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Abstract  

Modern reconstruction techniques of positron emission tomography/computed 

tomography (PET/CT) data are optimised for whole body imaging. Such optimisation 

is less developed for brain imaging. This study aimed at investigating the effect of 

different image reconstruction parameters (varying number of iterations, scan duration, 

relaxation parameter (smoothing levels) and the use of time of flight (TOF)) on PET/CT 

images with the objective of evaluating the algorithms for quantification of 

fluorodeoxyglucose (FDG) PET brain imaging. 

 

Materials and methods 

A Philips® Gemini TF Big Bore PET/CT scanner was used for acquiring the data. The 

study was based primarily on phantom and limited patient data for preliminary 

validation. Three dimensional (3D) Hoffman brain phantom (HBP) data and data of 

patients attending the Western Cape Academic PET/CT Centre for oncological 

purposes, with low probability of neurological pathology, were included in the study. 

The data was reconstructed using two different iterative reconstruction algorithms, row 

action maximum likelihood algorithm (RAMLA) and spherically symmetric basis 

function ordered subset algorithm (BLOB or BLOB OS), with variation in the number of 

iterations, scan acquisition duration, switching TOF on and off for BLOB OS and by 

varying the relaxation parameter. The set of output images were analysed using 

MATLAB code. 

 

Results 

From the HBP data, in all regions of the brain, the grey matter/white matter ratio, and 

the mean and the normalised mean counts increased as the number of iterations 

increased, reaching a plateau after 15 iterations for all algorithms. When comparing 

the algorithms with relaxation values λ=0.7 and λ=1.0, it was found that the latter 

converged faster. Overall, BLOB TOF (λ=1.0) proved to have faster convergence 

followed by BLOB TOF (λ=0.7). The coefficient of variation (COV) for all volumes of 

interest showed BLOB TOF to be superior compared to all the other algorithms. The 

COV results for different scan durations showed that there is minimal improvement 

after 5 min in high-activity regions (GM) and after 10 min in low-activity region (WM). 

The patient data was used as proof of principle but the numbers were too small to 

analyse further, as no pattern of behaviour could be identified for the different 

algorithms in the three patient images available. 
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Conclusions 

A higher number of iterations, such as 15, than currently used by the vendor of the 

PET scanner led to improved image quality for all algorithms. An acquisition time of 10 

min provided an optimal trade-off between image quality and scan time irrespective of 

the reconstruction algorithm used. Including the TOF in the reconstruction algorithm 

improved the image quality, proving that TOF also improves image quality for small 

objects such as the brain similar to that seen for larger anatomical diameters as 

indicated in the literature. 
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Opsomming 

Moderne rekonstruksietegnieke van PET/RT data word geoptimaliseer vir 

heelliggaambeelding. Sodanige optimalisering is minder ontwikkel vir breinbeelding. 

Die doel van hierdie studie was om die effek van verskillende 

beeldrekonstruksieparameters (aantal iterasies, die duur van die skandering, 

veslappingsparameters (vergladdingsvlakke) en die gebruik van “tyd-van-vlug” 

(Engels: “time of flight” (TOF)) inligting) met PET/RT te ondersoek, om sodoende die 

verskillende rekonstruksie-algoritmes vir kwantifisering van FDG PET breinbeelding te 

evalueer. 

 

Materiaal en Metodes 

‘n Philips® Gemini TF Big Bore PET/RT is gebruik om die data te versamel. Die studie 

het hoofsaaklik fantoom- en beperkte pasiëntdata ingesluit. Data van ‘n 3D Hoffman 

breinfantoom asook van pasiënte wat die Wes-Kaapse Akademiese PET/RT Sentrum 

vir onkologiese ondersoeke besoek het en lae waarskynlikhheid vir neurologiese 

patologie gehad het, is in die studie gebruik. Die data is met twee verskillende 

iteratiewe rekonstruksie-algoritmes, RAMLA en BLOB OS gerekonstrueer, met 

variasies in die aantal iterasies, tydsduur van beeldopname, met en sonder TOF vir 

BLOB OS en met variasie van die verslappingsparameter. Die beelde wat verkry is, is 

met MATLAB kodes ontleed. 

 

Resultate 

Die Hoffman breinfantoomdata het getoon dat die verhouding van grysstof tot witstof 

(GS/WS) vir alle areas in die brein toegeneem het met ŉ toenemende aantal iterasies 

en vir alle algoritmes na 15 iterasies ‘n plato bereik het. As die algoritmes met 

verslappingsparameters van λ=0.7 en λ=1.0 vergelyk is, is daar gevind dat (λ=1.0) 

vinniger as (λ=0.7) konvergeer het. Van al die algoritmes het BLOB TOF(λ=1.0) die 

vinnigste konvergeer, gevolg deur BLOB TOF (λ=0.7). Die variasiekoëffisiënt (VK) vir 

alle volumes-van-belang het getoon dat BLOB TOF beter was as die ander algoritmes 

wat vergelyk is. Die VK resultate vir verskillende beeldingstye het getoon dat daar in 

hoë aktiwiteitsareas (GS) na 5 min minimale verbetering plaasgevind het, en in lae 

aktiwiteitsareas (WS) na 10 min. Die pasiëntdata is as bewys van beginsel gebruik, 

maar die getalle was te klein vir verdere analise, omdat daar geen identifiseerbare 

patrone vir die verskillende algoritmes in die data van die drie pasiënte was nie.  
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Gevolgtrekking 

Meer iterasies as wat tans deur die verskaffer van die skandeerder gebruik word, 

byvoorbeeld 15, het tot ŉ verbetering in beeldkwaliteit vir al die algoritmes gelei. ‘n 

Beeldingstyd van 10 min het, onafhanklik van die rekonstruksie-algoritme, ‘n optimale 

kompromis tussen beeldkwaliteit en beeldingstyd gegee. Die insluiting van TOF in die 

rekonstruksie-algoritme het bewys dat TOF ook die beeldkwaliteit van klein organe 

soos die brein verbeter, soortgelyk aan wat met groter anatomiese deursnit voorwerpe 

ondervind word, soos ook in die literatuur aangedui is. 
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Chapter 1: Introduction 

Positron emission tomography (PET) is a nuclear medicine functional imaging modality 

used for measuring the uptake of radioactivity, e.g. [18F] fluorodeoxyglucose (FDG) in 

the body of the patient, amongst others in the brain. Modern reconstruction techniques 

have been developed and optimised for whole body imaging. Similar optimisation has 

not been implemented for brain imaging. This research was instituted to optimise brain 

reconstruction techniques. 

 

1.1 Background: Physics of PET 

1.1.1. Introduction 

After intravenous administration of [18F]-FDG, it is taken up according to the normal 

biodistribution of FDG. 18F decays by positron emission, therefore the positron 

undergoes annihilation by combining with an electron with the production of two 

annihilation photons of 511 keV travelling in opposite directions. The photons emitted 

from the organ of uptake are detected by a PET camera equipped with the electronics 

to allow the simultaneous recording of the two opposing photons. The line connecting 

the opposing detectors is called the line of response (LOR), along which the point of 

annihilation will fall. The detailed function of the PET camera will be discussed below. 

 

1.1.2. Radionuclides 

Positron emitters do not normally exist in nature. They are artificially produced using 

cyclotrons. This process involves the acceleration of charged particles (e.g. protons 

and alpha particles) to high energies. These high-energy particles are then used to 

bombard stable target elements to produce unstable proton-rich radioactive isotopes 

which decay by either electron capture or positron emission (Turkington, 2001; Spinks, 

2000). Positron emitting radionuclides attain stability by undergoing radioactive decay 

with the emission of a positron (𝑒+) and a neutrino (𝜐) (equation 1).  

𝑋𝑁 → 𝑌𝑁+1 + 𝑒+
𝑍−1

𝐴 + 𝜐𝑍
𝐴   equation (1) 

 
Where : A= mass number 

 Z= atomic number 

 N= neutron number 

 X= parent radionuclide 

 Y= daughter nuclide 
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The neutrino produced in the process is not useful for nuclear medicine imaging but 

causes variation in the energy of the positron as the gamma energy is shared between 

the positron and the neutrino. Radionuclides that are used in PET imaging include 11C, 

15O, 18F and 13N, which have characteristic properties that lead to their successful 

application as in vivo radiotracers. The desirable characteristics are:  

i) short half-life with relatively low radiation dose to patients, and ii) isotopes of elements 

that make up organic molecules normally present in the body enabling their 

incorporation without altering biochemical behaviour when used as labels (Spinks, 

2000; Surti et al., 2004). Table 1.1 lists the positron energies of positron emitters 

commonly used in PET imaging and their range in soft tissue. 

 

Table 1.1: Positron ranges in soft tissue for the principal positron emitters (Surti et al., 2004) 

Positron 

emitter 

Half life            

(min) 

Positron energy  

(MeV) 

Positron range in soft 

tissue (mm) 

  Maximum  Mean Maximum Mean 

18F 109.8 0.635 0.250 2.6 0.61 

68Ga 67.7 1.900 0.820 9.0 2.90 

11C 20.3 0.970 0.386 4.2 1.23 

13N 9.97 1.200 0.491 5.4 1.73 

15O 2.07 1.740 0.735 8.4 2.97 

 

The positron emitted from the radionuclide follows a tortuous path in the medium while 

undergoing similar interactions to an electron including loss of energy through 

ionisation and excitation of atoms. After losing nearly all of its energy by Coulomb 

interaction with atomic electrons, the positron will combine with an electron in an 

annihilation event within a defined range of approximately 1 mm (Turkington, 2001; 

Spinks, 2000). This results in the disappearance (annihilation) of both particles and the 

production of two photons of 511 keV energy travelling in opposite directions, based 

on the annihilation equation below: 

𝑒+ + 𝑒− → 𝛾 + 𝛾                      equation (2) 
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The back to back photon emission is a result of the law of conservation of momentum 

(see Figure 1.1). However, the 180 degree angle between the photons’ directions will 

only be achieved if during annihilation the net momentum of the two particles is zero. 

In practice, a small amount of momentum of the electron-positron pair can lead to ± 

0.3 degrees of angular spread, which together with the positron range determine the 

physical limits of spatial resolution for PET (Spinks, 2000; Surti et al., 2004). 

 

Figure 1.1: Physics of positron decay and annihilation. I) After travelling a short distance, II) the positron 
annihilates with the electron, III) resulting in two annihilation photons along a straight line of response 
(LOR) (Lonsdale and Beyer, 2010) 

The two opposing annihilation photons are detected in coincidence by detectors 

around the patient. 

 

1.1.3. PET Detector 

A PET system commonly consists of scintillation crystals that are coupled to 

photomultiplier tubes. The choice of radiation detectors to use in PET systems is based 

on several physical characteristics and properties of the detectors, which include a) 

photon stopping power (efficiency), b) output signal strength, c) energy resolution, d) 

signal response (decay) time for high count rate applications, e) timing characteristics 

for time of flight (TOF), f) coincidence timing characteristics, 

g) ruggedness and h) hygroscopicity. 

 

Early detector materials in PET have been sodium iodide (NaI) infused with an impurity 

of thallium (Tl) and bismuth germinate (Bi4Ge3O12 or BGO). NaI(Tl) has a high light 

output and for this reason has been a detector of choice in radionuclide imaging. 

However, its low sensitivity and poor stopping power for 511 keV photons led to the 

development of BGO in search of a replacement for NaI(Tl). BGO has high stopping 

power and increased sensitivity for 511 keV photons, but it has poor energy resolution 

because of its low light output compared to NaI(Tl). PET scanners with NaI(Tl) or BGO 

detectors also have long scanner dead times because of their long scintillator signal 
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decay time (Saha, 2010; Surti et al., 2004). These shortfalls led to the replacement of 

older generation PET scintillators with cerium doped lutetium oxyorthosilicate (LSO) 

because of its high light output, high stopping power and short scintillation decay time 

(Saha, 2010). The short scintillation decay time of LSO has reduced the coincidence 

window from 12 ns, typical for BGO scanners, to 6 ns and later 4 ns with development 

of faster electronics (Conti, 2009). Recently yttrium activated lutetium orthosilicate 

(LYSO) detectors that have the same properties as the LSO have also been developed 

and used in time of flight (TOF) PET scanners. See Table 1.2 for the characteristics of 

PET scintillators. 

 
Table1.2: Characteristics of some scintillation detectors used in PET (Spinks, 2000; Saha, 2010) 

Property Thalium 

doped 

sodium 

iodide 

(NaI(Tl)) 

Bismuth 

germanate 

(BGO) 

Lutetium 

orthosilicate 

(LSO) 

Yttrium 

activated 

lutetium 

orthosilicate 

(LYSO) 

Density (g.cm-3) 3.7 7.1 7.4 7.2 

Effective atomic number 51 75 66 65 

Scintillation efficiency (% of NaI(Tl) 100 15 75 80-85 

Scintillation decay time (ns.) 230 300 40 50 

Hygroscopic  Yes No No No 

 
A dedicated PET system is designed with a ring of detectors arranged around the 

patient. The geometry of the block detectors can be configured in different ways 

depending on the scintillation detector used. Examples of typical detectors are 

represented in Figure 1.2. 

 

Figure 1.2: A) Full ring; B) Partial ring of detector blocks that rotates; C) Hexagonal ring (Cherry, 

Sorenson and Phelps, 2012) 

Stellenbosch University  https://scholar.sun.ac.za



 

5 

 

1.1.4. PET Detection 

Annihilation coincidence detection 

PET is based on the detection of two 511 keV photons in coincidence by two opposing 

scintillation crystals that convert the photon energy into scintillation photons, which in 

turn will yield an electronic signal (Surti et al., 2004; Saha, 2010). Simultaneous pulses 

from two opposing detectors is an indication that the annihilation has occurred 

somewhere along the path between the two detectors. This path between the two 

detectors is referred to as a line of response (LOR), and the simultaneous detection of 

two photons is referred to as coincidence (Turkington, 2001). Not all annihilation 

photons can be detected as some might not be detected within the coincidence window 

setting and will, therefore, be rejected. The rate of events processed by each detector 

is referred to as the single event rate for that detector.  

 

The prompt coincidence event rate is the rate of events simultaneously detected by 

two detectors. Figure 1.3 depicts the event rates from two detectors in a detector ring 

system (Lewellen and Karp, 2004). The types of prompt coincidence events may 

include true events, scattered events and random events. 

 

 

Figure 1.3: Basic PET scanner with illustration of events in coincidence (Lewellen and Karp, 2004) 

True coincidence 

These events occur when two 511 keV photons are produced by a single positron 

decay and detected without undergoing any interaction in the patient’s body (Figure 
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1.4a). This is known as a true coincidence representing the true signal coming from 

the imaging object (Lewellen and Karp, 2004).  

 

Scattered coincidence 

This occurs when either one or two photons undergo Compton scatter with an atomic 

electron inside the body of the patient. Many of these scattering photons can still fall 

within the energy window and because they originate from the same annihilation, can 

still be detected by a detector pair within the coincidence window (Saha, 2010) (Figure 

1.4b). Scattered coincidences are a contributing factor to increased image background 

and decreased contrast. 

 

                                             

Figure 1.4: a) True coincidence; b) Scattered coincidence; c) Random or accidental coincidence (Lewellen 

and Karp, 2004) 

Random or accidental coincidence 

Random events occur when two unrelated 511 keV photons from two separate positron 

annihilations are detected by a detector pair within the coincidence window (Saha, 

2010) (Figure 1.4c). The amount of accidental coincidence increases with a higher 

single event rate. 

 

1.1.5.  Theory of TOF PET 

The idea of time of flight applies the use of time information when each photon is 

detected and the time difference between their detection. The information is used to 

estimate the position of annihilation along the LOR. Conventional PET systems only 

determine if two photons are detected within a time window of approximately 5-10 

nanoseconds to verify if they belong to the same coincidence pair. When the two 

photons are detected within the timing window then the LOR will be formed by 
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activating all the voxels along the line without estimating the point of annihilation. 

(Conti, 2009) (Figure 1.5A). 

The benefit of using TOF PET was first recorded in the early 1980’s with the first 

generation TOF PET. However, due to the poor spatial resolution and sensitivity of the 

caesium fluoride (CsF) and barium fluoride (BaF2) scintillation detectors, the first 

generation TOF PET systems was never used beyond the research environment 

(Conti, 2009). 

 

 

Figure 1.5: (A) Without TOF information, the annihilation is located with equal probability along the 
LOR; (B) Using TOF information; the annihilation point can be localised to a limited range (Townsend, 
2008) 

 
In modern PET systems TOF information helps to predict the location of the annihilation 

along the LOR between the two detectors (Conti, 2011). This is illustrated in Figure 

1.5. Suppose the detectors are equidistant from the centre of the field of view (CFOV) 

with distance (d), and the positron is annihilated in the patient body at position (*) at a 

distance where ∆d = d1 from the CFOV. The two photons travelling to the detectors 

during annihilation will travel the distance d-∆d and d+∆d respectively. Since the 

photons are travelling at the speed of light (c), the time difference ∆t=tA-tB of arrival of 

the two photons at the detectors A and B can be calculated using equation 3. The 

location of the positron annihilation along the LOR can be estimated by measuring the 

time difference between the detection of the two annihilation photons. The accuracy of 

this estimate will depend on the PET system’s precision. This is demonstrated in Figure 
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1.5B, in contrast to 1.5A where all the voxels within the LOR are activated (Townsend, 

2008).  

 
     ∆t=2∆d/c                                 (equation 3) 

1.1.6. PET Spatial Resolution 

The ability of the scanner to discriminate between two closely placed radioactive point 

sources determines the system’s spatial resolution. Two point sources closer than the 

spatial resolution will appear as one, and poor spatial resolution results in decreased 

image contrast and inaccurate quantitation of small lesions (Daube-Witherspoon, 

Zubal and Karp, 2003; Tarantola, Zito and Gerundini, 2003). The method for measuring 

the spatial resolution of a detector system is by stimulating the detector system with a 

single point input and observing how it responds (Bushberg et al., 2002). The 

coincidence detector pair resolution is normally specified as a full width at half 

maximum (FWHM) of the point spread function (PSF) from the convolution of two 

individual detectors’ PSF’s (Lewellen and Karp, 2004). The PSF is a reflection of the 

widened LOR that occurs particularly near the edge of the field of view (FOV), 

especially with longer scintillation crystals (Mittra and Quon, 2009). The PSF describes 

the blurring properties of an imaging system (Bushberg et al., 2002). 

 

The PSF is narrow for sources near the scanner axis but is wider for sources further 

from the scanner CFOV, due to the oblique penetration of the detector by the 

annihilation photons (Lewellen and Karp, 2004; Townsend, 2008). Figure 1.6 shows 

that the PSF of events near the central axis (*) is narrower than for events that occur 

farther away from the central axis (#). A wider PSF results in poor spatial resolution. 

There are three factors which limit the spatial resolution of PET scanners; i) the intrinsic 

spatial resolution of the detectors; ii) the average range of the positrons before 

annihilation and iii) the fact that the annihilation photons are not moving in exactly 

opposite directions to each other (Bushberg et al., 2002). 
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Figure 1.6: Coincidence interaction between A and B (*) results in little uncertainty in the LOR; 
Coincidence interaction between B and C (#) results in greater uncertainty in the LOR, which can be 
overcome by reducing the detector thickness which would also cause reduced detection efficiency 
(Bushberg et al., 2002; Lonsdale and Beyer, 2010) 

1.1.7. Image Reconstruction 

During imaging, after the collection of the raw data, it must be reconstructed to form an 

image to be used for diagnostic purposes. Two reconstruction methods are commonly 

used, i.e. initially filtered backprojection (FBP) and later iterative reconstruction (Mittra 

and Quon, 2009). The most popular of the iterative reconstruction algorithms are the 

maximum likelihood (ML) and the ordered subset expectation maximisation (OSEM) 

methods. The ML and OSEM have gained favour over FBP due to reduced streak 

artefacts, better signal to noise ratio in regions of low counts, and the ability to directly 

incorporate attenuation, scatter and resolution corrections, thereby producing higher 

quality images (Basu et al., 2011; Mittra and Quon, 2009). 

 

An emission tomography problem can be formulated as an estimation problem where 

the distribution of the radiotracer inside the object has to be determined, given:  

 a set of projection measurements, 

 information about the imaging system used for measurement, 

 a statistical description of the data, and 

 a statistical description of the object. 

 

The purpose of emission computed tomography is to obtain an image of the 

radioactivity distribution in the patient, thereby providing a true reflection of 

physiological and pathophysiological information (Vandenberghe et al., 2001). 

Reconstruction of a two-dimensional (2D) image from a series of one-dimensional (1D) 

projections is required for CT, SPECT and PET. A number of samples of 1D projections 
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p1, p2, p3 . . . ., pn are acquired by a stationary system consisting of a ring of detectors. 

Depending on the imaging modality, the reconstructed images correspond to 

Hounsfield units in CT, and in SPECT and PET the reconstructed images represent 

the biodistribution of the injected radioactive agent (Smith and Webb, 2011). Generally, 

the detector is at an angle of φ degrees to the x-axis for a particular measurement, with 

φ having values between 0 and 360 degrees. The measured projection at every angle 

can be represented as 𝑝(𝑟, 𝜑), where 𝑝(𝑟, 𝜑) is defined as the number of scintillations 

detected at any location r along the detector when the detector head is at an angular 

position φ, and f(x,y) is defined as the estimated number of photons or positrons 

emitted at any point (x,y) (Figure 1.7). 

 

Figure 1.7: Principle of tomographic acquisition (Smith and Webb, 2011) 

  

In SPECT, the gamma camera rotates around the patient and with the use of 

mechanical collimation the perpendicular incident photons are detected and produce a 

2D planar image of activity distribution in the body of the patient. In PET, a detector 

ring is used to detect directly opposing photons from annihilations which are recorded 

by the electronic coincidence circuit (Vandenberghe et al., 2001).  The 2D projections 

p(x,z|φ) in SPECT (all planar 2D images covering the whole circle (φ = 360°)) are  

rebinned into nz (nz  = number of axial slices in z direction) 2D sinograms p(r,φ|z). Only 

the nz “z-slices” creates a 3D image dataset after 2D image reconstruction. 
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SPECT algorithms like Siemens Flash-3D, GE Evolution or Philips® Astonish do not 

handle 2D sinogram slices. These resolution recovery algorithms use a special 

collimator model and directly reconstruct 3D images. In PET, the data acquired for 

each LOR are stored during data acquisition and then formatted into sinograms, where 

each sinogram represents one image slice. Raw data from PET can be stored as fully 

3D LOR list mode data (Philips®) or as 3D sinograms (Siemens). In the latter, the 

LORs are rebinned into 3D sinograms with spawn and ring differences during 

acquisition. Explaining the image reconstruction in the 2D case simplifies the 

mathematical problem and allows one to figure out the main idea of the method. In 

simple terms a sinogram is a 2D image that uses r as column co-ordinate and φ as the 

row co-ordinate. In the sinogram, the horizontal axis represents the count location on 

the detector while the vertical axis corresponds to the angular position of the detector 

(see Figure 1.8) (Henkin et al., 2006). 

 

Figure 1.8: A sinogram is a projection of a slice at a given angular position (Henkin et al., 2006) 

Iterative reconstruction methods may be used instead of FBP. Iterative reconstruction 

algorithms are based on statistical algorithms that better suit the Poisson nature of 

positron emission. Iterative image reconstruction starts by calculating the initial image 

estimate of the activity distribution in the source assuming all pixels have the same 

value. The forward projection step computes projections from the estimated image, 

and assembles them into a sinogram. The computed sinogram is then compared with 

the actual acquired sinogram and the difference between the two is calculated as a 

cost function (Figure 1.9) (Smith and Webb, 2011). 
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Figure 1.9: Iterative algorithm (Smith and Webb, 2011) 

The cost function can be a simple sum of squares of the difference between the actual 

and the predicted data on the basis of each pixel. The estimated data is then updated 

based on the cost function to improve the similarity between the actual and the 

estimated data. Iterations are continued until an acceptable agreement between the 

input and the output is achieved (Saha, 2010). 

 

The most widely used iterative algorithms are maximum-likelihood expectation 

maximisation (MLEM) and ordered-subset expectation maximisation (OSEM). 

Advantages of MLEM over FBP are that it: (1) does not require equally spaced 

projection data; (2) can use an incomplete set of projection data; (3) yields fewer 

artefacts and (4) allows building in more accurate models of the different physical 

processes involved during the measurement. The main limitations of the MLEM 

reconstruction algorithm are its slow convergence rate and the high computational cost 

of its practical implementation (Chuang et al., 2005). Convergence rate is the speed at 

which an image reconstruction algorithm achieves an image of acceptable quality. In 

order to counteract the computation time required for MLEM, the OSEM algorithm was 

developed. The OSEM method is a modification of the MLEM in which the angular 

projections are grouped into subsets, and MLEM is performed on each subset instead 

of on each projection. Suppose in an acquisition of 32 equally spaced projections 

around the object, the projections are grouped into 8 subsets, then each subset will 

contain 4 projections (Saha, 2010).  
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Herman and Meyer (1993) investigated and proposed the use of an algebraic 

reconstruction technique (ART) in a study in which they reported significantly better 

image quality with few iterations of ART compared to many iterations of expectation 

maximisation (EM). ART proved to have increased speed and significantly lower 

computational cost over EM. This resulted in the row action maximum likelihood 

algorithm (RAMLA) which can also be regarded as a faster alternative to the EM 

algorithm (Herman and Meyer, 1993; Browne and De Pierro, 1996). With RAMLA, the 

reconstructed image is updated after each projection line and the projection lines are 

selected in an orderly manner to ensure that sequential projection lines are as 

orthogonal as possible to speed up the rate of convergence (Daube-Witherspoon et 

al., 2001). In addition, 3D spherically-symmetric basis functions, or blobs, are used 

during image reconstruction instead of cubic voxels. They have an additional 

parameter that controls the shape of the blob and, subsequently, the characteristics of 

the images produced by the iterative reconstruction method. The additional parameter 

is the radius of the blob whose variation alters the volume of the blob element. 

Implementation of the blob volume element over the voxel element in the iterative 

reconstruction methods has led to substantial improvement in the reconstruction 

performance, based on visual quality and on quantitative measures (Matej and Lewitt, 

1996). Recently, there has been an implementation of the LOR RAMLA algorithm on 

the Gemini scanner (Philips Medical SystemsTM, Cleveland, Ohio, USA) with an 

integrated geometric correction. A pre-processing step where raw LOR data is 

interpolated to evenly spaced sinogram data is used in a conventional PET image 

reconstruction. The LOR based reconstruction eliminates this interpolation step 

resulting in a better spatial resolution and image quality. In the Philips® PET/CT 

product, this approach is combined with a blob basis function leading to resolution 

preservation and significant suppression of image noise. Figure 1.10 demonstrates the 

difference between a voxel grid and a blob grid. 
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Figure 1.10: Voxel grid vs blob grid (Zeng. L., Nuyts, J. and De Man, B., 2007) 

A RAMLA with system modelling of attenuation, random and scatter correction is used 

for the reconstruction as shown below: 

𝑓𝑖
𝑘,𝑚 = 𝑓𝑖

𝑘,𝑚−1

[
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𝑗∈𝑠𝑢𝑏𝑠𝑒𝑡 𝑚

]
 
 
 
 

 

Here, 𝑓𝑖 is the image basis value element (blob) 𝑖 of the  emission object, 𝑗 indexes the 

LOR in subset 𝑚, 𝑘 is the iteration number, 𝑛 indexes the blobs intersecting the LORs, 

λ is the relaxation parameter, 𝑎𝑗 is the attenuation correction factor for LOR  𝑗, 𝐻𝑗𝑛 is 

the geometric system matrix element for LOR 𝑗 and blob 𝑛, 𝑑𝑗 is the data counts in 

LOR  𝑗, 𝜂𝑗
𝑚𝑢𝑙𝑡𝑖 is the multiplicative correction factor for LOR 𝑗 including normalisation, 

decay and dead time, 𝑏𝑗
𝑎𝑑𝑑 is the additive correction factor including random and 

scatter correction (Hu et al., 2007). In RAMLA, the update is controlled by the relaxation 

parameter λ. 

 

With the recent advances in response, high light output and high stopping power 

scintillators, TOF PET is commercially available for clinical use. The Philips® Gemini 

TF scanner can acquire data in either LOR sinogram or in list mode format, and can 

reconstruct data with either TOF of nonTOF algorithms. 
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Figure 1.11 displays the Gemini time-of-flight PET list mode reconstruction flow chart. 

 

Figure 1.11: Gemini-TF PET list mode reconstruction flow chart (Wang et al., 2006) 

LOR-RAMLA was developed to increase the convergence rate of image reconstruction 

by incorporating the Poisson nature of sinogram and using cyclic projection 

permutation. LOR-RAMLA is the current default reconstruction of the Gemini TF 

scanner in brain mode. The maximisation of the cost function differs (row action and 

relaxed ordered subsets expectation maximisation). The relaxed BLOB OS (spherically 

symmetric basis function ordered subset algorithm) is the newer reconstruction mainly 

developed for whole body imaging on the Gemini system with the implementation of 

time of flight which is not available with LOR RAMLA. 

 

On one side there is a practical reason to compare the three algorithms (availability on 

the system), while on the other side there are different iterative approaches 

(RAMLA/OSEM) which should have different behaviours in convergence, noise and 

contrast. 

 

The aim of the study was to investigate the effect of different image reconstruction 

parameters on PET/CT images with the objective of evaluating these algorithms for 

quantification of FDG PET brain imaging.  
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1.2. Literature Review 

1.2.1. Introduction 

The literature review was performed using PubMed as a search engine, focusing on 

specific journals and relevant books in the Stellenbosch University library. The specific 

journals were Journal of Nuclear Medicine, Molecular Imaging and Biology, IEEE 

Transactions on Medical Imaging, Nuclear Medicine Communications, Journal of 

Nuclear Medicine Technology, Physics in Medicine and Biology, and European Journal 

of Nuclear Medicine and Molecular Imaging. The keywords used were TOF, PSF, 

PET/CT, Brain, and LOR RAMLA. The literature cited was from 1993 onwards. 

 

1.2.2. Use of TOF PET imaging 

Karp et al. (2008) investigated the benefit of time of flight (TOF) in PET imaging using 

a Philips® Gemini TF PET/CT scanner. Images of 27 and 35 cm diameter cylindrical 

phantoms were acquired. In each phantom were spheres varying in size from 10 to 37 

mm in diameter, with each sphere filled with different concentrations of activity. 

Reconstruction was performed using maximum likelihood expectation maximisation 

(MLEM) with and without TOF. They varied scan duration from 1 min to 5 min, and the 

number of iterations from 1, 2, 5, 10 and 20 using 33 subsets. It was found that TOF 

led to improved contrast and faster convergence compared to nonTOF. These results 

have not been tested on small object imaging, e.g. that of the brain. In addition, this 

study did not explore the effect of increasing scan duration beyond 5 min or iterations 

beyond 20. 

 

Taniguchi et al. (2015) also investigated the effect of TOF as well as PSF on improving 

PET/CT image quality. This group used a National Electrical Manufacturers 

Association/International Electrotechnical Commission (NEMA/IEC) body phantom, 

and a 40 cm diameter large phantom, resembling a patient with a larger body size. 

Different combinations of reconstruction algorithms were used, namely baseline 

OSEM, OSEM+PSF, OSEM+TOF and OSEM+PSF+TOF. Noise and contrast were 

assessed in relation to phantom size, radioactivity, acquisition time and number of 

iterations. Acquisition time was varied from 1-10 min and iterations from 1 to 10. 

Twenty-four subsets were used for algorithms without TOF and 21 subsets for the TOF 

algorithms. PET/CT image quality showed improvement when TOF and point spread 

function (PSF) information were included in the reconstruction. The same group further 

assessed image quality by visual inspection, coefficient of variation in the NEMA 
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phantom, signal to noise ratio (SNR) and contrast of a 10 mm sphere (Akamatsu et al., 

2012). They demonstrated the highest SNR for OSEM+PSF+TOF and suggested a 

necessity to optimise reconstruction parameters for the best results when using TOF 

or PSF. These studies, similar to Karp et al. (2008), did not evaluate the effect of longer 

acquisition times above 10 min, and larger number of iterations above 10, on image 

quality. In addition, the effect of varying imaging parameters on smaller objects such 

as brain was not evaluated. 

 

Suljic et al. (2015) explored the influence of various TOF and nonTOF reconstruction 

algorithms on PET/CT image quality. Measurements were made on the triple line and 

Jasczack phantoms with incorporation of PSF in filtered back-projection (FBP), OSEM 

and iterative reconstruction. Reconstructions were also performed with and without 

TOF. The added TOF information reduced background variability while improvement 

of spatial resolution was found to be negligible.  

 

Wilson and Turkington (2013) conducted a study where the improvement of image 

quality with TOF versus nonTOF PET was parameterised by measuring the SNR of 1 

cm spheres in a range of body sizes. Results showed that there were no image quality 

improvement between TOF and nonTOF for a patient diameter less than 17.5 cm. This 

study suggested that the addition of TOF information will not lead to an improvement 

in image quality for small objects. 

 

Kadrmas et al. (2009) evaluated the effect of TOF for detecting and localising focal hot 

lesions in noisy PET images. In this study, an anthropomorphic lesion detection 

phantom to mimic whole body oncologic [18F]-FDG PET with a number of spherical 

lesions of diameters 6 to 16 mm distributed throughout the body, was scanned on a 

TOF PET scanner. The data was reconstructed with the standard LOR-OSEM, with 

the inclusion of both PSF (LOR-OSEM+PSF) and TOF (LOR-OSEM+TOF). The lesion 

detection performance of each reconstruction was compared and ranked, using 

localisation receiver operating characteristic analysis by both human and numeric 

observers. It showed that TOF PET provided a significant improvement in observer 

performance for detecting focal hot lesions in a noisy background. The same group 

investigated the effect of scan times on oncologic lesion detection in whole body PET 

imaging and found that the images reconstructed using TOF information with 40% 

shorter acquisitions provided equivalent lesion detection performance to scanning 
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without TOF information (Kadrmas et al., 2012). It would be of value to determine if the 

same is applicable to brain imaging. 

 

LOR RAMLA is regarded as a faster algorithm than the expectation maximisation (EM) 

algorithm according to Browne and De Pierro, (1996). Fewer iterations of RAMLA were 

needed to achieve comparable results to more iterations of the EM algorithm. The EM 

algorithm could be accelerated using chronological ordered subsets on line of 

responses (Popescu, Matej and Lewitt, 2004). Wang et al. (2006) have shown that 

TOF information can be incorporated as a TOF kernel width on BLOB OS algorithm. 

This TOF reconstruction converged faster and had better contrast to noise trade-offs 

than nonTOF reconstruction. 

 

Akamatsu et al. (2014) investigated the effects of PSF and TOF on the standardised 

uptake value (SUV) of lymph node metastases with [18F]-FDG PET/CT. The PET data 

was reconstructed with the standard OSEM algorithm, OSEM+PSF, OSEM+TOF and 

OSEM+PSF+TOF. A semi-quantitative analysis using maximum and mean SUV of 

lymph node metastases and mean SUV of normal lung tissue was done. It was found 

that using PSF and TOF information both increased the SUV of the metastatic lymph 

nodes, and improved small-lesion detectability. The study suggested that caution must 

be exercised since PSF and TOF can affect the accuracy of quantitative 

measurements. 

 

Another parameter which can influence contrast and noise is the relaxation parameter 

lambda (λ). Applying lower λ values creates a broader PSF, and therefore smoother 

images. Groheux et al. (2009) tested the impact of different values of λ on contrast and 

noise when using the line-of-response row-action maximum likelihood algorithm (LOR-

RAMLA) in [18F]-FDG PET/CT. A NEMA/IEC torso phantom was used to acquire the 

data on a Philips® Gemini GXL PET/CT scanner. The data were reconstructed with λ 

values ranging from 0.025-0.1, and the quality of the reconstructed images was 

evaluated by contrast recovery coefficient and background variability values. In this 

study, it was found that the contrast recovery coefficient and background variability 

increased significantly when λ was increased. The use of a large relaxation parameter 

increased the convergence with the trade-off of increasing noise. 
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1.2.3. Use of TOF PET in brain imaging 

Leemans et al. (2015) investigated the blob based reconstruction characteristics using 

different parameters for optimisation of brain image quality in PET/MRI. Two sets of 

phantoms were used: the Hoffman brain phantom and the NEMA 2007 image quality 

phantom. All sets of images were reconstructed using a list mode TOF OSEM algorithm 

as well as a blob based reconstruction. It was concluded that optimised blob 

parameters improved the quality of reconstructed images, however, this improvement 

could be task specific depending on the desired image characteristics extracted. 

However, the investigation was only limited to PET/MRI. 

 

Zeimpekis et al. (2015) compared the perfomance of the PET components between 

TOF PET/CT and TOF PET/MRI, using brain and whole body images from both 

PET/CT and PET/MRI. The images were compared for image quality, image 

sharpness, artefacts and noise. In conclusion, TOF PET/MRI showed higher image 

quality compared to TOF PET/CT, mainly for body imaging with no significant 

difference in brain images. This study did not compare different reconstruction 

parameters. 

 

Nagaki, Onoguchi and Matsutomo (2014) investigated the effect of changing counting 

rates on the image quality of brain FDG PET/CT studies. Combinations of the Gaussian 

filter (GF), point spread function (PSF) and the TOF were studied on the images 

obtained with different counting rates. Quantitative analysis of the brain cortex image 

quality was made by evaluating spatial resolution, contrast, and signal-to-noise ratio. It 

was found that applying the GF improved SNR but reduced contrast and spatial 

resolution, whereas PSF and TOF improved the SNR, contrast and spatial resolution. 

However, this study did not look at different numbers of iteration. 

 

A study by Prieto et al. (2015) assessed the influence of different algorithms on PET 

image quality of brain phantoms. A HBP was imaged on a PET/CT system that had 

capability of applying TOF and PSF parameters. Iterative reconstruction was used for 

image processing, with 4 models applied to the data, namely OSEM, OSEM+TOF, 

OSEM+PSF and OSEM+PSF+TOF. It was demonstrated that increasing the number 

of iterations resulted in an increase in contrast while increasing noise as well. This was 

consistent with the findings of Groheux et al. (2009). The number of iterations used in 

this study was only up to 10. 
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Most of the studies discussed above used different PET/CT scanners than the Phillips 

Gemini TF Big Bore scanner available at Tygerberg Academic Hospital. These 

scanners have different detector designs (block-detectors), sinogram-based data 

acquisition (rebinned LORs) and some do not use fully 3D LOR-based TOF or nonTOF 

reconstruction. The effect of TOF on image quality in brain imaging or imaging of 

smaller objects has not been discussed in depth, although some pointed out that 

optimisation in reconstruction algorithms is worthwhile to improve image quality. 

 

1.3. Problem Statement 

It has been proven that TOF imaging improves lesion detection and localisation, with 

a greater impact in larger patients (Karp et al., 2008; Taniguchi et al., 2015; Suljic et 

al., 2015; Kadrmas et al., 2009). As there were only a few studies focusing on small 

object image optimisation (Leemans et al., 2015; Nagaki, Onoguchi and Matsutomo, 

2014; Zeimpekis et al., 2015), this necessitated the current investigation of the impact 

of TOF on smaller diameter objects such as the brain. When TOF is applied, image 

quality is expected to improve due to the improved ability to localise the emission 

events. However, improvement in image quality may only occur if the size of the object 

being imaged is greater than the positional uncertainty of the measurement. The effect 

of TOF on the limited diameter of the head or brain needed to be investigated. 

Currently, there is minimal published data available on this topic. 

 

According to Tarantola, Zito and Derundini (2003), iterative algorithms are based on 

the attempt to maximise or minimise a target function determined by the particular 

algorithm used. The target is reached through several analytic processes called 

iterations. Different numbers of iterations are required to reach convergence, but this 

group suggested that too much iteration can easily lead to noise amplification with 

image quality deterioration. For this reason, it is important to perform an accurate 

evaluation of the ideal number of iterations needed to obtain the best image quality. 

The number of iterations represents different positions on the relaxation curve. The 

relaxation parameter affects the convergence, and has an influence on the update 

step. It is well known that the statistics of the raw data also has an influence on the 

convergence and especially on the variance in the reconstructed image. 

 

Zeimpekis et al. (2015) perfomed a clinical evaluation of PET image quality as a 

function of acquisition time on a new TOF PET/MRI compared to TOF PET/CT. The 
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image quality investigated in this study was only that of the PET component of the two 

modalities, analysing the SUV as a function of acquisition time. Brain and whole body 

patient studies were included in this study where the PET/CT scan was used as 

reference. PET/CT and PET/MRI images were acquired and the acquisition times 

reduced to assess the performance of PET/MRI for lower count rates, image quality, 

image sharpness, artifacts and noise. This was compared to the PET/CT images which 

were used as the gold standard. For quantification, the SUV measurements in the liver 

and in the white matter were taken for comparison. From their findings, it was 

concluded that the TOF-PET/MRI showed higher image quality compared to TOF-

PET/CT with reduced imaging times. However, no significant differences were found 

in brain imaging. 

 

1.4. Hypothesis 

 The optimisation of different image reconstruction parameters (number of 

iterations, lambda (λ), and scan duration) will enhance the quality of brain 

images on a Philips® Gemini TF Big Bore PET/CT scanner. 

 The inclusion of time of flight (TOF) information in the reconstruction algorithm 

will enhance brain image quality on a Philips® Gemini TF Big Bore PET/CT 

scanner. 

 

1.5. Aims and objectives 

To investigate the effect of different image reconstruction parameters on PET/CT 

images with the objective of evaluating these algorithms for quantification of FDG PET 

brain imaging. 

 

1.5.1. Specific objectives: 

(i) to determine the optimum number of iterations needed for acceptable image 

quality,  

(ii) to investigate the effect of different relaxation parameters (lambda value) on 

reconstruction algorithms, 

(iii) to evaluate the effect of varying scan times on signal to noise ratio in 

reconstructed brain images, and 

(iv) to investigate the effect of the use of time of flight (TOF) information on 

reconstruction algorithms. 
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Chapter 2: Materials and methods 

This study was performed at the Western Cape Academic PET/CT Centre in the 

Division of Nuclear Medicine of Tygerberg Academic Hospital. 

 

2.1. PET/CT scanner 

A Gemini TF Big Bore PET/CT scanner manufactured by Phillips was used to acquire 

the images. The system is comprised of a PET scanner combined with a 16-slice CT 

scanner. It has a scanner ring diameter and patient bore diameter of 90.34 and 71.70 

cm, respectively. The PET detectors are comprised of yttrium-doped lutetium 

oxyorthosilicate (LYSO) with dimensions of 4x4x22 mm3. It is a fully 3D scanner with 

an energy resolution of 11.5% (FWHM) at 511 keV with threshold energies of 440 and 

665 keV (Surti, et al., 2007). The system’s temporal resolution measured with a low 

activity (approximately 3.7 MBq) point source in air is 585 ps (FWHM), 25 ps timing bin 

and 4.8 mm intrinsic spatial resolution which translates to a positional uncertainty of 9 

cm (FWHM) along the line pair (Karp and Fletcher, 2006). The bed has a deep U-

shaped head holder with a 2.54 cm thick foam insert used to fixate both patients and 

the brain phantom during scanning. 

 

2.2. Phantom Data 

Phantom data was acquired using a 3D Hoffman brain phantom (HBP). This phantom 

consists of 19 plexiglass plates stacked into a cylinder of inside diameter and height of 

20.8 cm and 17.5 cm respectively, and a fillable volume of 1.2 litres. Each of 19 inserts 

is made up of five thinner slices on the interspace. The HBP allows for qualitative and 

quantitative study of 3D radioisotope distribution corresponding to a FDG PET brain 

study. The phantom simulates the 4:1 uptake ratio between the gray and white matter. 

The phantom was filled with [18F]-FDG solution of approximately 40 MBq activity at 

time of scan. Liquid soap was added to the solution to reduce accumulation of bubbles. 

Once filled, the HBP was positioned in the scanner, with the central axis of the cylinder 

coplanar to the centre of the axial FOV. A low dose CT scan (120 kV, 90 mAs) was 

performed for anatomical localisation and attenuation correction, followed by an 

emission scan acquired in list mode for a duration of  

25 min. 
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2.3.  Ethics  

This study was approved by the Health Research Ethics Committee of the Faculty of 

Medicine and Health Sciences of Stellenbosch University (Ref S13-01-011). Written 

informed consent was obtained from every patient in accordance with the 2008 

Helsinki Declaration.  

2.4. Patient selection 

Patients referred to the Western Cape Academic PET/CT Centre to undergo whole 

body PET/CT for oncological imaging were selected for the study. 

 

On the day of their clinical PET booking, patients typically reported to the PET Centre 

with their referral forms in order to receive advice on scan preparation. If practical, 

screening for study inclusion, followed by informed consent, was conducted in a private 

office during this visit. If it was not practical for the patient to have this discussion on 

the day of the booking, the patient was invited to join the study on the day of their 

oncology scan. The study was explained to them and questions were answered before 

informed consent was obtained. 

 

If the patient consented, his/her participation did not influence the timing of the clinical 

study. The brain PET/CT imaging was done 30 min post injection and lasted for 25 

min. Imaging was, therefore, completed 5 min before the start of the clinical whole body 

PET/CT scan. The radiation exposure related to CT for whole body could range from 

1-20 mSv and with an additional dose of about 0.02 mSv from the low-dose CT needed 

for attenuation correction (Varrone et al., 2009). Thus patients were not exposed to a 

significant additional radiation dose. 

 

Patients were selected to participate in the study according to the following criteria: 

Inclusion criteria 

1)  age 18 years or older 

2)  able to give written informed consent 

3)  no neurological symptoms 

4)  normal neurological exam 

5)  English, Afrikaans and Xhosa speakers 
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Exclusion criteria 

1) current or previous substance dependence other than nicotine and moderate 

alcohol usage 

2)  lifetime or current diagnosis of psychiatric disorder 

3)  recent chemotherapy 

4)  use of any psychotropic medication 

5)  medical or neurological illness or trauma that could affect the central nervous 

system (CNS), including brain tumour, paraneoplastic syndrome, severe renal, 

hepatic, pulmonary, an endocrine disease, or significant head injury 

6)  known abnormalities on previous brain imaging 

7)  pregnant women 

9)  fasting blood glucose >7.2 mmol/l 

10)  diabetes mellitus 

11)  pathology that makes central nervous system involvement difficult to exclude 

with a high degree of certainty e.g. small cell lung cancer, advanced melanoma  

12)  evidence of CNS pathology on PET or CT 

 

2.5. Brain PET/CT Scanning 

Preparation for the brain scan is similar to the clinical scan preparation: before the 

study the patient needed to confirm the appointment, and was advised to fast for 6 

hours prior to the scan and to avoid intake of caffeine. They were instructed to drink 

plenty of water and to avoid any alcohol or drugs since these may affect cerebral 

glucose metabolism. 

 

On arrival, patients were taken to the examination room where the registrar interviewed 

them and explained the procedure thoroughly to them. They were selected for the study 

if they fulfilled the screening criteria and if willing, informed consent was obtained if it 

was not done before. 

 

An intravenous line was inserted and blood glucose levels checked for each patient. 

Participating patients were instructed not to speak, read or be otherwise active  

10 min before to 20 min after FDG administration. Patients were required to sit on a 
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reclining chair in a quiet dimly lit cubicle with eyes open for this period. After relaxing 

for at least 10 min, patients received a dose of 175-350 MBq of [18F]-FDG depending 

on their weight, according to the existing PET/CT imaging protocol. 

 

At 20 min post injection the patient was requested to empty his/her bladder on route to 

a change room prior to starting imaging. To minimise movement artefacts, the patient 

was informed to avoid movement of the head, and the patient’s head was fixated into 

the deep U-shaped head holder. 

 

Brain PET/CT acquisition commenced 28 min after injection of FDG using a Philips® 

Gemini TF Big Bore PET/CT scanner. The low-dose CT component was performed 

first for 2 min followed by a 25 min PET acquisition in list mode. The low dose CT scan 

was used for attenuation correction with acquisition parameters of a current of 20 mAs 

and a tube voltage of 120 kV. Shortly after the brain PET/CT was completed, the 

patients’ PET/CT scanning for their routine oncology management proceeded at 60 

min post injection as per the standard protocol. 

 

After the acquisition of the brain PET/CT, data quality was checked for the following 

before inclusion in the study: 

 whole brain is in the field of view 

 adequate counts are obtained (50-200 x 106 counts) 

 

2.6. Image reconstruction 

The PET system has a dedicated powerful computing platform for implementing fully 

3D PET iterative reconstruction algorithms (LOR based list mode reconstruction). This 

platform uses a 5-node quad core CPU computer cluster, thereby making it possible 

for the image processing to proceed in parallel with data acquisition. Image processing 

for a typical whole body study usually takes 10 to 30 min after the end of acquisition 

depending on the number of counts collected. For PET/CT reconstruction, the same 

brain dynamic reconstruction protocol used for clinical brain imaging at the Western 

Cape Academic PET/CT Centre was used. This reconstructs 5 dynamic frames of 5 

min each using a 3D LOR RAMLA algorithm. For a whole body PET, BLOB OS 

algorithm with spherically symmetric basis functions voxels representing the emission 

object, was used. The BLOB OS reconstruction has the ability to reconstruct images 
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with or without applying TOF. The CT data were applied for attenuation correction of 

the PET data. 

 

The following algorithms were used to reconstruct the acquired PET images: 

(a) LOR RAMLA subsequently called RAMLA; (b) BLOB OS without TOF called BLOB 

nonTOF, and (c) BLOB OS with TOF called BLOB TOF. All the reconstructions were 

done with 33 subsets and with a varying number of iterations (3, 5, 10, 15, 20 and 30) 

and for two values of the relaxation parameter lambda (λ). The relaxation parameter 

lambda (λ) was varied between smooth (λ= 0.7) and normal (λ=1.0) (no relaxation), 

according to the default settings on the PET/CT system. To study the effect of the raw 

data signal-to-noise ratio on each reconstruction algorithm, subsections of the 25 min 

acquired data were reconstructed with a constant number of 30 iterations. The 

acquisition time intervals were varied as follows: 0-3, 0-5, 0-10, 

0-15, 0-20 and 0-25 min. 

 

After the reconstruction of the brain PET/CT, data quality was checked for the following 

before inclusion in the study: 

 misregistration between the CT and the PET data 

 movement during the PET acquisition 

 

2.7 . Phantom data analysis 

Two CT scans with high resolution and a low pitch to obtain a very good axial sampling 

were performed when the 3D Hoffman brain phantom was filled with water. The two 

CT images were coregistered and a mean image was created. Based on this image, 

MRIcro (version 1.40 build 1) was used to define a number of volumes of interest 

(VOIs). This was done using the 3D regions of interest (ROI) tool. This tool was used 

to specify seed voxel (in voxel coordinates in MRIcro) difference from origin, difference 

at edge, radius in mm and number of erode/dilate cycles. The VOIs listed in Table 2.1 

and shown in Figures 2.1 to 2.9 were defined. Seed in Table 2.1 refers to the seed 

voxel of the algorithm used in MRIcro to define the VOI. It is the starting voxel of a 

region growing algorithm based on intensities. Settings in Table 2.1 refer to the 

specifications of the lesion growing algorithm used in MRIcro (e.g. the maximum 

change in intensity). These settings are given explicitly so that the VOI is fully 

reproducible if a researcher would start from the same image and use the publicly 

available MRIcro software. 
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Table 2.1: Seed voxel coordinates and setting for different VOIs used 

CORTICAL REGIONS SEED SETTINGS 

R parietal    63 - 68 - 160 15/10/20/2 

L parietal        142 - 64 - 160 15/10/20/2 

R frontal                67 - 231 - 153 15/10/24/2 

L frontal                139 - 223 - 153 15/10/24/2 

R temporal                  36 - 152 - 38 15/10/20/2 

L temporal                 182 - 160 - 38 15/10/20/2 

Ant cingulate            98 - 208 - 131 15/10/15/0 

SUBCORTICAL REGIONS SEED SETTINGS 

R putamen       68 - 171 - 95 15/10/15/2 

L putamen                 134 - 171 - 95 15/10/15/2 

R thalamus           88 - 142 - 100 15/10/15/2 

L thalamus               112 - 142 - 100 15/10/15/2 

R caudate nucleus       83 - 183 - 105 15/10/15/2 

L caudate nucleus       117 - 179 - 105 15/10/15/2 

WHITE MATTER AND 
CEREBROSPINAL FLUID (CSF) 

SEED SETTINGS 

R WM        73 - 188 - 161 25/20/15/2 

L WM      127 - 188 - 161 25/20/15/2 

CSF        101 - 162 - 111 20/20/35/3 

 

All VOIs were exported as an image in neuroimaging informatics technology initiative 

(nifti) format. They were then coregistered to the PET images of the HBP after 

confirming that all PET reconstructions were in exactly the same space before 

generating the mean image. This mean image was taken as the reference image. The 

source image was the mean CT image of the brain used to define the VOIs. Other 

images are all the different VOI images. Interpolation for the resliced options is set to 

nearest neighbour. 

 

An iterative algorithm is said to converge when, as the iterations proceed, the output 

gets closer and closer to a true value. Full convergence for each algorithm in this study 

was taken as the convergence value where the graph reached a plateau. Convergence 

percentage was calculated as the ratio of grey matter to white matter (GM/WM) value 

at 3 iterations to the value at a different number of iterations multiplied by 100. 

The geometric mean is useful when comparing data with very different properties. For 

n numbers all are multiplied and the nth root (written n√) taken. 
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For example, for n numbers, a1 to an, calculating the geometric mean is as follows: 

n√(a1× a2× ... × an) 

 

Once the VOIs were co-registered with the PET images, the mean counts, the 

normalised mean counts and the coefficient of variation (COV) were calculated using 

a MATLAB R2013a code. The normalised mean counts were defined as the ratio of 

the mean counts in the VOI to the total counts in the whole brain. The COV is defined 

as the ratio of the standard deviation of the mean count (σ) to the mean counts (µ). 

 𝐶𝑂𝑉 =
𝜎

𝜇
 

The COV is presented as percentage, with a low value of COV corresponding to high 

precision and a high value corresponding to lower precision. 

 

Figures 2.1 to 2.9 are the transverse (A) and coronal (B) slices of the Hoffman brain 

phantom showing the selected VOIs that were used for the analysis.  

 

Figure 2.1: VOI for the left and right parietal cortex 

 

Figure 2.2: VOI for the left and right frontal cortex 

Stellenbosch University  https://scholar.sun.ac.za



 

29 

 

 

Figure 2.3: VOI for the left and right temporal cortex 

 

Figure 2.4: VOI for the anterior cingulate 

 

Figure 2.5: VOI for the left and right putamen 

 

Figure 2.6: VOI for the left and right thalamus 

Stellenbosch University  https://scholar.sun.ac.za



 

30 

 

 

Figure 2.7: VOI for the left and right caudate nucleus 

 

Figure 2.8: VOI for the left and right white matter (WM) 

 

Figure 2.9: VOI for the CSF 

A profile was arbitrarily drawn at position y=91 and z=55 through a transverse slice of 

the HBP to investigate the ratio of the grey matter to white matter (GW/WM). Along the 

profile generated, the peak value of the profile and the lowest value of the valley 

(trough) were taken. The ratio of the peak to trough was used as a measure of contrast. 

Graphs were then generated demonstrating the influence of different number of 

iterations on GW/WM ratio, for the different algorithms. Another set of graphs was 

generated to compare the effect of the different algorithms on counts, with a constant 

number of 30 iterations.  
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2.8. Patient data analysis 

A profile was made through the transaxial slice for each of the patients. Peak and 

trough counts were used to obtain the peak/trough ratios (grey matter/white matter) 

from each reconstruction algorithm used. This ratio is a measure of contrast. 
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Chapter 3: Results 

3.1. Hoffman brain phantom 

3.1.1. Effect of varying number of iterations 

3.1.1.1. Effect of the number of iterations on the GM/WM ratio 

The ratio between the activity in a GM region over the activity in WM for the different 

VOIs listed in Table 2.1 as a function of the number of iterations (for the 25 min 

duration) is presented in Figures 3.1 to 3.7. These graphs show for all the VOIs that 

the GM/WM ratio increased as the number of iterations increased and approached 

convergence after 15 iterations.  

 

Figure 3.1: The effect of number of iterations on the GM/WM ratio for the left (A) and right (B) parietal 
VOIs 
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Figure 3.2: The effect of number of iterations on the GM/WM ratio for the left (A) and right (B) frontal 
cortex VOIs 

 

 
Figure 3.3: The effect of number of iterations on the GM/WM ratio for the left (A) and right (B) temporal 
cortex VOIs 
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Figure 3.4: The effect of number of iterations on the GM/WM ratio for the anterior cingulate VOI 

 

 
Figure 3.5: The effect of number of iterations on the GM/WM ratio for the left (A) and right (B) 
putamen VOIs 
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Figure 3.6: The effect of number of iterations on the GM/WM ratio for the left (A) and right (B) 
thalamus VOIs  

 
Figure 3.7: The effect of number of iterations on the GM/WM ratio for the left (A) and right (B) 
caudate nucleus VOIs 
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For most of the VOIs it was observed that convergence of the algorithms differed. 

BLOB TOF showed faster convergence against all the other algorithms. RAMLA 

showed a better contrast for most VOIs than BLOB TOF which had lower contrast. This 

could be because RAMLA was optimised for brain imaging on the Philips® Gemini TF 

Big Bore system and BLOB TOF was meant for whole body imaging with larger pixel 

size. 

 

3.1.1.2. Effect of varying number of iterations on image convergence 

Table 3.1 shows the convergence percentages obtained when the number of iterations 

was increased from 3 to 15 and from 3 to 30 iterations, and the geometric mean 

convergence percentage of all the VOIs. The geometric mean results confirmed that a 

plateau was reached after increasing the number of iterations from 3 to 15. It was found 

that the geometric mean of the results showed BLOB nonTOF 0.7 to have the lowest 

convergence of 88.4% and BLOB TOF (λ=1.0) the highest convergence of 95.7%. 

When comparing the algorithms with relaxation value of 0.7 and 1.0 it was found that 

1.0 converged faster than 0.7. Overall, BLOB TOF (λ=1.0) proved to have faster 

convergence followed by BLOB TOF (λ=0.7). 
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Table 3.1: The convergence percentage for the GM/WM ratio between iterations 3 and 15, and between 
3 and 30 for all the VOIs for all the algorithms 

Iterations VOI 
RAMLA 

(λ=0.7) 

RAMLA 

(λ=1.0) 

BLOB 

nonTOF 

(λ=0.7) 

BLOB 

nonTOF 

(λ=1.0) 

BLOB TOF 

(λ=0.7) 

BLOB TOF 

(λ=1.0) 

3 versus 15 Left 

Parietal 

93.4 95.5 91.2 93.8 95.0 96.1 

3 versus 30 92.7 95.1 90.2 93.3 94.8 96.0 

3 versus 15 Right 

Parietal 

93.6 95.4 90.7 93.8 95.0 96.3 

3 versus 30 93.0 95.4 89.9 93.2 94.8 96.3 

3 versus 15 Left 

Frontal 

94.7 96.6 93.1 95.5 96.5 97.2 

3 versus 30 94.5 96.3 92.5 95.0 96.2 97.1 

3 versus 15 Right 

Frontal 

94.2 96.3 92.3 95.3 96.2 97.3 

3 versus 30 94.2 96.4 91.6 94.7 95.9 97.1 

3 versus 15 Left 

Temporal 

93.0 95.1 92.7 95.0 96.2 97.2 

3 versus 30 92.2 94.8 91.9 94.7 96.0 97.1 

3 versus 15 Right 

Temporal 

93.3 95.5 92.5 94.8 96.1 97.1 

3 versus 30 92.8 95.3 92.0 95.0 95.9 97.2 

3 versus 15 Ant 

Cingulate 

95.1 96.7 93.0 95.6 96.6 97.5 

3 versus 30 94.9 96.8 92.7 95.4 96.3 97.4 

3 versus 15 Left 

Putamen 

91.9 94.7 90.2 92.9 94.6 96.0 

3 versus 30 91.2 94.3 89.4 93.0 94.2 95.9 

3 versus 15 Right 

Putamen 

89.0 92.5 86.9 91.0 92.3 95.2 

3 versus 30 88.4 92.5 86.1 90.8 93.0 95.1 

3 versus 15 Left 

Thalamus 

92.0 94.8 90.1 93.7 95.4 96.5 

3 versus 30 91.4 94.4 89.4 93.1 95.2 96.5 

3 versus 15 Right 

Thalamus 

92.3 95.2 90.1 93.9 96.0 97.1 

3 versus 30 91.8 95.0 89.7 93.6 95.7 97.0 

3 versus 15 L Caudate 

Nucleus 

83.0 88.5 79.7 86.0 89.2 92.1 

3 versus 30 82.0 87.6 78.2 84.9 88.7 91.8 

3 versus 15 R Caudate 

Nucleus 

75.1 81.3 71.4 78.1 83.5 86.7 

3 versus 30 72.9 79.7 68.6 75.9 82.3 86.2 

3 versus 15 Geo Mean 90.6 93.6 88.4 92.1 94.0 95.7 

3 versus 30 Geo Mean 90.0 93.2 87.6 91.6 93.7 95.4 

 

3.1.1.3. Effect of varying number of iterations on mean counts, normalised mean 

counts and the COV 

The results of the effect of varying number of iterations on the mean counts, normalised 

mean counts and COV, for the VOIs used, are presented in Figures 3.8 to 3.11 for the 
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cortical regions, Figures 3.12 to 3.14 for the subcortical regions, and figures 3.15 and 

3.16 for the white matter and CSF, respectively. 

 

Figure 3.8: The effect of number of iterations on the mean counts; normalised mean counts and COV 
for the left (A) and right (B) parietal cortex 

 

 

Figure 3.9: The effect of number of iterations on the mean counts; normalised mean counts and COV 
for the left (A) and right (B) frontal cortex  

 

 
Figure 3.10: The effect of number of iterations on the mean counts; normalised mean counts and COV 
for the left (A) and right (B) temporal cortex 
 

A 

B A 

B 

A B 
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Figure 3.11: The effect of number of iterations on the mean counts; normalised mean counts and COV 
for the anterior cingulate  
 

  

Figure 3.12: The effect of number of iterations on the mean counts; normalised mean counts and COV 
for the left (A) and right (B) putamen 
 

  
Figure 3.13: The effect of number of iterations on the mean counts; normalised mean counts and COV 
for the left (A) and right (B) thalamus 
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Figure 3.14: The effect of number of iterations on the mean counts; normalised mean counts and COV 
for the left (A) and right (B) caudate nucleus 

 

 

Figure 3.15: The effect of number of iterations on the mean counts; normalised mean counts and COV 
for the left (A) and right (B) white matter 
 

 

Figure 3.16: The effect of number of iterations on the mean counts; normalised mean counts and COV 

for the CSF  

 

From Figures 3.8 to 3.14, it is observed that, as the number of iterations increased, the 

mean counts and the normalised mean counts increased and converged to a plateau 

B A 

B A 
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after the 15th iteration for all the cortical and subcortical structures. The COV for all 

VOIs showed BLOB TOF to be superior to all the other algorithms, except for the left 

and right temporal cortex where RAMLA is superior to BLOB TOF. BLOB TOF 0.7 

appears to be superior to BLOB TOF 1.0 for most VOIs. 

 

Figure 3.15 (for the white matter) shows that the mean counts and normalised mean 

counts had a maximum variation of 5.1% between 3 and 15 iterations, but from 15 to 

30 iterations there was stabilisation of both the mean and normalised mean counts for 

all the reconstructions, with variation tending to 0%. The COV on the left and right white 

matter VOIs showed the BLOB TOF (λ=0.7) reconstruction to be superior followed 

closely by the BLOB TOF (λ= 1.0) compared to all the other reconstructions. 

Figure 3.16 shows that mean counts and normalised mean counts for the CSF had a 

maximum variation of 19.2% up to 15 iterations and stabilised from 15 iterations on for 

all the reconstructions. The COV on the CSF VOIs showed BLOB TOF (λ=0.7) to be 

superior compared to all the other reconstructions. 

 

3.1.2. Effect of noise by varying scan duration on mean counts, normalised mean 

counts and the COV 

The results of the effect of varying noise by varying scan duration on the mean counts, 

normalised mean counts and COV, are presented in Figures 3.17 to 3.20 for the cortical 

regions, Figures 3.21 to 3.23 for the subcortical regions, and Figures 3.24 and 3.25 for 

the white matter and CSF, respectively.  

 

Figure 3.17: The effect of noise by varying scan duration on the mean counts; normalised mean counts 
and COV for the left (A) and right (B) parietal cortex 
 

A B 
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Figure 3.18: The effect of noise by varying scan duration on the mean counts; normalised mean counts 
and COV for the left (A) and right (B) frontal cortex 
 

 

Figure 3.19: The effect of noise by varying scan duration on the mean counts; normalised mean counts 
and COV for the left (A) and right (B) temporal cortex 
 

 

Figure 3.20: The effect of noise by varying scan duration on the mean counts; normalised mean counts 
and COV for the anterior cingulate 
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Figure 3.21: The effect of noise by varying scan duration on the mean counts; normalised mean counts 
and COV for the left (A) and right (B) putamen 
 

 

Figure 3.22: The effect of noise by varying scan duration on the mean counts; normalised mean counts 
and COV for the left (A) and right (B) thalamus 
 

 

Figure 3.23: The effect of noise by varying scan duration on the mean counts; normalised mean counts 
and COV for the left (A) and right (B) caudate nucleus 
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Figure 3.24: The effect of noise by varying scan duration on the mean counts; normalised mean counts 
and COV for the left (A) and right (B) white matter 
 

                                                          

Figure 3.25: The effect of noise by varying scan duration on the mean counts; normalised mean 

counts and COV for the CSF 

 

Figures 3.17 to 3.20 show that the mean counts and normalised mean counts of the 

cortical regions for the BLOB nonTOF and BLOB TOF were comparatively stable 

irrespective of noise, with the exception of very short scan durations where there was 

very high noise. The only algorithm that showed a higher variation compared to the 

rest was RAMLA, which showed the highest variation of 5.2%. The COV curves 

showed an improvement as the noise decreased (scan duration increased) with 

stability reached from 10 min. COV for all VOIs showed BLOB TOF to be superior to 

all the other algorithms, except for the left and right temporal cortex, where RAMLA 

showed slight competitive superiority to BLOB TOF in the low noise region. 

 

In Figure 3.21 to 3.23, it is shown that the mean counts and normalised mean counts 

of the subcortical regions for the BLOB nonTOF and BLOB TOF were fairly stable 

irrespective of noise for all the VOIs compared, except for RAMLA which showed the 

A B 
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highest variation of 13.2% compared to other reconstructions. The COV curves 

showed an improvement as the noise decreased and reached stability from 10 min 

with no further significant improvement up to 25 min. BLOB TOF appeared to be 

superior as the noise decreased for all VOIs compared to all the other algorithms. 

 

For the white matter, Figure 3.24 shows that the mean counts and normalised mean 

counts of the RAMLA had the highest variation of 15% compared to other 

reconstructions. The COV on the white matter VOIs showed the BLOB TOF to be 

superior compared to all the other reconstructions. The COV graph showed 

improvement as the noise decreased and reached stability from 10 min with no further 

significant improvement up to 25 min. 

 

Figure 3.25 shows that the mean counts and normalised mean counts of all the 

algorithms for the CSF were fairly stable irrespective of noise. The COV showed the 

BLOB TOF to be superior and improving as the noise decreased and reached stability 

from 10 min with no further significant improvement up to 25 min when compared to all 

the other reconstructions. 

3.1.3 Profile along the Hoffman brain phantom slice 

Figure 3.26 shows the position of the profile drawn across the transverse plane of the 

Hoffman brain phantom at y = 91 z = 55. 

 

Figure 3.26: Profile along the transverse plane on the slice of the HBP 

Figure 3.27 A-F demonstrates the HBP profiles for the different algorithms for the 

lowest and highest number of iterations. Increasing the number of iterations appears 

to improve contrast. 
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Figure 3.27: The profile curve obtained from the Hoffman brain phantom for each algorithm for 
different number of iterations 
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Figure 3.28.: The profile curve obtained from the Hoffman brain phantom reconstructed with different 
algorithms 

 

Figure 3.28 showed that BLOB TOF generally showed higher values than the other 

reconstruction algorithms.  

3.2. Patient brain data results 

Fourteen patients that were referred to the PET/CT Centre for normal whole body 

PET/CT scanning were initially identified, but only eight of these qualified according to 

the inclusion and exclusion criteria. Of these, three patients withdrew and one scan 

failed the quality control, therefore only three patients were included. This low 

recruitment turnout was due to the strict inclusion and exclusion criteria. 

3.2.1. Patient data 

Figure 3.29 shows a bar graph of the ratios of geometric means of grey matter (peak) 

and white matter (trough) for the three patients, obtained from a profile drawn through 

a representative slice of each brain image. This ratio represents the contrast in the 

profile lines. The figure illustrates the effect of different algorithms, also comparing the 

effect of lambda (smooth (λ=0.7) and normal (λ=1.0)). It was noted that there was a 

variation with no pattern between the three patients therefore no conclusion could be 

deduced. 
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Figure 3.29: Bar plot of the peak to troughs ratio in the profile lines for patient brain images 

3.2.2. Profile along patient brain slice 

Figure 3.30 is an illustrative example of the data of a profile drawn over slice y= 91  

z= 55. It shows the counts obtained when the profile was drawn for the various 

algorithms while varying the number of iterations. Figure 3.31 shows the effect of 

different algorithms on the profile. No specific trend was observed. 
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Figure 3.30: The profile curve obtained from the data of patient 1 for each algorithm for different 

number of iterations 
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Figure 3.31: The profile curve obtained from the patient data 1 reconstructed with different 

algorithms 

Due to the limited number of patients and the variation in the results obtained, the data 

was not analysed further. Further studies need to be conducted including more 

patients.  
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Chapter 4: Discussion 

This research was conducted to evaluate the effect of different processing algorithms 

on PET/CT image quality, specifically to optimise PET/CT brain imaging. Various 

parameters were investigated, including the number of iterations, relaxation parameter 

(λ), and scan duration. The inclusion of time of flight information was also studied. 

4.1. Number of iterations 

When investigating the effect of varying the number of iterations, the acquisition time 

was kept constant at 25 min while different algorithms with different values of lambda 

were applied. For the GM/WM ratio, it was found that it increased as the number of 

iterations increased, with convergence reached from the 15th iteration onward (Figures 

3.1-3.7). Iterations beyond 15 resulted in minimal improvement of accuracy. COV also 

showed stability from 15 iterations onwards in cortical regions (Figures 3.8-3.11) and 

sub-cortical regions (Figures 3.12-3.14). For WM and CSF (Figures 3.15 and 3.16), 

COV was higher but also stabilised after 15 iterations. Therefore, using 15 iterations is 

a good compromise between reaching convergence while maintaining an acceptable 

reconstruction time. This is in contrast to other studies where the number of iterations 

for optimal image quality was less than 15. The studies reviewed, used 12 or less 

iterations for image reconstruction (Leemans et al., 2015; Prieto et al., 2015; Zeimpekis 

et al., 2015). None of these studies concluded on the optimal number of iterations 

required for optimum image quality for brain. 

Similarly, it was found that most of the algorithms reached stability from the 15th 

iteration onwards when evaluating the effect that varying the number of iterations had 

on mean and normalised mean counts (Figures 3.8-3.16). This result is in agreement 

with the findings of Matej and Lewitt (1996), who stated that a number of iterations from 

10 and above would lead to results close to the expected standard. It however, 

contradicts Conti (2011) who stated that the number of iterations for clinical 

applications should not exceed 10. It is important to note that Conti’s work was done 

on a Biograph block-detector PET/CT system (Siemens®), analysing whole-body 

imaging data which have lower count statistics compared to brain imaging data. 

Increasing the number of iterations increases computation time, hence the need to 

determine the optimum number of iterations required for an acceptable trade off 

between image quality and processing time specifically for brain imaging. The results 

of this study showed that 15 iterations led to optimal brain image quality, but more than 
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15 iterations (up to 30) did not show a significant difference in image quality (Table 

3.1). 

4.2. Relaxation parameters 

BLOB TOF (λ=1.0) convergence was shown to be superior to BLOB TOF (λ=0.7) and 

to all the other algorithms, as expected from the iteration formula (Table 3.1). This is in 

concordance with Groheux et al. (2009), who also found that larger λ values 

accelerated the convergence speed.  

When evaluating the effect of the relaxation parameter, for most of the VOIs, excluding 

the temporal cortex, the BLOB TOF (λ=0.7) appeared to give lower COV compared to 

that of all the other algorithms (Figures 3.8-3.16). This is in agreement with the findings 

by Groheux et al. (2009) who stated that increasing lambda would result in increased 

noise which can directly affect accuracy. A direct comparison of our results with that of 

Groheux et al (2009) could not be done as different PET scanners and different lambda 

values were used. 

The results of the COV for the temporal regions appear to be different from all other 

VOIs, as RAMLA was superior to the other algorithms. The cause of this is unclear, 

and needs to be investigated further. 

When choosing the lambda value a balance must be found to avoid choosing too small 

or too large values, in order to avoid too smooth or too noisy images. 

4.3. Scan times 

The study also investigated the effect of noise by varying the scan duration while 

applying a constant number of 30 iterations. As scan duration increased, there was a 

decrease in noise. In turn, as the noise decreased, the COV for all the algorithms 

showed an improvement (Figures 3.17-3.25). In regions of high noise, the BLOB TOF 

COV started off better (lower) compared to the other algorithms. As the noise 

decreased by increasing scan duration, all the algorithms converged to a low COV with 

BLOB TOF being superior to all the others (Figure 3.17-3.25). This finding is supported 

by Westerwoudt, Conti and Eriksson (2014), who stated that the use of TOF 

information has the beneficial effect of lowering the statistical limitations and allowing 

for shorter reliable PET scans. The COV results for different scan durations show that 

there was minimal improvement after 5 min in high-activity regions (GM) and after 10 

min in low-activity regions (WM). According to Zeimpekis et al. (2015), the average 

overall PET/CT image quality of the brain at 10 min is excellent. In their study, they 
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evaluated image quality as a function of acquisition time in a new TOF PET/MRI 

compared to TOF PET/CT. In the current study an image acquisition of 10 min 

produced an optimal trade-off between image quality and scan duration for brain 

imaging irrespective of the reconstruction algorithm used. 

4.4. Time of flight information 

This study also found that the incorporation of time of flight information in the 

reconstruction enhanced convergence. BLOB TOF 1.0 had faster convergence overall 

against all the other algorithms (Table 3.1). 

For the COV percentage, the quality of the PET brain phantom reconstructed with the 

BLOB TOF was superior to that of BLOB nonTOF and RAMLA (Figures 3.8-3.16). This 

is in agreement with a study by Taniguchi et al. (2015), who found that the inclusion of 

the OSEM+TOF+PSF improved image quality. 

The mean counts of the BLOB TOF overall were lower than that of the RAMLA and 

BLOB nonTOF algorithms (Figures 3.8-3.16). This can be due to the fact that RAMLA 

was optimised for brain imaging with 2 mm pixel size, while BLOB TOF was optimised 

for whole body imaging with a 4 mm pixel size. 

As was found with the relaxation parameter λ, the results of the COV for the temporal 

regions (Figures 3.10) appear to be different from all other VOIs, with RAMLA superior 

to the other algorithms. The cause of this is unclear, and needs to be investigated 

further. 

4.5. Patient data 

The scan data of a limited number of patients showed discordant results when 

compared to the brain phantom data (Figures 3.29-3.30). To confirm these preliminary 

findings, a more representative sample of patient data needs to be studied. Due to the 

low patient inclusion rate this was not possible within the time frame of this study. 

Therefore, while showing these preliminary findings, it is not possible to interpret their 

significance. 
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Chapter 5: Conclusions 

The following conclusions can be drawn from the findings of this study: 

 Fifteen iterations gave an optimal image quality for most algorithms.  

 BLOB TOF gave an optimal COV, with λ=0.7 giving better accuracy than λ=1.0. 

This is because reducing the lambda value decreases the noise generated, 

thereby improving image quality. The incorporation of time of flight information 

in the reconstruction enhanced convergence, with BLOB TOF (λ=1.0) being 

superior to BLOB TOF (λ=0.7) and all other algorithms. This is because BLOB 

TOF (λ=1.0) has a larger lambda value which leads to faster convergence. 

When choosing between BLOB TOF (λ=0.7) and (λ=1.0) it is important to 

choose an optimal value in order to avoid over smooth or over noisy images 

within an acceptable processing time. 

 The acquisition time for an optimal trade-off between image quality and scan 

time for brain imaging was 10 min. 

 For the GM/WM ratio, RAMLA had the best contrast. This can be due to the fact 

that RAMLA was optimised for brain imaging with 2 mm pixel size, while BLOB 

TOF was optimised for whole body imaging with a 4 mm pixel size. Further 

research by optimising BLOB TOF to a comparable pixel size (2 mm) needs to 

be done. 

A representative sample of sufficient patient data will need to be studied to validate the 

phantom data with statistical analysis on a voxel basis. 

The study hypothesis that optimisation of different image reconstruction parameters, 

and the inclusion of TOF in the reconstruction algorithm will improve the image quality 

of brain images on the Philips® PET/CT scanner, was confirmed.  

 

Further research 

The current algorithm used for brain imaging on the Phillips® system is RAMLA which 

uses a 2 mm pixel size. The BLOB TOF algorithm which is optimised for whole body 

imaging uses 4 mm pixel size. Therefore, the resolution of images reconstructed using 

RAMLA is better than those reconstructed with BLOB TOF. Optimisation of the BLOB 

TOF algorithm by altering the blob size to a comparable pixel size of 2 mm could 

potentially improve the spatial resolution, thereby reducing the partial volume effect 

and improving the resolution and contrast of BLOB TOF. Future research is required 
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to compare the image parameters of RAMLA and BLOB TOF using comparable pixel 

sizes in order to determine the optimal reconstruction algorithm for brain PET/CT. 

The choice between BLOB TOF (λ=0.7) and (λ=1.0) needs to balance image 

smoothness and noisiness within an acceptable computation time. Further research to 

find an optimal lambda value is also needed. 

Studies using an appropriate sample of human subjects need to be done in order to 

validate these findings in a clinical setting.  
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