|z). Only
the nz “z-slices” creates a 3D image dataset after 2D image reconstruction.

10
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SPECT algorithms like Siemens Flash-3D, GE Evolution or Philips® Astonish do not
handle 2D sinogram slices. These resolution recovery algorithms use a special
collimator model and directly reconstruct 3D images. In PET, the data acquired for
each LOR are stored during data acquisition and then formatted into sinograms, where
each sinogram represents one image slice. Raw data from PET can be stored as fully
3D LOR list mode data (Philips®) or as 3D sinograms (Siemens). In the latter, the
LORs are rebinned into 3D sinograms with spawn and ring differences during
acquisition. Explaining the image reconstruction in the 2D case simplifies the
mathematical problem and allows one to figure out the main idea of the method. In
simple terms a sinogram is a 2D image that uses r as column co-ordinate and ¢ as the
row co-ordinate. In the sinogram, the horizontal axis represents the count location on
the detector while the vertical axis corresponds to the angular position of the detector
(see Figure 1.8) (Henkin et al., 2006).
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Figure 1.8: A sinogram is a projection of a slice at a given angular position (Henkin et al., 2006)

Iterative reconstruction methods may be used instead of FBP. lterative reconstruction
algorithms are based on statistical algorithms that better suit the Poisson nature of
positron emission. Iterative image reconstruction starts by calculating the initial image
estimate of the activity distribution in the source assuming all pixels have the same
value. The forward projection step computes projections from the estimated image,
and assembles them into a sinogram. The computed sinogram is then compared with
the actual acquired sinogram and the difference between the two is calculated as a
cost function (Figure 1.9) (Smith and Webb, 2011).

11
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Figure 1.9: Iterative algorithm (Smith and Webb, 2011)

The cost function can be a simple sum of squares of the difference between the actual
and the predicted data on the basis of each pixel. The estimated data is then updated
based on the cost function to improve the similarity between the actual and the
estimated data. Iterations are continued until an acceptable agreement between the

input and the output is achieved (Saha, 2010).

The most widely used iterative algorithms are maximum-likelihood expectation
maximisation (MLEM) and ordered-subset expectation maximisation (OSEM).
Advantages of MLEM over FBP are that it: (1) does not require equally spaced
projection data; (2) can use an incomplete set of projection data; (3) yields fewer
artefacts and (4) allows building in more accurate models of the different physical
processes involved during the measurement. The main limitations of the MLEM
reconstruction algorithm are its slow convergence rate and the high computational cost
of its practical implementation (Chuang et al., 2005). Convergence rate is the speed at
which an image reconstruction algorithm achieves an image of acceptable quality. In
order to counteract the computation time required for MLEM, the OSEM algorithm was
developed. The OSEM method is a modification of the MLEM in which the angular
projections are grouped into subsets, and MLEM is performed on each subset instead
of on each projection. Suppose in an acquisition of 32 equally spaced projections
around the object, the projections are grouped into 8 subsets, then each subset will

contain 4 projections (Saha, 2010).
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Herman and Meyer (1993) investigated and proposed the use of an algebraic
reconstruction technique (ART) in a study in which they reported significantly better
image quality with few iterations of ART compared to many iterations of expectation
maximisation (EM). ART proved to have increased speed and significantly lower
computational cost over EM. This resulted in the row action maximum likelihood
algorithm (RAMLA) which can also be regarded as a faster alternative to the EM
algorithm (Herman and Meyer, 1993; Browne and De Pierro, 1996). With RAMLA, the
reconstructed image is updated after each projection line and the projection lines are
selected in an orderly manner to ensure that sequential projection lines are as
orthogonal as possible to speed up the rate of convergence (Daube-Witherspoon et
al., 2001). In addition, 3D spherically-symmetric basis functions, or blobs, are used
during image reconstruction instead of cubic voxels. They have an additional
parameter that controls the shape of the blob and, subsequently, the characteristics of
the images produced by the iterative reconstruction method. The additional parameter
is the radius of the blob whose variation alters the volume of the blob element.
Implementation of the blob volume element over the voxel element in the iterative
reconstruction methods has led to substantial improvement in the reconstruction
performance, based on visual quality and on quantitative measures (Matej and Lewitt,
1996). Recently, there has been an implementation of the LOR RAMLA algorithm on
the Gemini scanner (Philips Medical Systems™, Cleveland, Ohio, USA) with an
integrated geometric correction. A pre-processing step where raw LOR data is
interpolated to evenly spaced sinogram data is used in a conventional PET image
reconstruction. The LOR based reconstruction eliminates this interpolation step
resulting in a better spatial resolution and image quality. In the Philips® PET/CT
product, this approach is combined with a blob basis function leading to resolution
preservation and significant suppression of image noise. Figure 1.10 demonstrates the

difference between a voxel grid and a blob grid.
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Figure 1.10: Voxel grid vs blob grid (Zeng. L., Nuyts, J. and De Man, B., 2007)

A RAMLA with system modelling of attenuation, random and scatter correction is used

for the reconstruction as shown below:
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Here, f; is the image basis value element (blob) i of the emission object, j indexes the
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LOR in subset m, k is the iteration number, n indexes the blobs intersecting the LORs,
M is the relaxation parameter, a; is the attenuation correction factor for LOR j, Hj, is
the geometric system matrix element for LOR j and blob n, d; is the data counts in
LOR j, nmul“ is the multiplicative correction factor for LOR j including normalisation,
decay and dead time, bj“dd is the additive correction factor including random and

scatter correction (Hu et al., 2007). In RAMLA, the update is controlled by the relaxation

parameter A.

With the recent advances in response, high light output and high stopping power
scintillators, TOF PET is commercially available for clinical use. The Philips® Gemini
TF scanner can acquire data in either LOR sinogram or in list mode format, and can

reconstruct data with either TOF of nonTOF algorithms.
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Figure 1.11 displays the Gemini time-of-flight PET list mode reconstruction flow chart.
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Figure 1.11: Gemini-TF PET list mode reconstruction flow chart (Wang et al., 2006)

LOR-RAMLA was developed to increase the convergence rate of image reconstruction
by incorporating the Poisson nature of sinogram and using cyclic projection
permutation. LOR-RAMLA is the current default reconstruction of the Gemini TF
scanner in brain mode. The maximisation of the cost function differs (row action and
relaxed ordered subsets expectation maximisation). The relaxed BLOB OS (spherically
symmetric basis function ordered subset algorithm) is the newer reconstruction mainly
developed for whole body imaging on the Gemini system with the implementation of
time of flight which is not available with LOR RAMLA.

On one side there is a practical reason to compare the three algorithms (availability on
the system), while on the other side there are different iterative approaches
(RAMLA/OSEM) which should have different behaviours in convergence, noise and

contrast.

The aim of the study was to investigate the effect of different image reconstruction
parameters on PET/CT images with the objective of evaluating these algorithms for

quantification of FDG PET brain imaging.
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1.2. Literature Review

1.2.1. Introduction

The literature review was performed using PubMed as a search engine, focusing on
specific journals and relevant books in the Stellenbosch University library. The specific
journals were Journal of Nuclear Medicine, Molecular Imaging and Biology, IEEE
Transactions on Medical Imaging, Nuclear Medicine Communications, Journal of
Nuclear Medicine Technology, Physics in Medicine and Biology, and European Journal
of Nuclear Medicine and Molecular Imaging. The keywords used were TOF, PSF,
PET/CT, Brain, and LOR RAMLA. The literature cited was from 1993 onwards.

1.2.2. Use of TOF PET imaging

Karp et al. (2008) investigated the benefit of time of flight (TOF) in PET imaging using
a Philips® Gemini TF PET/CT scanner. Images of 27 and 35 cm diameter cylindrical
phantoms were acquired. In each phantom were spheres varying in size from 10 to 37
mm in diameter, with each sphere filled with different concentrations of activity.
Reconstruction was performed using maximum likelihood expectation maximisation
(MLEM) with and without TOF. They varied scan duration from 1 min to 5 min, and the
number of iterations from 1, 2, 5, 10 and 20 using 33 subsets. It was found that TOF
led to improved contrast and faster convergence compared to nonTOF. These results
have not been tested on small object imaging, e.g. that of the brain. In addition, this
study did not explore the effect of increasing scan duration beyond 5 min or iterations
beyond 20.

Taniguchi et al. (2015) also investigated the effect of TOF as well as PSF on improving
PET/CT image quality. This group used a National Electrical Manufacturers
Association/International Electrotechnical Commission (NEMA/IEC) body phantom,
and a 40 cm diameter large phantom, resembling a patient with a larger body size.
Different combinations of reconstruction algorithms were used, namely baseline
OSEM, OSEM+PSF, OSEM+TOF and OSEM+PSF+TOF. Noise and contrast were
assessed in relation to phantom size, radioactivity, acquisition time and number of
iterations. Acquisition time was varied from 1-10 min and iterations from 1 to 10.
Twenty-four subsets were used for algorithms without TOF and 21 subsets for the TOF
algorithms. PET/CT image quality showed improvement when TOF and point spread
function (PSF) information were included in the reconstruction. The same group further

assessed image quality by visual inspection, coefficient of variation in the NEMA
16



Stellenbosch University https://scholar.sun.ac.za

phantom, signal to noise ratio (SNR) and contrast of a 10 mm sphere (Akamatsu et al.,
2012). They demonstrated the highest SNR for OSEM+PSF+TOF and suggested a
necessity to optimise reconstruction parameters for the best results when using TOF
or PSF. These studies, similar to Karp et al. (2008), did not evaluate the effect of longer
acquisition times above 10 min, and larger number of iterations above 10, on image
quality. In addition, the effect of varying imaging parameters on smaller objects such

as brain was not evaluated.

Suljic et al. (2015) explored the influence of various TOF and nonTOF reconstruction
algorithms on PET/CT image quality. Measurements were made on the triple line and
Jasczack phantoms with incorporation of PSF in filtered back-projection (FBP), OSEM
and iterative reconstruction. Reconstructions were also performed with and without
TOF. The added TOF information reduced background variability while improvement

of spatial resolution was found to be negligible.

Wilson and Turkington (2013) conducted a study where the improvement of image
quality with TOF versus nonTOF PET was parameterised by measuring the SNR of 1
cm spheres in a range of body sizes. Results showed that there were no image quality
improvement between TOF and nonTOF for a patient diameter less than 17.5 cm. This
study suggested that the addition of TOF information will not lead to an improvement

in image quality for small objects.

Kadrmas et al. (2009) evaluated the effect of TOF for detecting and localising focal hot
lesions in noisy PET images. In this study, an anthropomorphic lesion detection
phantom to mimic whole body oncologic ['®F]-FDG PET with a number of spherical
lesions of diameters 6 to 16 mm distributed throughout the body, was scanned on a
TOF PET scanner. The data was reconstructed with the standard LOR-OSEM, with
the inclusion of both PSF (LOR-OSEM+PSF) and TOF (LOR-OSEM+TOF). The lesion
detection performance of each reconstruction was compared and ranked, using
localisation receiver operating characteristic analysis by both human and numeric
observers. It showed that TOF PET provided a significant improvement in observer
performance for detecting focal hot lesions in a noisy background. The same group
investigated the effect of scan times on oncologic lesion detection in whole body PET
imaging and found that the images reconstructed using TOF information with 40%

shorter acquisitions provided equivalent lesion detection performance to scanning
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without TOF information (Kadrmas et al., 2012). It would be of value to determine if the

same is applicable to brain imaging.

LOR RAMLA is regarded as a faster algorithm than the expectation maximisation (EM)
algorithm according to Browne and De Pierro, (1996). Fewer iterations of RAMLA were
needed to achieve comparable results to more iterations of the EM algorithm. The EM
algorithm could be accelerated using chronological ordered subsets on line of
responses (Popescu, Matej and Lewitt, 2004). Wang et al. (2006) have shown that
TOF information can be incorporated as a TOF kernel width on BLOB OS algorithm.
This TOF reconstruction converged faster and had better contrast to noise trade-offs

than nonTOF reconstruction.

Akamatsu et al. (2014) investigated the effects of PSF and TOF on the standardised
uptake value (SUV) of lymph node metastases with ['®F]-FDG PET/CT. The PET data
was reconstructed with the standard OSEM algorithm, OSEM+PSF, OSEM+TOF and
OSEM+PSF+TOF. A semi-quantitative analysis using maximum and mean SUV of
lymph node metastases and mean SUV of normal lung tissue was done. It was found
that using PSF and TOF information both increased the SUV of the metastatic lymph
nodes, and improved small-lesion detectability. The study suggested that caution must
be exercised since PSF and TOF can affect the accuracy of quantitative

measurements.

Another parameter which can influence contrast and noise is the relaxation parameter
lambda (L). Applying lower A values creates a broader PSF, and therefore smoother
images. Groheux et al. (2009) tested the impact of different values of A on contrast and
noise when using the line-of-response row-action maximum likelihood algorithm (LOR-
RAMLA) in ['®F]-FDG PET/CT. A NEMA/IEC torso phantom was used to acquire the
data on a Philips® Gemini GXL PET/CT scanner. The data were reconstructed with A
values ranging from 0.025-0.1, and the quality of the reconstructed images was
evaluated by contrast recovery coefficient and background variability values. In this
study, it was found that the contrast recovery coefficient and background variability
increased significantly when A was increased. The use of a large relaxation parameter

increased the convergence with the trade-off of increasing noise.
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1.2.3. Use of TOF PET in brain imaging

Leemans et al. (2015) investigated the blob based reconstruction characteristics using
different parameters for optimisation of brain image quality in PET/MRI. Two sets of
phantoms were used: the Hoffman brain phantom and the NEMA 2007 image quality
phantom. All sets of images were reconstructed using a list mode TOF OSEM algorithm
as well as a blob based reconstruction. It was concluded that optimised blob
parameters improved the quality of reconstructed images, however, this improvement
could be task specific depending on the desired image characteristics extracted.

However, the investigation was only limited to PET/MRI.

Zeimpekis et al. (2015) compared the perfomance of the PET components between
TOF PET/CT and TOF PET/MRI, using brain and whole body images from both
PET/CT and PET/MRI. The images were compared for image quality, image
sharpness, artefacts and noise. In conclusion, TOF PET/MRI showed higher image
quality compared to TOF PET/CT, mainly for body imaging with no significant
difference in brain images. This study did not compare different reconstruction

parameters.

Nagaki, Onoguchi and Matsutomo (2014) investigated the effect of changing counting
rates on the image quality of brain FDG PET/CT studies. Combinations of the Gaussian
filter (GF), point spread function (PSF) and the TOF were studied on the images
obtained with different counting rates. Quantitative analysis of the brain cortex image
quality was made by evaluating spatial resolution, contrast, and signal-to-noise ratio. It
was found that applying the GF improved SNR but reduced contrast and spatial
resolution, whereas PSF and TOF improved the SNR, contrast and spatial resolution.

However, this study did not look at different numbers of iteration.

A study by Prieto et al. (2015) assessed the influence of different algorithms on PET
image quality of brain phantoms. A HBP was imaged on a PET/CT system that had
capability of applying TOF and PSF parameters. Iterative reconstruction was used for
image processing, with 4 models applied to the data, namely OSEM, OSEM+TOF,
OSEM+PSF and OSEM+PSF+TOF. It was demonstrated that increasing the number
of iterations resulted in an increase in contrast while increasing noise as well. This was
consistent with the findings of Groheux et al. (2009). The number of iterations used in

this study was only up to 10.
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Most of the studies discussed above used different PET/CT scanners than the Phillips
Gemini TF Big Bore scanner available at Tygerberg Academic Hospital. These
scanners have different detector designs (block-detectors), sinogram-based data
acquisition (rebinned LORs) and some do not use fully 3D LOR-based TOF or nonTOF
reconstruction. The effect of TOF on image quality in brain imaging or imaging of
smaller objects has not been discussed in depth, although some pointed out that

optimisation in reconstruction algorithms is worthwhile to improve image quality.

1.3. Problem Statement

It has been proven that TOF imaging improves lesion detection and localisation, with
a greater impact in larger patients (Karp et al., 2008; Taniguchi et al., 2015; Suljic et
al., 2015; Kadrmas et al., 2009). As there were only a few studies focusing on small
object image optimisation (Leemans et al., 2015; Nagaki, Onoguchi and Matsutomo,
2014; Zeimpekis et al., 2015), this necessitated the current investigation of the impact
of TOF on smaller diameter objects such as the brain. When TOF is applied, image
quality is expected to improve due to the improved ability to localise the emission
events. However, improvement in image quality may only occur if the size of the object
being imaged is greater than the positional uncertainty of the measurement. The effect
of TOF on the limited diameter of the head or brain needed to be investigated.

Currently, there is minimal published data available on this topic.

According to Tarantola, Zito and Derundini (2003), iterative algorithms are based on
the attempt to maximise or minimise a target function determined by the particular
algorithm used. The target is reached through several analytic processes called
iterations. Different numbers of iterations are required to reach convergence, but this
group suggested that too much iteration can easily lead to noise amplification with
image quality deterioration. For this reason, it is important to perform an accurate
evaluation of the ideal number of iterations needed to obtain the best image quality.
The number of iterations represents different positions on the relaxation curve. The
relaxation parameter affects the convergence, and has an influence on the update
step. It is well known that the statistics of the raw data also has an influence on the

convergence and especially on the variance in the reconstructed image.

Zeimpekis et al. (2015) perfomed a clinical evaluation of PET image quality as a
function of acquisition time on a new TOF PET/MRI compared to TOF PET/CT. The
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image quality investigated in this study was only that of the PET component of the two
modalities, analysing the SUV as a function of acquisition time. Brain and whole body
patient studies were included in this study where the PET/CT scan was used as
reference. PET/CT and PET/MRI images were acquired and the acquisition times
reduced to assess the performance of PET/MRI for lower count rates, image quality,
image sharpness, artifacts and noise. This was compared to the PET/CT images which
were used as the gold standard. For quantification, the SUV measurements in the liver
and in the white matter were taken for comparison. From their findings, it was
concluded that the TOF-PET/MRI showed higher image quality compared to TOF-
PET/CT with reduced imaging times. However, no significant differences were found

in brain imaging.

1.4. Hypothesis
e The optimisation of different image reconstruction parameters (number of
iterations, lambda (A), and scan duration) will enhance the quality of brain
images on a Philips® Gemini TF Big Bore PET/CT scanner.
e The inclusion of time of flight (TOF) information in the reconstruction algorithm
will enhance brain image quality on a Philips® Gemini TF Big Bore PET/CT

scanner.

1.5. Aims and objectives
To investigate the effect of different image reconstruction parameters on PET/CT
images with the objective of evaluating these algorithms for quantification of FDG PET

brain imaging.

1.5.1. Specific objectives:

(i) to determine the optimum number of iterations needed for acceptable image
quality,

(i) to investigate the effect of different relaxation parameters (lambda value) on
reconstruction algorithms,

(i)  to evaluate the effect of varying scan times on signal to noise ratio in
reconstructed brain images, and

(iv)  to investigate the effect of the use of time of flight (TOF) information on

reconstruction algorithms.
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Chapter 2: Materials and methods

This study was performed at the Western Cape Academic PET/CT Centre in the

Division of Nuclear Medicine of Tygerberg Academic Hospital.

2.1.PET/CT scanner

A Gemini TF Big Bore PET/CT scanner manufactured by Phillips was used to acquire
the images. The system is comprised of a PET scanner combined with a 16-slice CT
scanner. It has a scanner ring diameter and patient bore diameter of 90.34 and 71.70
cm, respectively. The PET detectors are comprised of yttrium-doped Ilutetium
oxyorthosilicate (LYSO) with dimensions of 4x4x22 mm3. It is a fully 3D scanner with
an energy resolution of 11.5% (FWHM) at 511 keV with threshold energies of 440 and
665 keV (Surti, et al., 2007). The system’s temporal resolution measured with a low
activity (approximately 3.7 MBq) point source in air is 585 ps (FWHM), 25 ps timing bin
and 4.8 mm intrinsic spatial resolution which translates to a positional uncertainty of 9
cm (FWHM) along the line pair (Karp and Fletcher, 2006). The bed has a deep U-
shaped head holder with a 2.54 cm thick foam insert used to fixate both patients and

the brain phantom during scanning.

2.2.Phantom Data

Phantom data was acquired using a 3D Hoffman brain phantom (HBP). This phantom
consists of 19 plexiglass plates stacked into a cylinder of inside diameter and height of
20.8 cm and 17.5 cm respectively, and a fillable volume of 1.2 litres. Each of 19 inserts
is made up of five thinner slices on the interspace. The HBP allows for qualitative and
quantitative study of 3D radioisotope distribution corresponding to a FDG PET brain
study. The phantom simulates the 4:1 uptake ratio between the gray and white matter.
The phantom was filled with ['®F]-FDG solution of approximately 40 MBq activity at
time of scan. Liquid soap was added to the solution to reduce accumulation of bubbles.
Once filled, the HBP was positioned in the scanner, with the central axis of the cylinder
coplanar to the centre of the axial FOV. A low dose CT scan (120 kV, 90 mAs) was
performed for anatomical localisation and attenuation correction, followed by an
emission scan acquired in list mode for a duration of
25 min.
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2.3. Ethics

This study was approved by the Health Research Ethics Committee of the Faculty of
Medicine and Health Sciences of Stellenbosch University (Ref S13-01-011). Written
informed consent was obtained from every patient in accordance with the 2008

Helsinki Declaration.

2.4.Patient selection
Patients referred to the Western Cape Academic PET/CT Centre to undergo whole

body PET/CT for oncological imaging were selected for the study.

On the day of their clinical PET booking, patients typically reported to the PET Centre
with their referral forms in order to receive advice on scan preparation. If practical,
screening for study inclusion, followed by informed consent, was conducted in a private
office during this visit. If it was not practical for the patient to have this discussion on
the day of the booking, the patient was invited to join the study on the day of their
oncology scan. The study was explained to them and questions were answered before

informed consent was obtained.

If the patient consented, his/her participation did not influence the timing of the clinical
study. The brain PET/CT imaging was done 30 min post injection and lasted for 25
min. Imaging was, therefore, completed 5 min before the start of the clinical whole body
PET/CT scan. The radiation exposure related to CT for whole body could range from
1-20 mSv and with an additional dose of about 0.02 mSv from the low-dose CT needed
for attenuation correction (Varrone et al., 2009). Thus patients were not exposed to a

significant additional radiation dose.

Patients were selected to participate in the study according to the following criteria:

Inclusion criteria

1) age 18 years or older

2) able to give written informed consent
3) no neurological symptoms

4) normal neurological exam

5) English, Afrikaans and Xhosa speakers
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Exclusion criteria

1) current or previous substance dependence other than nicotine and moderate

alcohol usage
2) lifetime or current diagnosis of psychiatric disorder
3) recent chemotherapy
4) use of any psychotropic medication

5) medical or neurological illness or trauma that could affect the central nervous
system (CNS), including brain tumour, paraneoplastic syndrome, severe renal,

hepatic, pulmonary, an endocrine disease, or significant head injury
6) known abnormalities on previous brain imaging
7) pregnant women
9) fasting blood glucose >7.2 mmol/l
10) diabetes mellitus

11) pathology that makes central nervous system involvement difficult to exclude

with a high degree of certainty e.g. small cell lung cancer, advanced melanoma

12) evidence of CNS pathology on PET or CT

2.5.Brain PET/CT Scanning

Preparation for the brain scan is similar to the clinical scan preparation: before the
study the patient needed to confirm the appointment, and was advised to fast for 6
hours prior to the scan and to avoid intake of caffeine. They were instructed to drink
plenty of water and to avoid any alcohol or drugs since these may affect cerebral

glucose metabolism.

On arrival, patients were taken to the examination room where the registrar interviewed
them and explained the procedure thoroughly to them. They were selected for the study
if they fulfilled the screening criteria and if willing, informed consent was obtained if it

was not done before.

An intravenous line was inserted and blood glucose levels checked for each patient.
Participating patients were instructed not to speak, read or be otherwise active

10 min before to 20 min after FDG administration. Patients were required to sit on a
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reclining chair in a quiet dimly lit cubicle with eyes open for this period. After relaxing
for at least 10 min, patients received a dose of 175-350 MBq of ['8F]-FDG depending

on their weight, according to the existing PET/CT imaging protocol.

At 20 min post injection the patient was requested to empty his/her bladder on route to
a change room prior to starting imaging. To minimise movement artefacts, the patient
was informed to avoid movement of the head, and the patient’s head was fixated into

the deep U-shaped head holder.

Brain PET/CT acquisition commenced 28 min after injection of FDG using a Philips®
Gemini TF Big Bore PET/CT scanner. The low-dose CT component was performed
first for 2 min followed by a 25 min PET acquisition in list mode. The low dose CT scan
was used for attenuation correction with acquisition parameters of a current of 20 mAs
and a tube voltage of 120 kV. Shortly after the brain PET/CT was completed, the
patients’ PET/CT scanning for their routine oncology management proceeded at 60

min post injection as per the standard protocol.

After the acquisition of the brain PET/CT, data quality was checked for the following
before inclusion in the study:
e whole brain is in the field of view

e adequate counts are obtained (50-200 x 108 counts)

2.6.Image reconstruction

The PET system has a dedicated powerful computing platform for implementing fully
3D PET iterative reconstruction algorithms (LOR based list mode reconstruction). This
platform uses a 5-node quad core CPU computer cluster, thereby making it possible
for the image processing to proceed in parallel with data acquisition. Image processing
for a typical whole body study usually takes 10 to 30 min after the end of acquisition
depending on the number of counts collected. For PET/CT reconstruction, the same
brain dynamic reconstruction protocol used for clinical brain imaging at the Western
Cape Academic PET/CT Centre was used. This reconstructs 5 dynamic frames of 5
min each using a 3D LOR RAMLA algorithm. For a whole body PET, BLOB OS
algorithm with spherically symmetric basis functions voxels representing the emission

object, was used. The BLOB OS reconstruction has the ability to reconstruct images
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with or without applying TOF. The CT data were applied for attenuation correction of
the PET data.

The following algorithms were used to reconstruct the acquired PET images:
(a) LOR RAMLA subsequently called RAMLA; (b) BLOB OS without TOF called BLOB
nonTOF, and (c) BLOB OS with TOF called BLOB TOF. All the reconstructions were
done with 33 subsets and with a varying number of iterations (3, 5, 10, 15, 20 and 30)
and for two values of the relaxation parameter lambda (1). The relaxation parameter
lambda (A) was varied between smooth (A= 0.7) and normal (A=1.0) (no relaxation),
according to the default settings on the PET/CT system. To study the effect of the raw
data signal-to-noise ratio on each reconstruction algorithm, subsections of the 25 min
acquired data were reconstructed with a constant number of 30 iterations. The
acquisition time intervals were varied as follows: 0-3, 0-5, 0-10,
0-15, 0-20 and 0-25 min.

After the reconstruction of the brain PET/CT, data quality was checked for the following
before inclusion in the study:
e misregistration between the CT and the PET data

¢ movement during the PET acquisition

2.7 . Phantom data analysis

Two CT scans with high resolution and a low pitch to obtain a very good axial sampling
were performed when the 3D Hoffman brain phantom was filled with water. The two
CT images were coregistered and a mean image was created. Based on this image,
MRIcro (version 1.40 build 1) was used to define a number of volumes of interest
(VOls). This was done using the 3D regions of interest (ROI) tool. This tool was used
to specify seed voxel (in voxel coordinates in MRIcro) difference from origin, difference
at edge, radius in mm and number of erode/dilate cycles. The VOlIs listed in Table 2.1
and shown in Figures 2.1 to 2.9 were defined. Seed in Table 2.1 refers to the seed
voxel of the algorithm used in MRIcro to define the VOI. It is the starting voxel of a
region growing algorithm based on intensities. Settings in Table 2.1 refer to the
specifications of the lesion growing algorithm used in MRIcro (e.g. the maximum
change in intensity). These settings are given explicitly so that the VOI is fully
reproducible if a researcher would start from the same image and use the publicly

available MRIcro software.
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Table 2.1: Seed voxel coordinates and setting for different VOlIs used

CORTICAL REGIONS SEED SETTINGS
R parietal 63 - 68 - 160 15/10/20/2
L parietal 142 - 64 - 160 15/10/20/2
R frontal 67 - 231 - 153 15/10/24/2
L frontal 139 - 223 - 153 15/10/24/2
R temporal 36 - 152 - 38 15/10/20/2
L temporal 182 - 160 - 38 15/10/20/2
Ant cingulate 98 - 208 - 131 15/10/15/0
SUBCORTICAL REGIONS SEED SETTINGS
R putamen 68 - 171 - 95 15/10/15/2
L putamen 134 -171-95 15/10/15/2
R thalamus 88 -142-100 15/10/15/2
L thalamus 112 -142 - 100 15/10/15/2
R caudate nucleus 83 -183-105 15/10/15/2
L caudate nucleus 117 - 179 - 105 15/10/15/2
WHITE MATTER AND SEED SETTINGS
CEREBROSPINAL FLUID (CSF)

R WM 73 -188 - 161 25/20/15/2
L WM 127 - 188 - 161 25/20/15/2
CSF 101 -162 - 111 20/20/35/3

All VOIs were exported as an image in neuroimaging informatics technology initiative
(nifti) format. They were then coregistered to the PET images of the HBP after
confirming that all PET reconstructions were in exactly the same space before
generating the mean image. This mean image was taken as the reference image. The
source image was the mean CT image of the brain used to define the VOls. Other
images are all the different VOI images. Interpolation for the resliced options is set to

nearest neighbour.

An iterative algorithm is said to converge when, as the iterations proceed, the output
gets closer and closer to a true value. Full convergence for each algorithm in this study
was taken as the convergence value where the graph reached a plateau. Convergence
percentage was calculated as the ratio of grey matter to white matter (GM/WM) value
at 3 iterations to the value at a different number of iterations multiplied by 100.

The geometric mean is useful when comparing data with very different properties. For

n numbers all are multiplied and the nt root (written "V) taken.
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For example, for n numbers, aito an, calculating the geometric mean is as follows:

(a1 az2x ... X an)

Once the VOIs were co-registered with the PET images, the mean counts, the
normalised mean counts and the coefficient of variation (COV) were calculated using
a MATLAB R2013a code. The normalised mean counts were defined as the ratio of
the mean counts in the VOI to the total counts in the whole brain. The COV is defined

as the ratio of the standard deviation of the mean count (o) to the mean counts (u).

o
CoV =—
U

The COV is presented as percentage, with a low value of COV corresponding to high

precision and a high value corresponding to lower precision.

Figures 2.1 to 2.9 are the transverse (A) and coronal (B) slices of the Hoffman brain

phantom showing the selected VOlIs that were used for the analysis.

A

Figure 2.1: VOI for the left and right parietal cortex

Figure 2.2: VOI for the left and right frontal cortex
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Figure 2.6: VOI for the left and right thalamus
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Figure 2.7: VOI for the left and right caudate nucleus

rs \
bl
B
A

Figure 2.8: VOI for the left and right white matter (WM)

3
A

Figure 2.9: VOI for the CSF

A profile was arbitrarily drawn at position y=91 and z=55 through a transverse slice of
the HBP to investigate the ratio of the grey matter to white matter (GW/WM). Along the
profile generated, the peak value of the profile and the lowest value of the valley
(trough) were taken. The ratio of the peak to trough was used as a measure of contrast.
Graphs were then generated demonstrating the influence of different number of
iterations on GW/WM ratio, for the different algorithms. Another set of graphs was
generated to compare the effect of the different algorithms on counts, with a constant
number of 30 iterations.
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2.8. Patient data analysis
A profile was made through the transaxial slice for each of the patients. Peak and
trough counts were used to obtain the peak/trough ratios (grey matter/white matter)

from each reconstruction algorithm used. This ratio is a measure of contrast.
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Chapter 3: Results

3.1.Hoffman brain phantom

3.1.1. Effect of varying number of iterations

3.1.1.1. Effect of the number of iterations on the GM/WM ratio

The ratio between the activity in a GM region over the activity in WM for the different
VOIs listed in Table 2.1 as a function of the number of iterations (for the 25 min
duration) is presented in Figures 3.1 to 3.7. These graphs show for all the VOlIs that
the GM/WM ratio increased as the number of iterations increased and approached

convergence after 15 iterations.

YOLLESet 27l one VOI R Parietal - 1257 voxels @ RAMLA(R=0.7)
Ratio GM/IWM —&— RAMLA(A=1.0)
21 ; ; Ratio GMMWM - BLOB nonTOF (1=0.7)
21 y ' —&— BLOB nonTOF (=1.0)
---©-- BLOB TOF (A=0.7}
2061 205} | —e— BLOBTOF(=1.0
2+ 2r
§ 195} ey
194
& 19
(=]
2 185}
% 188}
18}
18}
175}
175 ] vl
& &
17 L ' 165 . -
0 10 20 30 0 10 20 30
number of iterations A number of iterations B

Figure 3.1: The effect of number of iterations on the GM/WM ratio for the left (A) and right (B) parietal
VOIs
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-@-- RAMLA(A=0.7)
—e— RAMLA(A=1.0)
.-~ BLOB nonTOF (h=0.7)
—&— BLOB nonTOF (i=1.0)
-o.g-- BLOB TOF (A=0.7)
—&— BLOB TOF (A=1.0)

Figure 3.2: The effect of number of iterations on the GM/WM ratio for the left (A) and right (B) frontal

cortex VOIs

=@ RAMLA (k=0.7)
—&— RAMLA (i=1.0)
---&-- BLOB nonTOF (4=0.7)
—&— BLOB nonTOF (i=1.0)
...~ BLOB TOF (A=0.7)

— & BLOBTOF (=1.0)

Figure 3.3: The effect of number of iterations on the GM/WM ratio for the left (A) and right (B) temporal

cortex VOIs
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Figure 3.4: The effect of number of iterations on the GM/WM ratio for the anterior cingulate VOI

<o RAMLA (R=0.T)
—&— RAMLA (A=1.0)
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Figure 3.5: The effect of number of iterations on the GM/WM ratio for the left (A) and right (B)
putamen VOIs
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Figure 3.6: The effect of number of iterations on the GM/WM ratio for the left (A) and right (B)

thalamus VOIs
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Figure 3.7: The effect ofnmber of iterations on the GM/WM ratio for the left (A) and right (B)

caudate nucleus VOIs
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For most of the VOIs it was observed that convergence of the algorithms differed.
BLOB TOF showed faster convergence against all the other algorithms. RAMLA
showed a better contrast for most VOIs than BLOB TOF which had lower contrast. This
could be because RAMLA was optimised for brain imaging on the Philips® Gemini TF
Big Bore system and BLOB TOF was meant for whole body imaging with larger pixel

size.

3.1.1.2. Effect of varying number of iterations on image convergence

Table 3.1 shows the convergence percentages obtained when the number of iterations
was increased from 3 to 15 and from 3 to 30 iterations, and the geometric mean
convergence percentage of all the VOls. The geometric mean results confirmed that a
plateau was reached after increasing the number of iterations from 3 to 15. It was found
that the geometric mean of the results showed BLOB nonTOF 0.7 to have the lowest
convergence of 88.4% and BLOB TOF (A=1.0) the highest convergence of 95.7%.
When comparing the algorithms with relaxation value of 0.7 and 1.0 it was found that
1.0 converged faster than 0.7. Overall, BLOB TOF (A=1.0) proved to have faster
convergence followed by BLOB TOF (A=0.7).
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3 and 30 for all the VOIs for all the algorithms

BLOB BLOB
RAMLA RAMLA BLOB TOF BLOB TOF
Iterations VoI (A=0.7) (A=1.0) nonTOF nonTOF (A=0.7) (A=1.0)
(A=0.7) (A=1.0)
3 versus 15 Left 93.4 95.5 91.2 93.8 95.0 96.1
3 versus 30 Parietal 92.7 95.1 90.2 93.3 94.8 96.0
3 versus 15 Right 93.6 95.4 90.7 93.8 95.0 96.3
3 versus 30 Parietal 93.0 95.4 89.9 93.2 94.8 96.3
3 versus 15 Left 94.7 96.6 93.1 95.5 96.5 97.2
3 versus 30 Frontal 94.5 96.3 92.5 95.0 96.2 97.1
3 versus 15 Right 94.2 96.3 92.3 95.3 96.2 97.3
3 versus 30 Frontal 94.2 96.4 91.6 94.7 95.9 97.1
3 versus 15 Left 93.0 95.1 92.7 95.0 96.2 97.2
3 versus 30 Temporal | 92.2 94.8 91.9 94.7 96.0 97.1
3 versus 15 Right 93.3 95.5 92.5 94.8 96.1 97.1
3 versus 30 Temporal | 92.8 95.3 92.0 95.0 95.9 97.2
3 versus 15 Ant 95.1 96.7 93.0 95.6 96.6 97.5
3 versus 30 Cingulate | 94.9 96.8 92.7 95.4 96.3 97.4
3 versus 15 Left 91.9 94.7 90.2 92.9 94.6 96.0
3 versus 30 Putamen | 91.2 94.3 89.4 93.0 94.2 95.9
3 versus 15 Right 89.0 925 86.9 91.0 92.3 95.2
3 versus 30 Putamen | 884 92.5 86.1 90.8 93.0 95.1
3 versus 15 Left 92.0 94.8 90.1 93.7 95.4 96.5
3 versus 30 Thalamus | 91.4 94.4 89.4 93.1 95.2 96.5
3 versus 15 Right 92.3 95.2 90.1 93.9 96.0 97.1
3 versus 30 Thalamus | 91.8 95.0 89.7 93.6 95.7 97.0
3 versus 15 L Caudate | 83.0 88.5 79.7 86.0 89.2 92.1
3 versus 30 Nucleus 82.0 87.6 78.2 84.9 88.7 91.8
3 versus 15 R Caudate | 75.1 81.3 71.4 78.1 83.5 86.7
3 versus 30 Nucleus 72.9 79.7 68.6 75.9 82.3 86.2
3 versus 15 Geo Mean | 90.6 93.6 88.4 92.1 94.0 95.7
3 versus 30 Geo Mean | 90.0 93.2 87.6 91.6 93.7 95.4

3.1.1.3. Effect of varying number of iterations on mean counts, normalised mean
counts and the COV
The results of the effect of varying number of iterations on the mean counts, normalised

mean counts and COV, for the VOlIs used, are presented in Figures 3.8 to 3.11 for the
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cortical regions, Figures 3.12 to 3.14 for the subcortical regions, and figures 3.15 and

3.16 for the white matter and CSF, respectively.
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Figure 3.8: The effect of number of iterations on the mean counts; normalised mean counts and COV
for the left (A) and right (B) parietal cortex
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Figure 3.9: The effect of number of iterations on the mean counts; normalised mean counts and COV
for the left (A) and right (B) frontal cortex
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Figure 3.10: The effect of number of iterations on the mean counts; normalised mean counts and COV
for the left (A) and right (B) temporal cortex
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Figure 3.12: The effect of number of iterations on the mean counts; normalised mean counts and COV
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Figure 3.13: The effect of number of iterations on the mean counts; normalised mean counts and COV
for the left (A) and right (B) thalamus
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Figure 3.14: The effect of number of iterations on the mean counts; normalised mean counts and COV

for the left (A) and right (B) caudate nucleus
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Figure 3.15: The effect of number of iterations on the mean counts; normalised mean counts and COV

for the left (A) and right (B) white matter
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Figure 3.16: The effect of number of iterations on the mean counts; normalised mean counts and COV

for the CSF

From Figures 3.8 to 3.14, it is observed that, as the number of iterations increased, the

mean counts and the normalised mean counts increased and converged to a plateau
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after the 15%" iteration for all the cortical and subcortical structures. The COV for all
VOls showed BLOB TOF to be superior to all the other algorithms, except for the left
and right temporal cortex where RAMLA is superior to BLOB TOF. BLOB TOF 0.7
appears to be superior to BLOB TOF 1.0 for most VOls.

Figure 3.15 (for the white matter) shows that the mean counts and normalised mean
counts had a maximum variation of 5.1% between 3 and 15 iterations, but from 15 to
30 iterations there was stabilisation of both the mean and normalised mean counts for
all the reconstructions, with variation tending to 0%. The COV on the left and right white
matter VOIs showed the BLOB TOF (A=0.7) reconstruction to be superior followed
closely by the BLOB TOF (A= 1.0) compared to all the other reconstructions.

Figure 3.16 shows that mean counts and normalised mean counts for the CSF had a
maximum variation of 19.2% up to 15 iterations and stabilised from 15 iterations on for
all the reconstructions. The COV on the CSF VOIs showed BLOB TOF (A=0.7) to be

superior compared to all the other reconstructions.

3.1.2. Effect of noise by varying scan duration on mean counts, normalised mean
counts and the COV

The results of the effect of varying noise by varying scan duration on the mean counts,

normalised mean counts and COV, are presented in Figures 3.17 to 3.20 for the cortical

regions, Figures 3.21 to 3.23 for the subcortical regions, and Figures 3.24 and 3.25 for

the white matter and CSF, respectively.
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Figure 3.17: The effect of noise by varying scan duration on the mean counts; normalised mean counts
and COV for the left (A) and right (B) parietal cortex

41



L qpt RSN SoUNE

’ oo f
N & »
gael /
oy
§2B'?Z.ﬂ.——0—_ﬂ';ﬁ_2
h
&7l
ko
281 - -
0 T
sean duration {min)
cov
28

1} 20
scan duration (min)

K

PET counls

Stellenbosch University https://scholar.sun.ac.za

8 narmalited maan counts

5 H.-Q}; g g-_-_a/ o
-] L'-p'.L-

ef%—ﬂ""-e—ﬂ
5400 ]
52k - -

0 10 20 30

sCan duration {min)
VO L Frontal - 2522 voxels

ceoffp e FRAMLA =0T}
—o— RAMLAG=10)
weefh . BLOB NONTOF (=07}
—&— BLOS nonTOF [u=1.0)
---£3-- BLOS TOF (=07}
—— LS TOF =10}

A

o =10 e eounts

ST

)

I—
L] J
[ -] B -
8 hogdoe
i & =
E._I.ES' -

Fry . -

o 1] 20

SCAN duration {min)
coy

28
# 20F
s h
élb\»‘—ﬂ-ﬂ E c
1ol . .

o 10 20

scan duratian {min)

30

4 e,-c - .

o "0 20
sCAR duration (mn)

WOl R Frontal - 1854 voxels

30

ceohor RAMLA (W=07)
—E— RAMLA (=10

e -3 -- DLOS ROATOF (=0T}
—&— B0 nonTOF (=10
- -- BLOB TOF =07}

—— ELOS TOF =10}

B

Figure 3.18: The effect of noise by varying scan duration on the mean counts; normalised mean counts
and COV for the left (A) and right (B) frontal cortex

5 210" RSN CountE

B2 g.g-t #
x cr'-ﬁ o .r'r
28| i .
+ - H
.| B
2 q——'ﬁf
26h - -
1 i1 20
SEAR duration (min)
ooy
# 20|
5
8 1s| .
1k . .
o 10 2

scan duration (min)

K

PET counls

8 narmalited Mmean counts

580 o
NN 2o
b i
5ﬂc"n)—ﬂ.~—d @
sa -
o w @2 2

sCan duration {min)
WO L Temparal - 1586 voxels

_..9_.
e
x u@ nm
+
...6...
e

FUAMLA, (=0T}
FRAMLA (k=10

ELOE norTOF (=07}
ELOE nonTOF (1.0}
ELOE TOF (=07}
ELOE TOF=1.0)

A

2.9
E G
%zaﬁﬁﬁﬁ
= 6 [
Ez?r"' /
o
o
26 0= -
o ] 20
scan duration {min)
25-%1
# 20 (1)
= \
élb' \'ﬂ:
—r=p—g
1ol . .
o 10 20

scan duration {min)

i

57 narmalited mean counts

&
gssi;

b

§‘.\3' N,

- ‘E//& 8

Bsaf & o—p—od o

.=.:L§ . -

0 0 Fall
SEAA duration |(mn)

WOl B Temporal - 1452 voxels

&

30

cee- FAMLA =0T}
—8— RAMLA G-10)

e oh e - BLOB NOATOF [im=07)
—&— ELOS nonTOF (=10}
- -- BLOB TOF (=07}
—— BLOS TOFR~1.0)

B

Figure 3.19: The effect of noise by varying scan duration on the mean counts; normalised mean counts
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32
o |G
g7
—e—p
g | goeg
EIZE' i
;_G_G_-H— o o
26t - -
o w 20
scan duration {min)
28 -
# 20
=
élb- gy
A== =
1ol . :
o 10 20

scan duratian {min)

85 narmalizod mean counts

alo—B—o——a—

55.(,3':-?;--3:--41' £
=)

sl .

0 L 20
sGan duration (min)

§
-
i

30

WO Ant cingulate - 1107 voxels

ceefho RAMLA (=07}
—&— RAMLAG-10)
we-f3-- BLOS NOATOF (=07}
—&— BLOS nonTOF (k=10
-3 -~ BLOB TOF (=07}
—&— BLOS TOF[u=1.0)
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Figure 3.21: The effect of noise by varying scan duration on the mean counts; normalised mean counts
and COV for the left (A) and right (B) putamen
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Figure 3.22: The effect of noise by varying scan duration on the mean counts; normalised mean counts

and COV for the left (A) and right (B) thalamus
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Figure 3.23: The effect of noise by varying scan duration on the mean counts; normalised mean counts
and COV for the left (A) and right (B) caudate nucleus
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Figure 3.24: The effect of noise by varying scan duration on the mean counts; normalised mean counts
and COV for the left (A) and right (B) white matter
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Figure 3.25: The effect of noise by varying scan duration on the mean counts; normalised mean

counts and COV for the CSF

Figures 3.17 to 3.20 show that the mean counts and normalised mean counts of the
cortical regions for the BLOB nonTOF and BLOB TOF were comparatively stable
irrespective of noise, with the exception of very short scan durations where there was
very high noise. The only algorithm that showed a higher variation compared to the
rest was RAMLA, which showed the highest variation of 5.2%. The COV curves
showed an improvement as the noise decreased (scan duration increased) with
stability reached from 10 min. COV for all VOIs showed BLOB TOF to be superior to
all the other algorithms, except for the left and right temporal cortex, where RAMLA

showed slight competitive superiority to BLOB TOF in the low noise region.

In Figure 3.21 to 3.23, it is shown that the mean counts and normalised mean counts

of the subcortical regions for the BLOB nonTOF and BLOB TOF were fairly stable

irrespective of noise for all the VOIs compared, except for RAMLA which showed the
44
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highest variation of 13.2% compared to other reconstructions. The COV curves
showed an improvement as the noise decreased and reached stability from 10 min
with no further significant improvement up to 25 min. BLOB TOF appeared to be

superior as the noise decreased for all VOIs compared to all the other algorithms.

For the white matter, Figure 3.24 shows that the mean counts and normalised mean
counts of the RAMLA had the highest variation of 15% compared to other
reconstructions. The COV on the white matter VOIs showed the BLOB TOF to be
superior compared to all the other reconstructions. The COV graph showed
improvement as the noise decreased and reached stability from 10 min with no further

significant improvement up to 25 min.

Figure 3.25 shows that the mean counts and normalised mean counts of all the
algorithms for the CSF were fairly stable irrespective of noise. The COV showed the
BLOB TOF to be superior and improving as the noise decreased and reached stability
from 10 min with no further significant improvement up to 25 min when compared to all

the other reconstructions.

3.1.3 Profile along the Hoffman brain phantom slice

Figure 3.26 shows the position of the profile drawn across the transverse plane of the

Hoffman brain phantom aty = 91 z = 55.

ReeN

Figure 3.26: Profile along the transverse plane on the slice of the HBP

Figure 3.27 A-F demonstrates the HBP profiles for the different algorithms for the
lowest and highest number of iterations. Increasing the number of iterations appears

to improve contrast.

45



Stellenbosch University https://scholar.sun.ac.za

. +'  RAMLA (2= 1.0) (profile at y=91, z=55

. %0 RAMLA (2= 0.7) (profile at y=91, z=55
&~

- 4
38 - R ”l[‘ e |
—n o
) 3 30n
C c [
025 o:slo
u
2} { VU 2
n n
t s 1 t"f 1
s s o l
) 4 ||o
os A 0s) J B8
0 A °l A
0 0 O W W W 0 W 0 N O W 0 W W W

pixels pixels
X BLOB nonTOF (i=0.7) (profile at y=91,z=55) . % BLOB nonTOF (3=1.0) (profile at y=91,z=55)
» - - - —t e s — 6 r— - 2 |
1Y - ! 8 —n |
—m| ) —
u 5 : ! © 28} A !
u
H 1 2
n a . !
t 18 ! P 8 !
s 1" " 3 " 4

YY) ‘ ; 4
s ‘ c | o8 \ &
o bda A ) oo J ol - AR, T, e

¢ » = ;D ;0 W W W ° » ® © ® W o \;o
pixels pixels

g 220 BLOB TOF (A=0.7) (profile at y=91, 2=55) 1" BLOB TOF (i=1.0)(profile at y=91, 2=55)

3 — R 3 r — R
C2s R C2s = |
o o
u ¢ 1 o 2
: '8 1 :' 15 1
s 1 s 1

0s
AJ s ] Y x .
o - 0 - A
0 20 ® @ 0 W 120 W 0O 20 ®© ® o W 120 W

pixels phools

Figure 3.27: The profile curve obtained from the Hoffman brain phantom for each algorithm for
different number of iterations
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Figure 3.28.: The profile curve obtained from the Hoffman brain phantom reconstructed with different
algorithms

Figure 3.28 showed that BLOB TOF generally showed higher values than the other

reconstruction algorithms.

3.2.Patient brain data results

Fourteen patients that were referred to the PET/CT Centre for normal whole body
PET/CT scanning were initially identified, but only eight of these qualified according to
the inclusion and exclusion criteria. Of these, three patients withdrew and one scan
failed the quality control, therefore only three patients were included. This low

recruitment turnout was due to the strict inclusion and exclusion criteria.

3.2.1. Patient data

Figure 3.29 shows a bar graph of the ratios of geometric means of grey matter (peak)
and white matter (trough) for the three patients, obtained from a profile drawn through
a representative slice of each brain image. This ratio represents the contrast in the
profile lines. The figure illustrates the effect of different algorithms, also comparing the
effect of lambda (smooth (A=0.7) and normal (A=1.0)). It was noted that there was a
variation with no pattern between the three patients therefore no conclusion could be

deduced.
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Figure 3.29: Bar plot of the peak to troughs ratio in the profile lines for patient brain images

3.2.2. Profile along patient brain slice

Figure 3.30 is an illustrative example of the data of a profile drawn over slice y= 91
z= 55. It shows the counts obtained when the profile was drawn for the various
algorithms while varying the number of iterations. Figure 3.31 shows the effect of

different algorithms on the profile. No specific trend was observed.
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Figure 3.30: The profile curve obtained from the data of patient 1 for each algorithm for different

number of iterations
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Figure 3.31: The profile curve obtained from the patient data 1 reconstructed with different

algorithms

Due to the limited number of patients and the variation in the results obtained, the data
was not analysed further. Further studies need to be conducted including more

patients.
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Chapter 4: Discussion

This research was conducted to evaluate the effect of different processing algorithms
on PET/CT image quality, specifically to optimise PET/CT brain imaging. Various
parameters were investigated, including the number of iterations, relaxation parameter

(A), and scan duration. The inclusion of time of flight information was also studied.

4.1. Number of iterations

When investigating the effect of varying the number of iterations, the acquisition time
was kept constant at 25 min while different algorithms with different values of lambda
were applied. For the GM/WM ratio, it was found that it increased as the number of
iterations increased, with convergence reached from the 15t iteration onward (Figures
3.1-3.7). lterations beyond 15 resulted in minimal improvement of accuracy. COV also
showed stability from 15 iterations onwards in cortical regions (Figures 3.8-3.11) and
sub-cortical regions (Figures 3.12-3.14). For WM and CSF (Figures 3.15 and 3.16),
COV was higher but also stabilised after 15 iterations. Therefore, using 15 iterations is
a good compromise between reaching convergence while maintaining an acceptable
reconstruction time. This is in contrast to other studies where the number of iterations
for optimal image quality was less than 15. The studies reviewed, used 12 or less
iterations for image reconstruction (Leemans et al., 2015; Prieto et al., 2015; Zeimpekis
et al., 2015). None of these studies concluded on the optimal number of iterations

required for optimum image quality for brain.

Similarly, it was found that most of the algorithms reached stability from the 15%
iteration onwards when evaluating the effect that varying the number of iterations had
on mean and normalised mean counts (Figures 3.8-3.16). This result is in agreement
with the findings of Matej and Lewitt (1996), who stated that a number of iterations from
10 and above would lead to results close to the expected standard. It however,
contradicts Conti (2011) who stated that the number of iterations for clinical
applications should not exceed 10. It is important to note that Conti’s work was done
on a Biograph block-detector PET/CT system (Siemens®), analysing whole-body
imaging data which have lower count statistics compared to brain imaging data.
Increasing the number of iterations increases computation time, hence the need to
determine the optimum number of iterations required for an acceptable trade off
between image quality and processing time specifically for brain imaging. The results

of this study showed that 15 iterations led to optimal brain image quality, but more than
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15 iterations (up to 30) did not show a significant difference in image quality (Table
3.1).

4.2. Relaxation parameters

BLOB TOF (A=1.0) convergence was shown to be superior to BLOB TOF (A=0.7) and
to all the other algorithms, as expected from the iteration formula (Table 3.1). This is in
concordance with Groheux et al. (2009), who also found that larger A values

accelerated the convergence speed.

When evaluating the effect of the relaxation parameter, for most of the VOls, excluding
the temporal cortex, the BLOB TOF (A=0.7) appeared to give lower COV compared to
that of all the other algorithms (Figures 3.8-3.16). This is in agreement with the findings
by Groheux et al. (2009) who stated that increasing lambda would result in increased
noise which can directly affect accuracy. A direct comparison of our results with that of
Groheux et al (2009) could not be done as different PET scanners and different lambda

values were used.

The results of the COV for the temporal regions appear to be different from all other
VOls, as RAMLA was superior to the other algorithms. The cause of this is unclear,

and needs to be investigated further.

When choosing the lambda value a balance must be found to avoid choosing too small

or too large values, in order to avoid too smooth or too noisy images.

4.3. Scan times

The study also investigated the effect of noise by varying the scan duration while
applying a constant number of 30 iterations. As scan duration increased, there was a
decrease in noise. In turn, as the noise decreased, the COV for all the algorithms
showed an improvement (Figures 3.17-3.25). In regions of high noise, the BLOB TOF
COV started off better (lower) compared to the other algorithms. As the noise
decreased by increasing scan duration, all the algorithms converged to a low COV with
BLOB TOF being superior to all the others (Figure 3.17-3.25). This finding is supported
by Westerwoudt, Conti and Eriksson (2014), who stated that the use of TOF
information has the beneficial effect of lowering the statistical limitations and allowing
for shorter reliable PET scans. The COV results for different scan durations show that
there was minimal improvement after 5 min in high-activity regions (GM) and after 10
min in low-activity regions (WM). According to Zeimpekis et al. (2015), the average

overall PET/CT image quality of the brain at 10 min is excellent. In their study, they
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evaluated image quality as a function of acquisition time in a new TOF PET/MRI
compared to TOF PET/CT. In the current study an image acquisition of 10 min
produced an optimal trade-off between image quality and scan duration for brain

imaging irrespective of the reconstruction algorithm used.

4.4. Time of flight information
This study also found that the incorporation of time of flight information in the
reconstruction enhanced convergence. BLOB TOF 1.0 had faster convergence overall

against all the other algorithms (Table 3.1).

For the COV percentage, the quality of the PET brain phantom reconstructed with the
BLOB TOF was superior to that of BLOB nonTOF and RAMLA (Figures 3.8-3.16). This
is in agreement with a study by Taniguchi et al. (2015), who found that the inclusion of
the OSEM+TOF+PSF improved image quality.

The mean counts of the BLOB TOF overall were lower than that of the RAMLA and
BLOB nonTOF algorithms (Figures 3.8-3.16). This can be due to the fact that RAMLA
was optimised for brain imaging with 2 mm pixel size, while BLOB TOF was optimised

for whole body imaging with a 4 mm pixel size.

As was found with the relaxation parameter A, the results of the COV for the temporal
regions (Figures 3.10) appear to be different from all other VOlIs, with RAMLA superior
to the other algorithms. The cause of this is unclear, and needs to be investigated
further.

4.5. Patient data

The scan data of a limited number of patients showed discordant results when
compared to the brain phantom data (Figures 3.29-3.30). To confirm these preliminary
findings, a more representative sample of patient data needs to be studied. Due to the
low patient inclusion rate this was not possible within the time frame of this study.
Therefore, while showing these preliminary findings, it is not possible to interpret their

significance.
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Chapter 5: Conclusions
The following conclusions can be drawn from the findings of this study:

e Fifteen iterations gave an optimal image quality for most algorithms.

e BLOB TOF gave an optimal COV, with A=0.7 giving better accuracy than A=1.0.
This is because reducing the lambda value decreases the noise generated,
thereby improving image quality. The incorporation of time of flight information
in the reconstruction enhanced convergence, with BLOB TOF (A=1.0) being
superior to BLOB TOF (A=0.7) and all other algorithms. This is because BLOB
TOF (A=1.0) has a larger lambda value which leads to faster convergence.
When choosing between BLOB TOF (A=0.7) and (A=1.0) it is important to
choose an optimal value in order to avoid over smooth or over noisy images

within an acceptable processing time.

e The acquisition time for an optimal trade-off between image quality and scan

time for brain imaging was 10 min.

e Forthe GM/WM ratio, RAMLA had the best contrast. This can be due to the fact
that RAMLA was optimised for brain imaging with 2 mm pixel size, while BLOB
TOF was optimised for whole body imaging with a 4 mm pixel size. Further
research by optimising BLOB TOF to a comparable pixel size (2 mm) needs to

be done.

A representative sample of sufficient patient data will need to be studied to validate the

phantom data with statistical analysis on a voxel basis.

The study hypothesis that optimisation of different image reconstruction parameters,
and the inclusion of TOF in the reconstruction algorithm will improve the image quality

of brain images on the Philips® PET/CT scanner, was confirmed.

Further research

The current algorithm used for brain imaging on the Phillips® system is RAMLA which
uses a 2 mm pixel size. The BLOB TOF algorithm which is optimised for whole body
imaging uses 4 mm pixel size. Therefore, the resolution of images reconstructed using
RAMLA is better than those reconstructed with BLOB TOF. Optimisation of the BLOB
TOF algorithm by altering the blob size to a comparable pixel size of 2 mm could
potentially improve the spatial resolution, thereby reducing the partial volume effect

and improving the resolution and contrast of BLOB TOF. Future research is required
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to compare the image parameters of RAMLA and BLOB TOF using comparable pixel

sizes in order to determine the optimal reconstruction algorithm for brain PET/CT.

The choice between BLOB TOF (A=0.7) and (A=1.0) needs to balance image
smoothness and noisiness within an acceptable computation time. Further research to

find an optimal lambda value is also needed.

Studies using an appropriate sample of human subjects need to be done in order to

validate these findings in a clinical setting.
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